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Abstract

The systematic investigation of susceptibility-induced contrast in MRI is important to better interpret the influence of
microvascular and microcellular morphology on DSC-MRI derived perfusion data. Recently, a novel computational approach
called the Finite Perturber Method (FPM), which enables the study of susceptibility-induced contrast in MRI arising from
arbitrary microvascular morphologies in 3D has been developed. However, the FPM has lower efficiency in simulating water
diffusion especially for complex tissues. In this work, an improved computational approach that combines the FPM with a
matrix-based finite difference method (FDM), which we call the Finite Perturber the Finite Difference Method (FPFDM), has
been developed in order to efficiently investigate the influence of vascular and extravascular morphological features on
susceptibility-induced transverse relaxation. The current work provides a framework for better interpreting how DSC-MRI
data depend on various phenomena, including contrast agent leakage in cancerous tissues and water diffusion rates. In
addition, we illustrate using simulated and micro-CT extracted tissue structures the improved FPFDM along with its
potential applications and limitations.
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Introduction

The passage of paramagnetic or superparamagnetic contrast

agents (CA) through brain tissue induces a measurable drop in T2-

or T2
*-weighted MR signal [1] that forms the basis for dynamic

susceptibility contrast (DSC) MRI. When combined with appro-

priate kinetic models, DSC-MRI can be used to measure

hemodynamic parameters quantitatively, such as blood flow,

blood volume and mean transit time [2]. This imaging approach

relies upon MR signal relaxation enhancement created by CA-

induced susceptibility differences between tissue compartments,

such as blood vessels and the surrounding extravascular space.

The assessment of tumor perfusion parameters using DSC-MRI

has proven to be useful for characterizing tumor grade [3–9] and

treatment response [10–14]. Despite its increased use in brain

tumor and stroke patients, accurate calculation of perfusion

parameters using DSC-MRI relies on two assumptions: 1) a linear

relationship, with a spatially uniform rate constant termed the

vascular susceptibility calibration factor (kp), exists between CA

concentration and the measured transverse relaxation rate change

[15]; and 2) the blood-brain barrier (BBB) is intact, so that contrast

agent remains intravascular and can be treated as a nondiffusible

tracer [2]. However, heterogeneous distributions of blood vessels

within tissue and the dependence of susceptibility field gradients

on vascular geometry may yield spatially variant kp values across

tissue. Furthermore, leakage of contrast agent in tumors with BBB

disruption causes additional T1 and T2
* shortening with subse-

quent distortion of DSC-MRI signal profiles [16–20]. Improved

characterization of these potential confounding factors could shed

new insights into the biophysical basis of DSC-MRI signals and

direct future improvements in acquisition and post-processing

strategies.

In order to better understand susceptibility-based image

contrast, several theoretical [21–25] and computational models

using fixed perturber geometry (e.g., cylinders or spheres) [25–32]

have been proposed. To address the limited ability of these

computational models to represent the complex vascular mor-

phologies in both normal brain and tumors, Pathak et al

introduced the Finite Perturber Method (FPM) for simulating

susceptibility-based contrast for arbitrary microvessel geometries

[33] and evaluating differences in kp for normal brain and tumor

[34]. The FPM uses estimated magnetic field perturbations to
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calculate MR signal by simulating proton diffusion and phase

accumulation using conventional time consuming Monte Carlo

methods.

For realistic complex tissues, the MC method needs to track the

diffusion of a large number of spins to capture complex structural

features, which in turn can increase the computation time. As an

alternative, the Bloch-Torrey partial differential equation describ-

ing the transverse magnetization can be directly solved using finite

difference methods (FDM). This approach has been previously

shown to improve the computational efficiency of such simulations

[35,36] and used to explore water diffusion in MRI and to aid the

interpretation of diffusion-weighted imaging measures and their

dependence on the morphology of biological structures such as

those found in tumors.

In this study, we propose to evaluate the combination of the

finite pertuber and finite difference methods, termed the FPFDM,

as a tool for modeling susceptibility based contrast mechanisms.

Such an approach leverages the strengths of the FPM, for

computing magnetic field perturbations for arbitrarily shaped

structures, and the FDM, for efficiently computing the resulting

MRI signal evolution. The accuracy of the FPFDM is validated by

comparison to traditional Monte Carlo methods. The potential of

the FPFDM to compute DSC-MRI signals arising from realistic

three-dimensional cellular and vascular models as well as micro-

CT based renal angiograms is demonstrated. Going forward, the

FPFDM provides a useful tool with which to investigate the

influence of vascular morphology, contrast agent kinetics and

extravasation on DSC-MRI signals.

Methods

In this section, we first describe a new approach for generating

more realistic, three-dimensional tissue structures that can be used

for the systematic investigation of DSC-MRI signals arising from

heterogeneous tissues. We then describe the computation of the

appropriate magnetic field perturbations and the associated MR

signal evolution, including the influence of water diffusion, using

the FPFDM.

