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Abstract: To allow mobile robots to visually observe the temperature of equipment in complex
industrial environments and work on temperature anomalies in time, it is necessary to accurately
find the coordinates of temperature anomalies and obtain information on the surrounding obstacles.
This paper proposes a visual saliency detection method for hypertemperature in three-dimensional
space through dual-source images. The key novelty of this method is that it can achieve accurate salient
object detection without relying on high-performance hardware equipment. First, the redundant
point clouds are removed through adaptive sampling to reduce the computational memory. Second,
the original images are merged with infrared images and the dense point clouds are surface-mapped to
visually display the temperature of the reconstructed surface and use infrared imaging characteristics to
detect the plane coordinates of temperature anomalies. Finally, transformation mapping is coordinated
according to the pose relationship to obtain the spatial position. Experimental results show that this
method not only displays the temperature of the device directly but also accurately obtains the spatial
coordinates of the heat source without relying on a high-performance computing platform.

Keywords: component; robot work; object detection; adaptive sampling; surface mapping;
coordinate mapping

1. Introduction

In the path planning of mobile robots, it is common to construct a map using the dynamic
vision fusion of cameras and multi-sensors [1–3]. In a specific industrial environment, the robot
needs to monitor the temperature of the equipment and work in the area of abnormal temperature
points. The existing neural network control method shows high stability [4–6], but it also needs to
accurately find the location of the abnormal temperature’s point. Traditionally, using a visible-light
binocular camera to reconstruct the target is not possible, because it cannot accurately operate on the
abnormal temperature point area [7–10]. At present, the most commonly used temperature detection
methods use sensor contact measurements [11–13]. However, there are installation and use problems
in engineering applications, so non-contact space measurements can be used to solve the installation
problem. Visual target detection can solve this problem.

In the field of target detection, deep learning is a commonly used technology. At present,
in 2D target detection, many methods of optimizing the structure of deep convolutional neural
networks improve the accuracy of target detection [14–16], such as fully convolutional networks
(FCN), progressive fusion [17], multi-scale depth encoding [18], and data set balancing and smearing
methods [19,20]. In mobile robot navigation, precise positioning of the target often requires
obtaining spatial coordinates. The depth camera can be used to obtain depth information for
2.5D target positioning. The deep network also plays an important role in this field. The variational
autoencoder [21,22], the adaptive window and weight matching algorithm [23], the deep purifier,
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and the feature learning unit greatly improve the accuracy of detection. However, deep learning
requires more sophisticated hardware and relies on a large number of training samples [24–27].

With the development of 3D reconstruction technology, the application of 3D reconstruction
technology in real life has become extensive, attracting the attention of many experts and scholars [28,29].
Commonly used 3D visual reconstruction methods include feature extraction and matching, sparse
point cloud reconstruction, camera pose solution, dense point cloud reconstruction, and surface
reconstruction [30–33]. Through the research of different experts and scholars, related technologies
such as feature matching, depth calculation, and mesh texture reconstruction have made great
breakthroughs, which have resulted in a higher degree of reduction in visual 3D reconstruction [34–36].

The method proposed in this paper mainly uses ordinary and infrared cameras to take pictures
of targets and then sparse point cloud reconstruction through ordinary pictures to obtain the pose
of the camera when imaging. Then, image fusion is performed on ordinary pictures and infrared
pictures. The original camera’s internal and external parameters do not change. The original image
can be replaced with the fusion image to surface-map the dense point cloud in order to generate a
three-dimensional surface. In addition, a three-dimensional reconstruction target that visually displays
the surface temperature is obtained [37–39]. This paper uses an adaptive random sampling algorithm to
obtain the main texture features, remove redundant point clouds, and finally, use the depth confidence
to filter the wrong point clouds [40–42].

To reduce the calculation cost and dependence on training samples, this paper mainly uses
the characteristics of infrared images to detect the center coordinates of the heat source. First, the
infrared images are pre-processed by channel extraction and image segmentation. Then, the position
of the two-dimensional plane temperature abnormal points is detected. Finally, the coordinate
transformation is calculated based on the camera’s imaging pose relationship in order to calculate its
spatial coordinates [43–45]. Therefore, it is possible to use the reconstructed target as an obstacle to
plan the movement path of the robot and to work on the temperature abnormal point area according to
the obtained spatial coordinate information. The schematic diagram is shown in Figure 1. The robot
rotates around the target center once to reconstruct a complete target and quickly finds the center
position of the heat source that needs to be operated using the above method.
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Figure 1. Robot operation diagram.

