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Abstract: The way in which transcriptional activity overcomes the physical DNA structure and gene
regulation mechanisms involves complex processes that are not yet fully understood. Modifications
in the cytosine-guanine sequence of DNA by 5-mC are preferentially located in heterochromatic
regions and are related to gene silencing. Herein, we investigate evidence of epigenetic regulation
related to the B chromosome model and transposable elements in A. scabripinnis. Indirect immunoflu-
orescence using anti-5-mC to mark methylated regions was employed along with quantitative ELISA
to determine the total genomic DNA methylation level. 5-mC signals were dispersed in the chromo-
somes of both females and males, with preferential accumulation in the B chromosome. In addition
to the heterochromatic methylated regions, our results suggest that methylation is associated with
transposable elements (LINE and Tc1-Mariner). Heterochromatin content was measured based on
the C-band length in relation to the size of chromosome 1. The B chromosome in A. scabripinnis
comprises heterochromatin located in the pericentromeric region of both arms of this isochromosome.
In this context, individuals with B chromosomes should have an increased heterochromatin content
when compared to individuals that do not. Although, both heterochromatin content and genome
methylation showed no significant differences between sexes or in relation to the occurrence of B
chromosomes. Our evidence suggests that the B chromosome can have a compensation effect on the
heterochromatin content and that methylation possibly operates to silence TEs in A. scabripinnis. This
represents a sui generis compensation and gene activity buffering mechanism.
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1. Introduction

The way in which transcriptional activity overcomes the physical DNA structure and
gene regulation mechanisms involves complex processes that are not yet fully understood.
Epigenetic marking, characterized by a heritable and reversible change that regulates gene
expression without modifying the DNA sequence [1], such as cytosine methylation, histone
modifications, and interference RNA [2], is an open area of research for describing this
process. One chemical modification that occurs in the DNA dinucleotide cytosine-guanine
sequence (CpG) is 5-methylcytosine (5-mC), where CpG methylation occurs on the fifth
carbon of the cytosine [1]. Most CpG dinucleotides (75%) are methylated, corresponding
to 1% of total bases. CpG clusters, also called CpG islands, are gene sequences of open
chromatin that promote transcription; hence, the cytosines in these sites are not methylated.
DNA is methylated by methyltransferase enzymes [3]. While the methylation location is
meaningful in heterochromatic regions [4,5], it is also remarkable in fractions of structural
genes [6]. In mammals, DNA methylation marks the silencing of gene regions [7]. In this
way, the inactivation of transposable elements (TEs) and repetitive elements can be the
result of this epigenetic marking. Examples occur in ribosomal DNA sites (rDNA) of the
fish Astyanax janeiroensis [8,9] or plants of the Citrus genus [5]. In this context, transposable
elements that initiate their cycle with a small invasion in the genome, followed by an
amplification of the number of copies, can lose their motility capacity through mutations
(Kidwell and Lish, 2001) or by the action of epigenetic mechanisms [10,11].

DNA methylation is not the only modification responsible for gene regulation in the
chromatin condensation level. Eukaryote genomes are packaged in chromatin, represented
by the nucleosome and the histone octamer [12]. This packaging occurs during cellular
division, altering the chromosomic dynamic [13]. Modifications occurring in the histones
affect the chromatin structure directly and consequently affect protein interactions. Such
modifications alter the levels of DNA compaction, implying the activation/inactivation
of transcriptional genes [14]. They may also aid in the recruitment of chromatin modi-
fiers, such as methyl tags and recognition proteins [12]. The amino acid chains of four
histones possess post-translational modification sites (lysine acetylation; mono-, di-, and
tri-methylation of lysines; serine phosphorylation, etc.), which have distinct functions of
interference in the function and integrity of the genome [15]. DNA methylation and histone
methylation act in agreement to maintain the silenced state of the chromatin [13].

B chromosomes are described in many organisms and defined as extra, expendable
elements to the genome [16]. The fish Astyanax scabripinnis has been presented as a good
model for studying B chromosomes [17]. Generally, the B chromosomes of A. scabripinnis
are partially heterochromatic isochromosomes [18] that suffer auto-paring in meiosis [19]
and accumulate families of repetitive DNA, such as As51 satellite DNA [20] and the
retrotransposon LINE [21]. Nevertheless, the functional aspects of these chromosomes
remain an open question. We aimed to investigate evidence of the epigenetic regulation of
B chromosomes in the model species A. scabripinnis.