1. Tissue Structures
Tissue structures consisting of cells, vessels or both were

simulated in a 3D volume sampled with N3 voxels. The motivation

for exploring whether cellular properties influence DSC-MRI data

originates from previous reports demonstrating that contrast agent

extravasation and compartmentalization around cells can induce

measurable and dynamic changes in gradient echo acquired

signals [16–18,37]. While spheres have been used extensively for

evaluating susceptibility-based contrast mechanisms they poorly

represent in vivo cellular distribution and shape. In particular,

packed spheres intrinsically provide no means for modeling

orientation heterogeneity and are unable to achieve cellular

densities that approximate those found in vivo. To overcome these

limitations we explore here the use of randomly packed ellipsoids

[38]. Modeling cells as ellipsoids enables the systematic investiga-

tion of several features relevant to DSC-MRI including ellipsoid

orientation heterogeneity, volume, aspect ratio and higher packing

fractions. For completeness, we compare results from randomly

distributed spheres, closely-packed spheres on a face centered

cubic (FCC) grid and randomly packed ellipsoids.

Typically, randomly oriented cylinders are used to explore

susceptibility contrast mechanisms [25–32]. More recently, several

groups have employed the use of microvascular angiograms in

order to better model in vivo conditions [33,39,40]. In order to

provide a framework that mimics in vivo conditions but also

enables the systematic investigation of the influence of vascular

features on DSC-MRI data we explored the use of fractal tree

based vascular networks [41,42]. Starting with an initial cylindrical

segment representing an arterial vessel, the vascular tree was

created using bifurcation at each junction into smaller daughter

segments and a target vascular volume fraction (2%) was used to

terminate the fractal tree development. At each junction the

diameter of each daughter vessels was calculated using Murray’s

law [43] and given some degree of randomness along with the

branching angles to create tumor-like heterogeneous structures.

All simulated tissue structures were represented by a binary

function V(x,y,z) indicating whether a given point within the

simulation volume lies inside or outside the simulated compart-

ments, i.e.:

V (x,y,z)~
1, if (x,y,z) is inside simulated compartments

0, if (x,y,z) is outside simulated compartments

�
ð1Þ

To further illustrate the versatility of the FPFDM, in addition to

the simulated structures, micro-CT was used to create a three-

dimensional rendering of a murine kidney vasculature perfused

with Microfil (MV–122, Flow Tech). Following perfusion and

fixation in 10% neutral buffered formalin, the kidney was scanned

in a microCT50 (Scanco Medical AG, Brüttisellen Switzerland).

Cross-sectional images of the entire kidney were acquired with an

isotropic voxel size of 5.0 mm using an energy of 55 kVp, 200 mA

intensity, 700 msec sample time, and 1000 projections per rotation

using the manufacturers 1200 mg HA/ccm beam hardening

correction algorithm in a 10.24 mm field of view. Using the

manufacturer’s software, we assembled individual slices into a z-

stack and contrast-filled vessels were segmented from soft tissue by

applying a threshold of 260 mg HA/ccm (determined by

calibration against a hydroxyapatite phantom) and a three-

dimensional Gaussian noise filter with sigma 2.3 and support of

4. The resulting binary three-dimensional reconstruction of the

vasculature was then subdivided into MR voxel size sections using

in-house Matlab codes (Mathworks, Natick, MA) and used as an

input for the FPFDM simulation.

2. Computation of Magnetic Field Perturbations
The magnetic field perturbations induced by susceptibility

variations within the simulated volume were computed using the

FPM [33]. To calculate the magnetic field shift at a given point,

the FPM breaks the structure into numerous small cubic

perturbers and the contribution to the magnetic field shift due to

each perturber is calculated independently. The total magnetic

field shift is then evaluated as the sum of the magnetic field shifts

from all of the perturbers. As computational input the FPM

requires a tabular listing of the vascular/cellular structure V(x,y,z),

the B0 field components, and the susceptibility difference (Dx)

between tissue compartments. The magnetic field shift computed

by the FPM is:

DB(x,y,z)~={1 =f V (x,y,z)gf = DBcubef (x,y,z)gg ð2Þ

where V(x,y,z) is a binary tissue structure, = represents the Fourier

transform and DBcube(x,y,z) is the magnetic field change arising

from a single finite perturber approximated by the magnetic field

shift of an embedded sphere within the cube weighted by a volume

factor 6/p, and is described by Eq. [3]:

An Efficient Method to Model DSC-MRI Signals
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DBcube(x,y,z)~
6

p

Dx

3

R3

r3
(3 cos2 h{1)B0 ð3Þ

where R is one-half the side length of the cube, Dx is the

susceptibility difference between tissue compartments, and r and h
indicate the distance from the center of the cube and the angle

with respect to B0 of the magnetic field calculation point,

respectively. The accuracy of this method has been tested using

simple geometries with known theoretical field perturbations [33].