2. Materials and Methods

The process of sparse point cloud reconstruction is as follows: Feature extraction, feature matching,
elimination of mismatched pairs, 3D point cloud initialization, and camera pose calculation. Among
these steps, the image mismatch elimination and pose solution have a great impact on the sparse
point cloud reconstruction effect. The text uses the random sample consensus (RANSAC) algorithm to
remove false matches and the beam adjustment method to recalculate the camera pose. The visible light
camera used in this article is a 200W pixel POE DS-2CD3T25-I3 with a focal length of four millimeters.
The device was manufactured by HIKVISION Company in Hangzhou, China.
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2.1. Reconstruction of the Sparse Point Cloud to Obtain the Camera Attitude

2.1.1. Use of the Scale-Invariant Feature Transform (SIFT) Algorithm to Find Feature Points

The process of sparse point cloud reconstruction includes feature extraction, feature matching,
elimination of mismatched pairs, 3D point cloud initialization, and camera pose calculation. Among
these steps, the image mismatch elimination and pose solution have the greatest impact on the sparse
point cloud reconstruction effect. The text uses the RANSAC algorithm to remove false matches and
the beam adjustment method to recalculate the camera pose.

To realize 3D reconstruction, the feature points of the picture first need to be extracted.
The scale-invariant feature transform (SIFT) algorithm is a computer vision algorithm that is used to
detect and describe local features of images, find extreme points in the interscale, and extract their
position, scale, and rotation invariants. It is divided into the following four steps:

• Multi-scale spatial extreme point detection: This searches image locations on all scales and uses
Gaussian differential functions to identify potential rotation invariants and scale candidate points.

• Accurate positioning of key points: After determining candidate positions, a high-precision
model is fitted to determine the scale and position. The stability of key points is used as the basis
for selection.

• Calculation of the main direction of key points: Based on the local gradient direction of the
image, each key point obtains one or more directions. In the future, the image processing will be
transformed relative to the key-point scale, direction, and position to ensure the invariance of
the transformation.

• Descriptor construction: In the field of key points, the direction of local gradients is
measured according to the scale selected above, and these gradients are transformed into
another representation.

The effect of feature point extraction is shown in Figure 2.
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Figure 2. Scale-invariant feature transform (SIFT) feature point extraction results.

This shows the reconstruction of a potted plant on a 3.0 GHz CPU desktop computer, selecting
30 consecutive shots at a resolution size of 4000 × 3000 ppi. The maximum calculation memory
required during the reconstruction process, before using the adaptive sampling algorithm, is 5.3 GB.
After adapting to the sampling algorithm, it is 3.2 GB, which proves that the algorithm effectively
reduces the memory required for calculation.

2.1.2. Error Matching Elimination Based on the RANSAC Algorithm

There will be matching errors after feature matching. RANSAC is a commonly used error
elimination algorithm. The grid-based motion (GMS) [46] algorithm, recently proposed by scholars,
can match features in a short time and is very robust. It can remove wrong matches to a certain extent.
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However, the original author notes that the GMS algorithm is suitable for supplementing the RANSAC
algorithm but not replacing it. Therefore, this article mainly uses the RANSAC algorithm to eliminate
wrong feature matching. The algorithm works by using Equation (2) as the cost function to iteratively
update the sample set.
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In the above formula, (x, y) represents the corner position of the target image, (x′, y′) is the corner
position of the scene image, s is the scale parameter, and H is a 3 × 3 homography matrix.

Error matching elimination based on RANSAC is shown in Figure 3.

Sensors 2020, 20, x FOR PEER REVIEW 4 of 14 

 

There will be matching errors after feature matching. RANSAC is a commonly used error 
elimination algorithm. The grid-based motion (GMS) [46] algorithm, recently proposed by scholars, 
can match features in a short time and is very robust. It can remove wrong matches to a certain extent. 
However, the original author notes that the GMS algorithm is suitable for supplementing the 
RANSAC algorithm but not replacing it. Therefore, this article mainly uses the RANSAC algorithm 
to eliminate wrong feature matching. The algorithm works by using Equation (2) as the cost function 
to iteratively update the sample set. 

s ൥ݔᇱݕᇱ1 ൩ = ൥ℎଵଵ ℎଵଶ ℎଵଷℎଶଵ ℎଶଶ ℎଶଷℎଷଵ ℎଷଶ ℎଷଷ൩ ቈ1ݕݔ቉ (1) 