2. Materials and Methods
2.1. Samples and Chromosomic Preparations

We analyzed 62 specimens (28 male and 34 female) of Astyanax aff. scabripinnis from
the Campos de Jordao region, Sao Paulo State, Brazil, collected with the permission of
the Ministério do Meio Ambiente, Instituto Brasileiro do Meio Ambiente e dos Recursos
Naturais Renováveis, Instituto Chico Mendes de Conservação da Biodiversidade—ICMBio
MMA/IBAMA/SISBIO, number 15115-1: Stream of Fazenda Lavrinha (22◦40′49.5” S and
45◦23′31.9” W). For cytogenetic analysis, specimens were anesthetized with benzocaine
0.01% and dissected. The mitotic chromosomes were obtained from kidney tissue accord-
ing to Bertollo et al. [22]. C-banding was realized following the protocol described by
Sumner [23]. The chromosomes were classified as metacentric (m), submetacentric (sm),
subtelomeric (st), and acrocentric (a), as proposed by Levan et al. [24], and organized in
the decreasing order of the karyotype. All procedures were undertaken according to the
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international animal testing protocol and authorized by the Committee of Ethics in Animal
Experimentation (protocol number 4509/08) of the State University of Ponta Grossa. The
specimens were identified and received a deposit number for the Collection NUPELIA
(Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura) of the State University of
Maringá (number NUP 17482).

2.2. Quantification of the Methylation and Heterochromatic Regions

Genomic DNA was extracted from B+ and B− individuals using the CTAB method [25]
and purified (Macherey-Nagel GmbH and Co. KG, Bethlehem, PA, USA) according to the
manufacturer’s instructions. The total 5-methylcytosine (5-mC) was determined using
the 5-mC DNA ELISA kit (Zymo Research Corp., Irvine, CA, USA) according to the
manufacturer’s instructions. The kit uses an anti-5-methylcytosine monoclonal antibody
that is sensitive and specific to 5-mC. The result was expressed as a percentage of 5-mC
in a DNA sample, calculated using a standard curve generated with specially designed
controls included in the kit. This method was used to compare levels of 5-mC between
male and female DNA, with the presence and absence of supernumerary chromosomes.

The quantification of heterochromatin (HT) was measured in 32 metaphases, 16 B+
(eight males; eight females) and 16 B− (eight males; eight females), using ImageJ software
(US National Institutes of Health, Bethesda, MD, USA). The length of heterochromatin
blocks (LHB) was measured in relation to the total length of the higher chromosome (first
pair metacentric) of the complement (LCC), where rate HT = LHB/LCC.

2.3. Statistical Analysis

The mean comparison between groups was realized by analysis of variance (ANOVA)
using Tukey’s post hoc test after normalization of data by logarithmic transformation. The
alpha error established for statistical significance was 5%.

2.4. Immunodetection of Methylated DNA, Chromosome Probe, and Fluorescence In Situ
Hybridization (FISH)

Immunoassay of 5-methylcytosine (Eurogentec, cat No. MMS-900P-A) was performed
according to Ruffini-Castiglione et al. [26]. For sequential hybridization of the As51 satellite
DNA sequence, the following protocol for washing and removing the antibody was estab-
lished: washing and stabilization with PBS 1× for 10 min, washing in 4× SSC/0.05% Tween
at room temperature for 10 min, and alcoholic series 70%, 80%, and 90% for 5 min each.