3. Computation of MR Signal
Estimation of the MR signal relaxation induced by the

inhomogeneous field gradients requires simulation of proton

diffusion. To track the Brownian motion of thousands of protons

over a large number of time steps and calculate their phase

accumulation, a Monte Carlo (MC) simulation is frequently used

[25–31,33]. The MC method is potentially time consuming for

complex tissue structures because in order to accurately calculate

the phase distribution it must track a large number of spins that

encounter tissue boundaries during their random walks. An

alternative approach is to directly solve the Bloch-Torrey partial

differential equation using the FDM [35]. The FDM discretizes

the tissue sample to a spatial grid and updates the magnetization at

each grid point over a series of time steps. To increase the

computational efficiency and eliminate edge effects encountered

with traditional FD methods we previously developed a matrix-

based FDM with a revised periodic boundary condition [36]. For

tissue structures sampled with N3 voxels the discretized solution of

the Bloch-Torrey equation for transverse magnetization (M) using

the matrix-based FDM is described by:

M(tzDt)~W(t)6(IzA)M(t) ð4Þ

A is an N36N3 diffusion transition matrix containing the tissue

structural information given in terms of the jump probabilities

(probability that a spin starts at one grid point and diffuses to

another grid point after a time interval Dt), I is an identity matrix

with the same size of A, and : represents element-by-element

vector multiplication. The W(t) term is a 16N3 vector containing

the phase accumulation and relaxation for each voxel at each time

step and is given by:

W(t)~½exp ({icDB1(t)Dt{Dt=T2,1), � � � ,

exp ({icDBk(t)Dt{Dt=T2,k), � � � ,

exp ({icDB
N3 (t)Dt{Dt=T

2,N3 )�
ð5Þ

where c is the proton gyromagnetic ratio (267.56106 rad s21 T21),

Dt is the simulation time step, the subscript k indicates a spatial

index, DBk(t) is the field perturbation at point k, and T2,k is the

transverse relaxation time at location k within the simulation grid.

When a GE sequence is used T2,k represent the intrinsic tissue T2
*,

and in the case of SE it represents the intrinsic T2. In general, the

jump probability from simulation grid a to b is described by:

sa?b~

Da?bDt

Dx2
a?b

f a:b

2Dt

Dx2
a?b

DaDbPmcf cbDxa?b
Dacacf PmDxa?bz2DacaDbcbzDbcbcf PmDxa?b

if a=b

8><
>: ð6Þ

where Da?b is the diffusion coefficient if a and b are within the

same compartment, Dxa?b is the distance between simulation grid

a and b, Pm is the permeability of the membrane when a and b are

in different compartments, cf is the free concentration of water.

The explicit form of the 1D transition matrix can be found in [36].

The MR signal normalized to the initial magnetization M0 is

estimated by summing the magnetizations over all grid points at a

particular t and is given by:

S(t)~
1

M0

XN3

k~1

M(t) ð7Þ

The associated spin echo and gradient echo change in transverse

relaxation rates are calculated at a particular echo time t = TE

using:

DR2,DR�2~{
ln S(TE)

TE
ð8Þ

For spin echo imaging, the phase was inverted at t = TE/2. This

model is designed to handle cases where the three tissue

compartments within a voxel can have different intrinsic

transverse relaxation times. By updating T2,k in equation 5, for

each grid point at each simulation time step, the total transverse

relaxation, which includes the microscopic and mesoscopic

relaxation effects, can also be calculated. The decay of signal

from large static perturbers is known not to be exponential (e.g.

diffusion in a static linear field gradient) but a simple exponential

fit is a good approximation for realistic cases, and other functions

can be easily fit. All simulations were performed in the Matlab

environment (Mathworks, Natick, MA) running on Intel Core 2

Duo at 2.66 GHz and 4 GB of RAM processors. For clarity, the

computational steps involved to obtain the final results are

illustrated in Figure 1.

4. Contrast Agent Kinetics
To demonstrate the potential of the FPFDM to simulate DSC-

MRI signals arising from the dynamic passage of contrast agent

through the vascular and extravascular spaces, such as would

occur in brain tumors with a breakdown of the blood brain

barrier, we used tissue structures composed of ellipsoids packed

around fractal based vascular network. Concentration time curves

were sampled using 150 time points for a total of 9 minutes. The

arterial input function (AIF) was generated as previously described

[44]. The plasma and extravascular extracellular concentration

time curves were computed using the pharmacokinetic two

compartmental model described by Brix et al [45]. The relevant

input physiological, pulse sequence and physical parameters (e.g.

blood flow, blood volume, contrast agent transfer coefficient, T1,

T2, etc) were selected from values measured in previous MRI, PET

and CT brain tumor studies as previously described [16]. To

investigate the influence of extravascular features on DSC-MRI,

the signal is computed for two cellular structures with a similar cell

volume fraction (,60%) but different ellipsoid radii (5 and 15 mm).

The ellipsoids were packed around a fixed vascular tree with a 4%

volume fraction.