෍(ݔ௜ᇱ ℎଵଵݔ௜ + ℎଵଶݕ௜ + ℎଵଷℎଷଵݔ௜ + ℎଷଶݕ௜ + ℎଷଷ)ଶ + ௜ᇱݕ) ℎଶଵݔ௜ + ℎଶଶݕ௜ + ℎଶଷℎଷଵݔ௜ + ℎଷଶݕ௜ + ℎଷଷ)ଶ௡
௜ୀଵ  (2) 

In the above formula, (ݔ, ,ᇱݔ) ,represents the corner position of the target image (ݕ  ᇱ) is theݕ
corner position of the scene image, s is the scale parameter, and H is a 3 × 3 homography matrix. 

Error matching elimination based on RANSAC is shown in Figure 3. 

 
(a) 

 
(b) 

Figure 3. Comparison of algorithm effects, where (a) is the original matching effect diagram and (b) 
is the error matching elimination diagram of the random sample consensus (RANSAC) algorithm. 

2.1.3. The Position Pose of the Phase Machine Is Solved by the Beam Adjustment Method 

After the image alignment, the 3D point cloud and camera pose can be obtained. However, there 
will be interference noise when calculating the position and the 3D point, and there will be significant 
error in the subsequent calculation. Therefore, bundle adjustment is used to reduce the error [9], and 
the P matrix and F matrix of each picture after correction can be obtained. The reprojection error is 
defined as: E = ෍ ௝௝ߩ )ߨ) ஼ܲ, ܺ௞) −  ௝ଶ) (3)ݔ

where ߨ is a projection matrix from three-dimensional to two-dimensional, ߩ௝ is a kernel function, 
and ߨ( ஼ܲ, ܺ௞) −  ௝ଶ is a cost function. Figure 4 shows the sparse point cloud obtained after the bundleݔ

Figure 3. Comparison of algorithm effects, where (a) is the original matching effect diagram and (b) is
the error matching elimination diagram of the random sample consensus (RANSAC) algorithm.

2.1.3. The Position Pose of the Phase Machine Is Solved by the Beam Adjustment Method

After the image alignment, the 3D point cloud and camera pose can be obtained. However, there
will be interference noise when calculating the position and the 3D point, and there will be significant
error in the subsequent calculation. Therefore, bundle adjustment is used to reduce the error [9],
and the P matrix and F matrix of each picture after correction can be obtained. The reprojection error is
defined as:

E =
∑

j
ρ j

(
π(PC, Xk) − x j

2
)

(3)

where π is a projection matrix from three-dimensional to two-dimensional, ρ j is a kernel function,
and π(PC, Xk) − x j

2 is a cost function. Figure 4 shows the sparse point cloud obtained after the bundle
adjustment (BA) algorithm is used to solve the position pose. The green dot is the posture of the
solved camera.
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2.2. Three-Dimensional Surface Generation

2.2.1. Adaptive Random Sampling

• A pixel point x̂i is randomly selected from the obtained point cloud image. Di(xi) is the depth
value of the pixel point and is inversely mapped into the three-dimensional space according to
Equation (4). The tangent plane P(x̂i) is obtained according to the normal direction. Ki is the
camera internal parameter, Ri is the rotation matrix, and Ti is the translation vector.

P(x̂i) = Ri
T(K−1Di(x̂i)[x̂i1]

T
− Ti) (4)

Specific steps are as follows:

• Expand outwards with x̂i as the center, expand the radius r one pixel at a time, and calculate the
three-dimensional coordinates P(xi

′) of each pixel xi
′ in the expansion range.

• Calculate the distance di of each pixel xi
′ to the tangent plane within the current expansion range,

and set the threshold size as td. If di ≤ td, the pixel point can be considered to be in the smooth
area, and the point can be removed.

• When the expansion radius r is larger than the maximum expansion radius rmax, or a point cloud
of a certain proportion of pi in the expansion range is removed, the expansion stops. rmax and pi
are tunable parameters. They can be determined according to the point cloud redundancy. During
debugging, it is found that there are still many redundant point clouds after culling. rmax can be
increased and pi can be decreased. If the point cloud is over-eliminated, the parameter adjustment
method is reversed.

• Then, randomly select a pixel point and repeat the above steps until all the sampling points in the
current 3D point cloud image are sampled.