The satellite DNA As51 described by Mestriner et al. [20] was obtained from the nu-
clear DNA of A. scabripinnis using the primers Fw 5′-GGTCAAAAAGTCGAAAAA-3′ and
Rv 5′-GTACCAATGGTAGACCAA-3′ during 35 cycles of amplification in an Eppendorf
Mastercycler (Eppendorf Corporate, Hamburg, Germany)(1 min at 95 ◦C, 45 s at 56 ◦C,
1 min at 72 ◦C, and 5 min at 72 ◦C). The element Tc1-Mariner [27] was obtained using
the unique primer 5′-CACTCACCGGCCACTTTATTA-3′ during 35 cycles of amplifica-
tion (1 min at 94 ◦C, 50 s at 62.5 ◦C, 2 min at 72 ◦C, and 5 min at 72 ◦C). The PCR was
conducted in a 25-microliter reaction mix with 0.4 µM of primer, 200 ng of DNA tem-
plate, 0.2 mM of dNTPs, 1× reaction buffer, 2.0 mM of MgCl2, and 2U of Taq Polymerase
(Invitrogen, Waltham, MA, USA). The element LINE [21] was obtained from the nuclear
DNA of A. scabripinnis using the primers Fw 5′-CAGTGTGCATCTGATTGTGT-3′ and
Rv 5′-CGCAGACGCTTTTATCCA-3′ during 35 cycles of amplification in the Eppendorf
Mastercycler (1 min at 95 ◦C, 45 s at 56 ◦C, 1 min at 72 ◦C, and 5 min at 72 ◦C).

The satellite DNA probe As51 and the elements Tc1-Mariner and LINE were labeled
with Nick translation using biotin 14-dATP (Bionick Labeling System, Invitrogen, Waltham,
MA USA) and digoxigenin 16-dUTP (Dignick mix, Roche, Mannheim, Germany) in a
dry bath (Loccus Biotecnologia, São Paulo, SP, Brazil) (1 h 30 min at 65 ◦C and 15 min at
15 ◦C), respectively.

FISH was performed using the protocol of Pinkel et al. [28], adapted for fish in
high stringency conditions (2.5 ng/mL probe, 50% deionized formamide, 10% sulfate
dextran, 2 × SSC at 37 ◦C overnight). After hybridization, slides were washed in 15%
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formamide/0.2 × SSC at 42 ◦C for 20 min and 4 × SSC/0.05% Tween at room temperature
for 10 min. The As51 probe was detected using Alexa Fluor 488 streptavidin (Molecular
ProbesTM). Anti-digoxigenin-rhodamine (Roche, Mannheim, Germany) was used to de-
tect the Tc1-Mariner element probe. The chromosomes were counterstained with DAPI
(0.2 µg/mL) diluted in antifading solution (Fluka, Mannheim, Germany). The metaphases
were analyzed using epifluorescence microscopy (Zeiss AxioCam MRm and ZEN Pro 2011
software (version 1.1.0.0, Carl Zeiss, Oberkochen, Germany).

2.5. Sequencing and Characterization of the Tc1-Mariner Element Obtained Fragment

The amplification products for the Tc1-Mariner element were separated in 1% agarose
gel, and the DNA bands were purified using a PCR DNA and Gel Band Purification Kit
(GE Healthcare, Chicago, IL, USA) according to the manufacturer’s instructions. The
sequences were linked to the plasmid pGEM®-T Easy Vector Systems (Promega, Madison,
WI, USA) and transformed into cells of competent Escherichia coli DH5α using CaCl2
treatment. Recombinant plasmids were extracted by mini-preparation using the Illustra
plasmidPrep Mini Spin Kit (GE Healthcare). Nucleotide sequencing of the clones and
DNA fragments was performed in an automatic sequencer ABI 3130 × 1 using the Big
Dye kit (Applied Biosystems, Foster City, CA, USA) according to the manufacturer’s
instructions. The sequences were aligned in the Clustal W program [29], using the BioEdit
v7.0 editor [30]. To verify their identity, the sequences were subjected to a search against
the database of Dfam (https://dfam.org/search/sequence accessed on 5 May 2021) [31]
and then deposited on GenBank (http://www.ncbi.nlm.nih.gov/genbank/ accessed on
5 May 2021) with the following accession number: MT038010.

3. Results

A modal diploid number of 2n = 50 chromosomes was confirmed for A. scabripinnis
with a polymorphic occurrence of an additional B chromosome.