Results

1. Validation of FPFDM
For validation, FPFDM and Monte Carlo based MRI signals

were computed and compared for models consisting of randomly

(6)

An Efficient Method to Model DSC-MRI Signals
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orientated cylinders and packed spheres. The dependence of

gradient-echo (DR2
*) and spin-echo (DR2) relaxivity on perturber

(vessel) size has previously been characterized using Monte Carlo

techniques [27]. To replicate these findings we created 10 different

structures composed of approximately 40 randomly distributed

cylinders for each vessel radius between 1 mm and 100 mm, each

with total cylinder volume fraction equal to 2% of the simulation

cube. Using the previously reported simulation parameters [27,33]

(susceptibility difference Dx= 1027
, cylinder volume fraction

(Vp) = 2%, B0 = 1.5T, water diffusion coefficient D = 1025 cm2/s,

simulation time step Dt = 0.2 ms, GE TE = 60 ms and SE

TE = 100 ms), we computed the vessel size dependence of DR2
*

and DR2 averaged over all cylinder arrangements. The computed

DR2
* and DR2 values show negligible changes as the number of

averaged structures increases beyond 10. As shown in Fig. 2a,

there is excellent agreement between the FPFDM results and those

obtained in the Monte Carlo-based comparison studies, which

used analytical expressions [27] and FPM [33] for field

perturbation calculations.

To compare the computational efficiency of the FPFDM with

that of the MC method, we computed DR2
* values using both

techniques. For each technique DR2
* values were computed for 18

radii using a TE = 60 ms and Dt = 0.2 ms. The computation time

for the FPFDM was approximately 140 seconds per structure.

Using 1000 randomly distributed spins, the computation time for

the MC method was approximately 220 seconds per structure.

Table 1 summarizes the simulation parameters used in the MC

and FPFDM along with the respective computational times to

generate DR2
* values for 18 cylinder radii.

To further validate the accuracy of the FPFDM we also

computed DR2
* for simulated 3D cellular models consisting of

packed spheres. Two packing conditions were considered:

randomly distributed spheres and sphere packing on FCC gird.

For each model, the sphere size was fixed at 9 mm radius

corresponding to an approximate pertuber size where the SE

relaxivity peaks and the GE relaxivity reaches plateau [27]. The

DR2
* dependence on cell (sphere) volume fraction for the FPFDM

was compared to that for the MC method [27] using similar

simulation parameters. The MC method was carried out on a

different computer system using the approach described previously

[27]. Fig. 2b compares the volume fraction dependence of DR2
*

for each of the two sphere packing techniques computed by both

Figure 1. Computational steps involved in the FPFDM. This figure illustrates the steps involved in computing the susceptibility induced
transverse relaxation rates for a 3D tissue structure using the FPFDM: (a) The tissue structure is V(x,y,z). (b) The 3D Fourier transform of (a). (c) The
magnetic field from the cubic finite perturber. (d) The 3D Fourier transform of DBcube(x,y,z). (e) The point-wise multiplication of (b) and (d) in the
Fourier domain. (f) The magnetic field shift due to the vascular structure computed as the 3D inverse Fourier transform of (e) or the convolution of (a)
and (c). (g), (h) and (i) are the phase accumulation, the magnetization and the diffusion transition matrix, respectively. These are used to compute the
magnetization in (j). (k) The computed MR signal. (l) The transverse relaxation rates associated with an arbitrarily shaped tissue structure.
doi:10.1371/journal.pone.0084764.g001
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the MC and FPFDM, using Dx= 561028, B0 = 1.5T, D = 1025

cm2/s, Dt = 0.2 ms, GE TE = 40 ms, and simulation universe

size = (0.5 mm)3. The FPFDM results were obtained by averaging

the MR signal for 5 different sphere distributions for each packing

and cell volume fraction using a simulation grid size of 1283. In

contrast, the MC method involves tracking 15,000 random walks

for each cell volume fraction and the redistribution of the spheres

prior to each random walk. The FPFDM results are in excellent

agreement to those produced from the MC methodology.

To investigate the convergence of the FPFDM for randomly

distributed structures such as those used above, DR2
* values

obtained from [27] for vessel sizes of 10 mm and 15 mm were

compared to the FPFDM results as a function of the number of

structures used for averaging. Fig. 2c shows the percentage

difference between the MC and FPFDM derived DR2
* values. For

both vessel sizes the computed FPFDM DR2
* values converge to

the corresponding reported values [27,33] to within 7% with only

five structure averages. This percentage difference decreases to

0.8% as the number of averaged structures increases to 30.