2.2.2. Deep Confidence Removes the Cloud of Error Points

Ed(P(x̂i)) =

∑
t′εN(t)

∣∣∣∣∣∣Di(x̂i) −Di(x̂i→i′)
∣∣∣∣∣∣2∣∣∣N(i)

∣∣∣ (5)

The above formula is the depth value estimation of the point cloud, i.e., the larger the estimated
value, the smaller the error value and the higher the reliability. Among these values, Ed(P(x̂i)) is
the depth value estimation of two adjacent frames, x̂i→i′ represents the projection point of the i′ pixel
projected by the current pixel, and N(i) represents the number of frames taken. The specific steps are
as follows:
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• The point cloud for the current frame k is sorted from high to low according to the estimated value,
and the confidence threshold εd is set, starting from the point where the estimated value is the
smallest. If Ed(P(x̂i)) < εd, the point is eliminated, the calculation continues until Ed(P(x̂i)) > εd
stops, and the remaining point clouds are stored in the sequence Sk. Then, the same calculation is
performed on the next frame point cloud image until the point cloud image is calculated and the
sequence set S = {Sk|k = 1, · · · , n} is obtained.

• Starting from the k frame depth map, all three-dimensional points x̂i are mapped to x̂i+1 on the
k + 1 frame. Compare the estimated values of the two points, the s.

• maller three-dimensional coordinates of the larger estimated points of the estimated values, and so
on, until all depth maps are completed.

• The three-dimensional sampling points of all depth maps are intersected to obtain the final
three-dimensional point cloud image. Then, perform the mesh reconstruction and mesh texture
generation on the filtered dense point cloud. The effect before and after filtering is shown in
Figure 5.

The reconstruction details are shown in Figure 6.
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2.3. Image Fusion

After reconstructing the sparse point cloud, the camera parameters are obtained. The original
image can be corrected for distortion. The infrared image can be calibrated and corrected by itself.
The image registration error is shown in the following formula:

σx =
f ·dx

lpix
(

1
Dtarget

−
1

Doptimal
) (6)
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where f is the focal length, lpix is the pixel size, and dx is the baseline length. Doptimal is the target
distance, and the alignment error of the image is zero. Only objects that are far away from the camera
will be precisely aligned.

2.3.1. Calculate Scale Factor

As the focal length and resolution of infrared and visible images are different, the imaging size of
objects in space from the two camera types is not consistent. At the same time, the optical center of the
hardware systems of the two camera types deviates in the Y direction. Therefore, it is not easy to scale
the image by focal length.

The method adopted in this paper calculates the pixel difference between two corner points in
infrared and visible images by using the checkerboard calibration board to obtain the image scale.

scale =
in f raredn − in f raredn−1

visiblen − visiblen−1
(7)

It is assumed that the checkerboard calibration board corner with k line, l column, namely kl,
is accumulated. n is the corner number on the checkerboard, the upper left corner is minimum 1,
and the lower right corner is the maximum kl. The values increase from left to right, and from top to
bottom, in f raredn is the x or y coordinate of the corner n on the infrared image, and visiblen is the X or
Y coordinate of the corner n on the visible light image.

2.3.2. Relative Offset of the Image

The factor scale is used to realize the unification of space objects in infrared and visible images.
Then, the same corner point on the checkerboard is selected to calculate the relative offset of infrared
and visible images.

Xdi f f = in f raredx − visiblex (8)

Ydi f f = in f raredy − visibley (9)

where Xdi f f and Ydi f f are the offsets required for each pixel in the infrared image. The RGB color
model is a color standard in the industrial world. It obtains various colors by changing the three-color
channels of red (R), green (G), and blue (B) and by superimposing each on others. After the completion
of each pixel offset, the values of the three channels of RGB of the infrared and visible pixel pairs in
the same coordinate can be fused, and the fusion effect is shown in Figure 7. Figure 7 is the heating
plate placed in the carton. An infrared camera with a resolution of 384× 288 ppi is used. The infrared
camera and visible light camera take pictures at the same time.
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The camera pose is calculated based on the reconstructed sparse point cloud, and all the fused
pictures are surface-reconstructed. The 3D reconstruction effect of the temperature display is shown in
Figure 8.
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2.4. 3D Target Detection

As shown in Figure 9, in this experiment, a high-temperature bottle is used as the temperature
abnormal region of the overall device, and its spatial coordinates need to be calculated.
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2.4.1. Target Detection of the Heat Source

In the infrared picture, the pixel temperature generated by the detection is proportional to the
R channel value, so the image can be preprocessed first. The R channel value size of the original
image is extracted, and all pixels are sorted according to the R value. However, noise in the image
is unavoidable and will interfere with the sorting results. To avoid incorrect sorting, the extracted
image can be cut and divided into sub-regions. The size of the region can be determined according
to the input original image size. Then, the average value of the R channel in each area is calculated,
and the area is sorted according to the average value to obtain the R channel size set of each area
Ragg = {R1, R2, R3, · · ·Rn}, assuming Rmax is its maximum value.