The 5-mC signals showed that it dispersed in mitotic metaphase chromosomes in both
females and males. Additionally, the B chromosome evidenced preferential accumulation
of 5-mC (Figure 1a,d). After 5-mC detection, the slides were sequentially submitted to
fluorescent in situ hybridization with the As51 satellite DNA probe (Figure 1b,e) and
C-banding (Figure 1c,f).
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Figure 1. Metaphases of B+ (a–c) and B− (d–f) Astyanax scabripinnis sequentially treated with anti-

5-mC (a,d), FISH with an As51 probe (b,e), and localization of heterochromatin regions using the 
Figure 1. Metaphases of B+ (a–c) and B− (d–f) Astyanax scabripinnis sequentially treated with anti-
5-mC (a,d), FISH with an As51 probe (b,e), and localization of heterochromatin regions using the
C-banding technique (c,f). The B chromosome is indicated by green arrow It is possible to observe
an evident marking in the telomeric region of another chromosomal pair, both in the B+ and B−
genomes, strongly marked by As51 probes (b,e). One of the pairs of complement A is probably
related to the origin of the B chromosome of A. scabripinnis. Bar = 10 µm.

https://dfam.org/search/sequence
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The results indicate that both the location of the satellite DNA and the heterochromatic
regions are not exclusively associated with methylation regions. The As51 satellite DNA
was located in an acrocentric chromosomic pair and a pericentromeric region in both arms
of the B chromosome, while the heterochromatic regions were located in pericentromeric
regions of most chromosomes and in the distal region of pair one, while the B chromosome
was partially heterochromatic.

FISH revealed a dispersed pattern of localization of the Tc1-Mariner transposable
element between the A and B chromosomes, as well as an accumulation in the short arm
of metacentric pair 2 and blocks concentrated in the short arm of a medium metacentric
pair (Figure 2a). The in situ localization of LINE was scattered in all chromosomes of the
standard complement and in the B chromosome, with preferential accumulation along a
pair of complement submetacentric chromosomes (Figure 2b).
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Figure 2. Chromosome mapping with the probes Tc1-Mariner (a) and LINE (b) in Astyanax scabripin-
nis. B chromosomes are indicated by the big arrows. Tc1-Mariner presents preferential accumulation
in the short arm of a medium metacentric pair (little arrow) and small blocks in the other complement
chromosomes. LINE has a pattern of localization dispersed in the other chromosomes, with strong
accumulation along a pair of complement submetacentric chromosomes (arrows). Bar = 10 µm.

In contrast with the 5-mC and in situ hybridization, the indirect immunofluorescence
of the Tc1-Mariner and LINE probes suggests that the transposable element regions are
methylated (Figure 3).
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Figure 3. Association of immunodetection of methylated DNA and transposable elements. n the first
line, chromosome pair 1, highlighted in the second line, the metacentric chromosome pair, and finally
B chromosome, all marked by 5mC, Tc1-mariner and LINE, respectively Bar = 10 µm.

A partial sequence of the Tc1-Mariner transposon was obtained from the A. scabripinnis
population in the present study. The obtained nucleotide sequence was submitted to the
Dfam sequence search (https://dfam.org/family/DF0003847/features accessed on 5 May
2021) and showed about an 87% similarity with the Tc1-Mariner DNA transposon of the
Danio rerio (Figure 4).
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Figure 4. Alignment of the Tc1-Mariner transposon sequences of A. scabripinnis and D. rerio, showing a pairwise identity of
87%. The alignment was performed using Geneious v10.2.6.

The quantification of 5-mC levels in the genomic DNA and total heterochromatin (TH)
was not significantly different between individuals (Tables 1 and 2). Individual data can be
found in tables in the Supplementary Materials (Tables S1 and S2). The mean percentage of
5-mC in male individuals without extra chromosomes was 10.7%, and the mean quantity of

https://dfam.org/family/DF0003847/features
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TH was 23.9. For individuals carrying the B chromosome, these values were 13.3% (5-mC)
and 25.8 (TH).

Table 1. Summary of 5-mC levels measured in the genomic DNA of Astyanax scabripinnis. Individuals
1 and 2 are male B + and B−, respectively. Individuals 3 and 4 are females, B + and B−, respectively.
Confidence interval for mean: p > 95%.

Number of Cells Mean Lower Bound Upper Bound

1 242 0.1273 0.1055 0.1490
2 233 0.1582 0.1316 0.1848
3 241 0.1163 0.0975 0.1352
4 214 0.1390 0.1137 0.1643

Total 930 0.1349 0.1233 0.1465

Table 2. Summary of heterochromatin (TH) values measured in chromosomes of Astyanax scabripinnis.
Individuals 1 and 2 are male B+ and B−, respectively. Individuals 3 and 4 are females, B+ and B−,
respectively. Confidence interval for mean: p > 95%.