2. Modeling the Effects of Contrast Agent Extravastion on
DSC-MRI

To demonstrate the potential of the FPFDM for investigating

the complex susceptibility effects that occur when contrast agent

extravasates and compartmentalizes around cells, we computed

the volume fraction dependence of DR2
*and DR2 for 3D cellular

models consisting of packed spheres or ellipsoids (9 mm radius). To

model contrast agent leakage effects relevant contrast agent levels

corresponding to a Dx value that is half the peak value of single

dose Gd-DTPA injection was assumed. Fig. 3a illustrates the

packed ellipsoid model with a representative 2D slice through the

computed magnetic field perturbations. Fig. 3b and Fig. 3c

demonstrates the influence of packing arrangements on the

computed DR2
* and DR2 values for Dx= 561028, B0 = 1.5T,

Figure 2. Validation of the FPFDM. (a) FPFDM replicates the characteristic vessel size dependence of DR2
*and DR2 as has been previously shown

with MC methods. (b) A comparison of computed DR2
* values as a function of sphere volume fraction and packing arrangement using MC (filled

symbols) and FPFDM (open symbols) techniques, with excellent agreement between the two methods. (c) The computed DR2
* percentage difference

between MC and FPFDM decreases as the number of FPFDM structures used for averaging increases.
doi:10.1371/journal.pone.0084764.g002

Table 1. Parameters used in MC and FPFDM simulations
along with total computing times to calculate DR2

* values for
18 cylinder radii.

Parameters Meaning Value

TE Echo time 60 ms

Dt Simulation time step 0.2 ms

Dx Susceptibility difference 1027

B0 Static magnetic field 1.5 T

Vp Cylinder volume fraction 2%

D Water diffusion coefficient 1025 cm2/s

Ns Number of spins used in MC method 1000

TimeMC Computing time for MC method 220 s

TimeFPFDM Computing time for FPFDM 140 s

doi:10.1371/journal.pone.0084764.t001
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D = 1025 cm2/s, simulation time step Dt = 0.2 ms, GE

TE = 40 ms and SE TE = 80 ms.

The highly ordered FCC packing of spheres resulted in the

smallest relaxivity, reflecting the more homogeneous magnetic

field perturbations and proton phase distributions. Randomly

distributed spheres yielded slightly greater relaxivities with a non-

linear relationship with packing fraction. Finally, the packed

ellipsoids, which better approximate cell shape in vivo, enable

higher random non-overlapping packing fractions (.65%), are less

ordered and also yielded a non-linear relationship between

relaxivity and cell volume fraction. For all cell volume fractions,

the DR2
* and DR2 values associated with the ellipsoid-based

structures were greater in magnitude than those found with

spheres.

3. Modeling the Effects of Vascular Tree Heterogeneity
on DSC-MRI

To illustrate the potential of the FPFDM for modeling the

complex geometries of the microvasculature, we used fractal-based

branching networks as input to the FPFDM. Fig. 4 illustrates the

effect of branching angle heterogeneity (Dh) on the concentration

dependence of DR2 and DR2
* for typical DSC-MRI contrast agent

concentrations. For these simulations we generated three different

vascular networks within a 1 mm3 volume containing 1283 voxels.

Fig. 4a–4c shows sample vascular trees with homogenous rotation

(w) angle and bifurcation index (a), which measures the relative

diameter of daughter branches at each branching node, with

increasing branching heterogeneity (h). The model for normal

vasculature is shown in Fig. 4a, with branching angles ranging

from 25u–40u. To represent the tortuous and chaotically organized

morphology of tumor vessels, the range of branching angle

heterogeneity were increased to 25u–80u (Fig. 4b) and 25u–140u
(Fig. 4c). Fig. 4d shows three orthogonal 2D slices through the

body center of the magnetic field perturbations computed using

the FPM for the vascular structure in Fig. 4c. Fig. 4e and 4f plot

the concentration dependence of DR2
* and DR2 for the three hs

considered. For these simulations, Dx= xm. CA, where xm is the

CA molar susceptibility (0.02761026 mM21) [46], B0 = 4.7T,

D = 1025 cm2/s, Dt = 0.2 ms, GE TE = 40 ms and SE

TE = 80 ms. All simulated vascular structures incorporate vessel

Figure 3. Dependence of DR2
* and DR2 on cellular shape and packing arrangement. (a) Example of a cellular model using ellipsoid packing

(left) and a 2D slice through the associated magnetic field perturbation for B0 = 1.5T and Dx= 561028 (right). (b,c) The computed DR2
* and DR2

dependence on cell volume fraction and packing arrangement. For all packing arrangements, the relaxivity increases and then decreases with cell
volume fraction. Ellipsoid packing yields greater relaxivity than spheres. DR2 exhibits qualitatively similar behavior to DR2

* yet with a reduced
magnitude.
doi:10.1371/journal.pone.0084764.g003
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radii ranging from 12 mm to 80 mm with a 2% target vascular

volume fraction (vp). The computed relaxation rates were averaged

over five different orientations for each simulated vascular

network. Using the slope of the DR2
* dose response curves, kp

values ranging from 100–295 (mM–sec) 21 were obtained. For this

low vascular volume fraction, the kp values for the more tumor-like

vascular trees (higher Dh) were higher than those in normal trees,

up to three fold for this simplified simulation. Similar dependency

on branching angle with a reduced susceptibility effect was

observed for DR2 dose response curves.