After the infrared image preprocessing is complete, the R channel value of each small area can be
obtained. To allow the detection frame to be adaptively scaled, the size of the heat source needs to be
calculated, so small squares (that meet the conditions) can be calculated and recorded for each small
area location. The criteria are:

Ri > k ∗Rmax (10)

sizer = sizep ∗ pr (11)
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Among them, Ri represents the value of the R channel region, and k is a proportionality coefficient
that needs to be adjusted according to specific conditions. After calculating the situation of each
sub-region, each region can be assessed, in order from left to right and top to bottom. Each sub-region
is set to be square. The size of each sub-region sizer can be determined according to Equation (11),
where sizep is the size of the infrared image used for detection, the proportion of pr sub-regions, and pr

is an adjustable parameter. If four of the eight regions around the area meet the conditions, that area is
a sub-area within the heat source range, and the position coordinate is recorded and evaluated. Finally,
the size of the heat source border can be obtained from the coordinate position. The effect is shown in
Figure 10.
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2.4.2. Coordinate Transformation Mapping in 3D Space

After the detection of the heat source target, the coordinates of the heat source center in each
infrared picture can be obtained; because the shoot is a head-up relationship, the horizontal deviation
and the height deviation can also be obtained. The steps are as follows: Take the center of the first
picture as the center point of the space and choose another angle during the shoot as the second
position. As shown by two positions in Figure 11, calculate the deviation between the actual heat
source and the ideal heat source. The following situations can occur:
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Figure 11. Camera imaging pose.

Figure 12 is a top view of various situations. Taking Figure 12a as an example, cam1_center and
cam2_center are the imaging center points of the camera at two positions, “ideal” is the most central
position of the heat source processing experiment and is the intersection of the two imaging centers,
and “real” is the actual position of the heat source. When the heat source reaches the imaging plane,
the distance from the center of the camera is bias1 and bias2, where α is the angle of rotation of the
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second position relative to the first position. According to its geometric relationship, the rest of the
same angle, that is, the angle shown in the figure, is obtained according to the geometric relationship.

x = bias1

z = (z1 + z2)/2
light1 = bias2/cosα

light2 = light1 − bias1

y = depth
depth = light2/tanα

(12)

In the above formula, z is the height position of the heat source, and z1 and z2 are the deviations
from the origin of the space coordinates at the heights taken at the two positions. In order to reduce the
operation error, the average of the two positions is taken as the height deviation. light1 and light2 are
the distances in the calculation of geometric relations, respectively. According to the above formula,
the head-up deviation x, depth deviation y, and height deviation z can be obtained. As the coordinates
in the actual space of the idea are already known, the space coordinates of the actual heat source can
be calculated.
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Figure 12. Schematic diagram of the ideal position and the actual position, where (a–f) corresponds to
the situation of six actual heat sources relative to the ideal heat source.

Although detection speed has been greatly improved by the enhanced convolutional neural
network structure, it still cannot provide high-precision results, and relies on high-performance GPUs.
The method in this paper conducted 15 experiments, only running on a 3.0 GHz desktop computer,
using the thermos randomly placed in the above figure as a simulated heat source. The camera is 10 m
away from the ideal heat source. The error values were obtained from the actual measured coordinates
and calculated coordinates. The error results of the experiment are shown in Figure 13. It can be
seen from the experimental results that the error value is within ±20 mm, with high accuracy, and the
calculation speed is 20 ms, which meets the detection requirements of industrial equipment.
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3. Conclusions

The experimental results demonstrate that the method proposed in this paper can fuse target
surface temperature information captured by infrared cameras into a three-dimensional point cloud
while ensuring the accuracy and speed of the reconstruction and that the reconstructed object can
intuitively display its surface temperature. The spatial coordinates of the heat source are calculated
using the spatial transformation mapping relationship of the infrared picture. The experimental results
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demonstrate that the algorithm is highly accurate and meets the requirements of robot navigation
and positioning.

4. Patents

A 3D reconstruction method based on point cloud optimization sampling; a 3D surface temperature
display method based on infrared and visible image fusion is presented; the invention relates to a
method for detecting the heat source center in three-dimensional space.
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