Number of Cells Mean Lower Bound Upper Bound

1 242 −1.0056 −1.0363 −0.9749
2 233 −0.9478 −0.9857 −0.9100
3 241 −1.0385 −1.0684 −1.0085
4 214 −1.0084 −1.0480 −0.9688

Total 930 −1.0003 −1.0176 −0.9830

Females without B chromosomes had higher average values than males, with 15.3%
(5-mC) and 22 (TH). The averages for females with the extra chromosome were 13.9%
(5-mC) and 23.3 (TH). Results for 5-mC and for TH are shown in Figure 5.
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 Number of Cells Mean Lower Bound Upper Bound 

1 242 0.1273 0.1055 0.1490 

2 233 0.1582 0.1316 0.1848 

3 241 0.1163 0.0975 0.1352 

4 214 0.1390 0.1137 0.1643 
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Table 2. Summary of heterochromatin (TH) values measured in chromosomes of Astyanax scabri-

pinnis. Individuals 1 and 2 are male B+ and B−, respectively. Individuals 3 and 4 are females, B+ 

and B−, respectively. Confidence interval for mean: p > 95%. 
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1 242 −1.0056 −1.0363 −0.9749 

2 233 −0.9478 −0.9857 −0.9100 

3 241 −1.0385 −1.0684 −1.0085 

4 214 −1.0084 −1.0480 −0.9688 

Total 930 −1.0003 −1.0176 −0.9830 

Females without B chromosomes had higher average values than males, with 15.3% 

(5-mC) and 22 (TH). The averages for females with the extra chromosome were 13.9% (5-
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Figure 5. Bar plot showing the methylation conditions of the total genomic DNA (blue) and heterochromatin content
(orange). Genome of male and female without B chromosome is represented by B− and genome with B chromosome by B+.
The data were normalized on a logarithmic scale.
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4. Discussion

The total heterochromatin content and the DNA methylation levels did not differ
between male and female cells, with and without B chromosomes in Astyanax scabripinnis.
However, the amount of TE in B− and B+ genomes shows a difference, since the B chro-
mosome behaves as a deposit of moving elements. This likely represents a compensation
mechanism and TE silencing.

The B chromosomes of A. scabripinnis were composed of a greater amount of hete-
rochromatin in the pericentromeric region of the short and long arms [18–20] and this study.
Thus, individuals with B chromosomes would be expected to have a higher heterochro-
matin content when compared to individuals without them. However, our results show
that the presence of a B chromosome in the karyotype did not alter the heterochromatin
quantity found in the genome (p = 0.022). We suggest that there is possible compensation
for the total content of heterochromatin between B chromosome-carrying individuals and
non-carrier individuals; heterochromatin quantity is broadly distributed in the complement
A chromosomes when a B chromosome is absent. Our findings are similar to those of
Chumová et al. [32], who analyzed the effect of the presence of a B chromosome on the size
of the genome of the grass Anthoxanthum. They found that the intraspecific variability of
heterochromatin occurring in this genus was caused by complement A chromosomes and
not by the presence of B chromosomes.

Astyanax scabripinnis is characterized by the formation of small and isolated popu-
lations, which facilitates the establishment. This leads to polymorphism and karyotype
variability between individuals (revisited by Moreira-Filho et al. [17]). In this scenario,
different populations tend to present a marked polymorphism of heterochromatin [33].
Polymorphic chromosome patterns of distribution of heterochromatin also occur in other
species of Astyanax, including A. fasciatus [34], A. serratus (cited as Astyanax sp. D) [35], and
A. bockmanni [36]. Nonetheless, the mechanism that generates this diversification in the
chromosomic distribution of heterochromatin remains to be investigated.

Constitutive heterochromatin is recognized as a highly stable structure, is transcrip-
tionally inactive, and is comprised of repetitive elements. Yet, recent studies affirm that
these regions are highly dynamic, and their maintenance could be related to the tran-
scription and participation of non-coding RNAs, cell aging, or even stress and epigenetic
modifications (revisited by Wang et al. [37]). In Drosophila, the heterochromatin located
next to the genes responsible for eye color causes “white–red” variegation, suggesting
heterochromatin’s ability to regulate nearby genes [38].