4. Modeling First-pass DSC-MRI Data in Brain Tumors
To demonstrate the feasibility of using the FPFDM as a tool to

simulate DSC-MRI signals in the presence of contrast agent

extravasation, we used two sample tissue structures composed of

60% cells and 4% blood vessels. The two tissue structures were

constructed by packing ellipsoids with radii of 5 mm and 15 mm

around a fixed fractal-based vascular network. Fig. 5a shows a

sample 3D volume rendering of such a tissue structure, which

contains ellipsoids of 15 mm average radius and vascular network

with vessel size ranging from 5 mm to 45 mm. The simulated

vascular (Cp) and extravascular (Ce) contrast agent concentration

time curves are shown in (Fig. 5b). Fig. 5c shows a representative

2D slice through the computed magnetic field perturbations at a

particular time. The standard deviation of the field perturbation

(std DB) for all simulated time points is shown in (Fig. 5d). The

simulated Cp and Ce curves along with model tissue structure, in

Fig. 5, were used as an input to compute the dynamic DSC-MRI

signal. Fig. 6 shows the GE post-contrast to pre-contrast DSC-

MRI signal ratio time curves (S/S0), both in the presence

(KTrans = 0.2 min21) and absence (KTrans = 0 min21) of contrast

agent extravasation. Fig. 6a-c show the time series for the tissue

structure composed of ellipsoids with a 5 mm mean radii, at pre-

contrast longitudinal relaxation times values of T10 = 500 ms,

T10 = 1000 ms and T10 = 1500 ms, respectively. The correspond-

ing time series for the tissue structures modeled with 15 mm

cellular radii are shown in (Fig. 6d–6f). The following input

parameters were used to compute the DSC-MRI signal: B0 = 3T,

D = 1.361025 cm2/s, Dt = 0.2 ms, TE = 50 ms, TR = 1500 ms,

flip angle a= 90u, pre-contrast transverse relaxation time

T20
* = 50 ms. The CA T1 and T2 relaxivity values, r1 and r2,

were set to 3.9 and 5.3 mM21s21, respectively [47]. The

compartmental membrane water permeability values were set at

Pm = 0, to model restricted water diffusion. For a fixed cell volume

Figure 4. The influence of vascular morphology on DR2
* and DR2. (a–c) Sample microvascular networks simulated using a fractal tree model

with increasing branching angle heterogeneity. (d) Three orthogonal slices through the magnetic field perturbation at the body center for the
vascular network in (c). (e–f) Effect of branching angle heterogeneity on the concentration dependence of DR2

* and DR2 computed with FPFDM
(B0 = 4.7T, Dx= 161027, 2% target vascular volume fraction). Both DR2 and DR2

* increase with branching angle heterogeneity.
doi:10.1371/journal.pone.0084764.g004

An Efficient Method to Model DSC-MRI Signals

PLOS ONE | www.plosone.org 7 January 2014 | Volume 9 | Issue 1 | e84764



fraction, the simulated time series demonstrate a marked cell size

dependency. In general, for both tissue structures, as T10 increases

from 500 ms to 1500 ms the influence of T1 leakage effects

becomes more substantial, as indicated by the increased signal

recovery. For the small cell size structure, the T1 leakage effects

eventually result in a signal overshot from baseline (e.g. Fig. 6c).

However, the structure constructed with larger cell sizes is

dominated by T2
* leakage effects (as apparent from the low signal

recovery well after the CA’s first pass) even at T10 = 1500 ms

(Fig. 6f). The simulation time to compute the signal for 150 time

points, for 3 T10 values, 2 contrast agent leakage conditions and 2

tissue structures was approximately 240 mins.

5. Application to Image-based Tissue Structures
To further illustrate the versatility of the FPFDM, micro-CT

images of perfused mouse kidney vasculature (1,242 slices with

142861012 matrix size and 5 mm isotropic voxels) were used as

source data for multiple 1 mm3 vascular models with 2003 finite

cubic perturbers, each 5 mm in size. Fig. 7 shows the entire

extracted kidney vascular structure, with sample MR voxel-sized

sub-structures and their respective vascular volume fractions.

Fig. 8a and 8b shows the FPFDM derived SE and GE kp values

obtained from the slope of the DR2 and DR2
* dose response

curves, respectively. These results are normalized to the vascular

fractional volumes and were computed using B0 = 4.7T, D = 1025

cm2/s, Dt = 0.2 ms, GE TE = 40 ms, SE TE = 80 ms, and a

clinically relevant range of Dx values ranging from 0 to 9.461028,

corresponding to a Gd-DTPA concentration ranging from 0 to

3.5 mM. In general, the SE and GE kp values were highest for low

vascular volume fractions and tended to decrease as the vascular

volume fraction increased, with SE and GE kp values ranging from

3.6–27.8 and 53.8–174.3 (mM–sec) 21, respectively.

Discussion

The FPFDM is a novel efficient computational tool combining

features of the FP and FD techniques for calculating susceptibility-

induced relaxivity changes for realistic simulated or imaging-based

3D vascular and cellular geometries that might be observed in vivo.

The FPM can compute the induced magnetic fields around

arbitrary microvasculature structures without necessitating any

assumptions about the underlying vessel geometry [33]. Although

the Fast Fourier transform (FFT) improves the computational

efficiency of the FPM for computing magnetic field perturbations,

the application of MC techniques for tracking proton diffusion

through the tissue in order to derive the resulting relaxivity change

reduces its computational efficiency. The replacement of the MC

component of FPM with matrix-based FDM can increase the

computational efficiency by computing the evolution of the

discretized magnetization simultaneously [36]. The transition

matrix A is either invariant or requires only partial updating for

most tissues under consideration, further increasing the computing

efficiency of matrix-based FDM that also benefit from optimized

MATLAB packages for computations involving large matrices

[36].

A Gaussian diffusion kernel convolution can also be used to

model CA and water diffusion [39,40,48]. This approach is

computationally more efficient than MC approaches, but limited

to unrestricted water diffusion. Although non-Gaussian diffusion, a

consequence of tissue structure that creates diffusion barriers and

compartments, could be modeled by adding a kurtosis term to the

kernel, it is not clear how this will affect the slower diffusion

process observed in the restricted CA diffusion model [40].

Modeling restricted water diffusion using the MC method [33] or

the Gaussian diffusion kernel approach [39,40,48] requires either

incorporation of elastic collisions at membrane boundaries or

neglecting proton diffusion steps that involve membrane crossing.

Unlike the case of unrestricted water diffusion, using these later

methods to model restricted water diffusion and/or water diffusion

in complex tissue with different compartmental diffusion coeffi-

cients will require additional computations, thereby increasing the

overall processing time. Given compartmental diffusion coeffi-

cients and membrane permeability values, the FPFDM can be

used to model restricted water and CA diffusion and water

exchange across compartments. For the FPFDM, including these

additional structural features requires the computation of multiple

versions of the diffusion transition matrix, A. Since A can be

determined at the start of the simulation, a library of diffusion

transition matrices, for a range of tissue structures, can be

established to increase the computing efficiency. For example,

computing a dynamic signal for the same structure only requires

loading the transition matrix corresponding to the structure once

from the library of diffusion transition matrices.

We validated the FPFDM in two ways. First, we replicated the

vessel size dependence of DR2
* and DR2 (Fig. 2a) using identical

simulation parameters to previously described MC and FP

techniques [27,33]. Next, we found excellent agreement for

relaxivity from packed spheres across a range of packing densities

and packing strategies using traditional MC technique versus

FPFDM (Fig. 2b). The agreement between MC and FPFDM

converges as the number of structures included in the average for

the FPFDM increases (Fig. 2c). Unlike MC simulation, which

tracks a large number of particles in the simulation or,

equivalently, runs the same simulation many times to obtain an

accurate average result, the FPFDM converges to the average

result with only a few simulation runs. This behavior can be

Figure 5. Example simulation with realistic tissue structure and contrast agent extravasation. (a) Sample tissue structure composed of
ellipsoids packed around fractal tree based vascular network. (b) Simulated Cp and Ce curves derived using 2-compartment model. (c) Example 2D
map through the magnetic field perturbation computed at time t = 300 sec. (d). The time evolution of the standard deviation of the field perturbation
(std DB) computed using B0 = 3T, Cp and Ce for the given sample structure.
doi:10.1371/journal.pone.0084764.g005
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explained in the following way. In the MC simulation, a

population of particles distributes in the whole system and the

particles that encounter membranes within the complex tissue are

only a small portion of all the particles such that the echo signal

does not contain sufficient enough information about the tissue

features that restrict diffusion. Hence, to solve this problem, more

particles are considered in the simulation or, equivalently, the

same simulation is run many times to obtain an accurate average

result. In contrast, the FDFDM determines the diffusion transition

matrix at the start of the simulation, which already contains the

tissue structural information and results in a faster convergence of

the average signal.

For a simplistic structure containing randomly oriented

cylinders with a total of 18 different radii, the FPFDM, as

compared to MC, reduced the computation time to calculate DR2
*

values from 220 s to 140 s. For complex tissue structures, and

under conditions of restricted water diffusion, the increase in

computational efficiency afforded by the FPFDM will improve

even further. In such cases, the MC method requires a larger

number of spins and additional computation steps in order to

converge and capture sufficient information about the tissue

structure [49]. In contrast, for these more complex structures, the

FPFDM does not require additional computing time and is not

limited by restricted water diffusion [36].

The FPFDM has the potential for modeling nonstandard

geometries that may better simulate cells and microvasculature

in vivo. We computed relaxivities for simulated 3D cellular models

consisting of packed spheres and ellipsoids (Fig. 3), and found

greater relaxivity for packed ellipsoids over all volume fractions

compared to the sphere packing. This suggests that the additional

degree of freedom in spatial orientation for ellipsoids increases

field perturbation heterogeneity. The greater orientational hetero-

geneity and packing density afforded by ellipsoids compared to

spheres would seem to make ellipsoids better suited for simulating

susceptibility-based contrast mechanisms of cellular structures.