Utilizing the specific antibody anti-5-mC against metaphases of A. scabripinnis showed
a dispersed methylation profile between the euchromatic and heterochromatic regions.
Indirect immunofluorescence followed by C-banding revealed that methylated DNA is not
exclusively associated with heterochromatic regions. This differs from the results obtained
by Schmid et al. [39], where hypermethylated chromosomal regions in nine species of fish
were confined to constitutive heterochromatin, including the sex chromosomes present
in these species, as in mammals [40] and birds [41]. In the context of A. scabripinnis, these
results indicate that the gene silencing mechanism occurs broadly in the genome, not only
in the heterochromatic regions. These data suggest strong epigenetic interference in the
genome of A. scabripinnis.

The levels of 5-mC obtained by ELISA from the total genome of individuals with and
without B chromosomes did not show significant differences in methylation (p = 0.02),
reinforcing the hypothesis that the B chromosome blocks the gene inactivation in this
species when it is present in the genome. DNA methylation patterns were investigated and
analyzed through in situ digestion with restriction endonucleases for B chromosomes in the
grasshopper Eyprepocnemis plorans during various life stages. In this case, although these
cells are not methylated, the NOR regions remain inactive, indicating that methylation
is not a direct cause of suppression of ribosomal genes in this species [42]. On the other
hand, RNA sequences denominated as piRNA that have 25 to 32 nucleotides participate in
silencing TEs through post-transcriptional mechanisms and through epigenetic changes. In
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flies and mice, where the chromatin conformational change mechanism is better understood,
the piRISC complex helps to induce methylation patterns in specific loci of DNA from
which TEs are expressed [43].

Indirect immunofluorescence and in situ hybridization suggest an association among
methylated regions and the localization of the transposable elements LINE and Tc1-Mariner.
Transposons and retrotransposons are targets of DNA methylation, a defense of the host
genome against proliferation and deleterious consequences of these TEs [44]. However,
the methylation of cytosine may not be the only possible cause of silencing [10]. Thus,
epigenetic mechanisms are used as a necessary defense to suppress TE activity, making
them incapable of producing proteins by silencing chromatin [11]. Although most TEs
invade heterochromatic regions [45], physical mapping analyses of LINE [21], and the
present study of Tc1-Mariner, demonstrate localization in euchromatic regions, similar
to the results obtained by Schemberger et al. [46] in species of Parodontidae. Once TEs
scrape off the inactivation and lose their original function, they can suffer a process called
“molecular domestication”. This tends to benefit the host genome in establishing new cellu-
lar functions, such as control of the cellular cycle, proliferation, apoptosis, and chromatin
structure (revisited by Sinzelle et al. [47]).

The co-localization of marking (5-mC, LINE, and Tc1-Mariner) in chromosome pairs
1–2 and the B chromosome of A. scabripinnis suggests that these methylated elements are
being silenced by the genome. Hypomethylated centromeric regions of the B chromosome
in corn become hypermethylated when transferred into oat plants [48]. In the Citrus species,
the methylation of histone H3 was related to the silencing of retrotransposons, or gene
silencing, due to their sparse pattern of accumulation along the euchromatin [5].

We verified a discrete difference in the heterochromatin and DNA methylation content
in males and a larger difference in female Astyanax scabripinnis without B chromosomes.
Both methodologies indicate a possible sex-linked relationship that should be more deeply
explored given the absence of reports of morphologically differentiated sex chromosomes
in these fish. The lowest level of methylation was found in males without B chromosomes,
in relation to females, despite the heterochromatin content of these males being the highest
among all possibilities (Figure 5). This raises the hypothesis that heteromorphism is linked
to the male sex in these fish.

In conclusion, this evidence suggests that the B chromosome of A. scabripinnis can
exert a compensation effect on the total content of heterochromatin and that methylation
acts to silence the transposable elements in this species. This represents a sui generis
compensation and gene activity buffering mechanism.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10051162/s1, Table S1: Individual values of 5−mC in the genomic DNA of B+ and B−
males, Table S2: Individual values of 5−mC in the genomic DNA of B+ and B− females.
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