Although simulations in this study are based on a simple 2-

compartment model, at the expense of computational time, the

same approach to model water diffusion and exchange can be used

to model CA diffusion and transport across compartments,

yielding a more realistic heterogeneous CA distribution within a

voxel. This can be achieved by updating CA concentration for

each voxel at each simulation time step using a CA diffusion

transition matrix (ACA) calculated using appropriate CA diffusion

coefficients and permeability across membranes from literature

[50,51]. For the purposes of this study, we assumed that the

contrast agent equilibrates within each compartment over the time

it takes to acquire each DSC-MRI image (1–2 seconds). Such an

assumption is traditionally employed and consistent with current

DSC-MRI analysis techniques.

We also computed the contrast agent concentration dependence

of transverse relaxation rates for vascular trees. Traditionally,

randomly oriented cylinders were used to investigate the influence

of vascular properties (e.g. vessel size, vessel volume fraction) on

relaxation rates. Fractal-based vascular trees better approximate

Figure 6. Dependence of DSC-MRI signals on cellular features in the presence of CA leakage. The GE post-contrast to pre-contrast DSC-
MRI signal ratio (S/S0), both in the presence (KTrans = 0.2 min21) and absence (KTrans = 0 min21) of CA leakage at pre-contrast T1 values of T10 = 500 ms,
T10 = 1000 ms and T10 = 1500 ms, for tissue structures constructed using ellipsoids with mean radii of 5 mm (a–c) and 15 mm (d–f), respectively. The (S/
S0) values were computed using input parameters of B0 = 3T, D = 1.361025 cm2/s, Dt = 0.2 ms, TE = 50 ms TR = 1500 ms, a= 90u, T20

* = 50 ms,
r1 = 3.9 mM21s21, r2 = 5.3 mM21s21 and Pm = 0.
doi:10.1371/journal.pone.0084764.g006
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the microvascular network in vivo, but this complex geometry

with variable vessel rotation, size distribution, branching angles,

and diameters of daughter vessels is very difficult to model and

require high resolution to achieve structural details. Our results

demonstrate the feasibility of using FPFDM for complex

geometries, and suggest that although the generally accepted

linear relationship between relaxation rate and CA concentration

is reasonable, the proportionality constant kp depends upon the

microvascular geometry, a finding that is consistent with previous

studies [27,33,52]. The higher relaxation rate for vascular

structures with greater range of branching angles is most likely

due to the greater heterogeneity of vessel branch orientation with

respect to B0 and their larger space occupancy which impacts the

frequency offset of a larger volume compared to narrow branching

angles that pack vessels in a small region. These preliminary

computational results show marked kp heterogeneity across

vascular networks, suggesting that further work is needed to better

characterize the influence of vascular heterogeneity on DSC-MRI

derived perfusion parameters in brain tumors. More systematic

studies are underway for wide range of morphological, physiolog-

ical and pulse sequence parameters to investigate these findings at

the higher vascular volume fractions more typically encountered in

DSC-MRI experiments, such as in grey matter or brain tumors.

The systematic evaluation of fractal-based vascular trees using

the FPFDM could shed new insights into the relationship between

DSC-MRI relaxation rate and vascular geometry. Furthermore,

the use of fractal trees enables the application of well-established

flow models [53–55] such that contrast agent kinetics and the

associated DSC-MRI time series can be considered for each

vascular structure. This would enable a more rigorous investiga-

tion of DSC-MRI-based voxel-wise measures of vessel size, transit

time and flow distributions and oxygen extraction. Realistic 3D

Figure 7. Kidney vascular structure extracted from micro-CT. Kidney vasculature extracted from micro-CT along with representative MR
voxel-sized (1 mm3) microvascular models taken from different sections of the kidney vasculature with their respective vascular volume fractions. The
existence of the bubble-like structures demonstrates the filling of glomeruli with Microfil but a higher resolution would be required to differentiate
the individual capillaries.
doi:10.1371/journal.pone.0084764.g007
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vascular and flow models could then be expanded to incorporate

the extravasation of contrast agent and its subsequent diffusion

around cells in the extravascular space. Such expansions would

create a powerful framework with which to investigate DSC-MRI

and susceptibility-based imaging methodologies in brain, tumors

and other organs of the body.

The FPFDM also provides a computationally reasonable

approach for simulating DSC-MRI derived transverse relaxation

rates both in the presence and absence of CA extravasation, and

restricted water diffusion induced by membrane permeability

(Fig. 5 and Fig. 6). The results shown in Fig. 6 demonstrate that

contrast agent leakage can lead competing T1 and T2
* effects as

the CA traverses the extravascular extracellular space. For a given

T10, the structure with smaller sized cells exhibited higher signal

intensity recoveries as compared to that with larger sized cells. The

compartmentalization of CA around the larger cells creates

stronger magnetic field perturbations and greater relaxation rate

changes (T2
* effects). In general, as T10 increases, T1 leakage

effects will be more pronounced and may dominate any T2
*

leakage effects, as is the case for the smaller-sized cells. In such

cases, the characteristic signal overshoot may be observed (Fig. 6c).

For the tissue structure with larger perturber sizes, the signal

intensity exhibits less recovery due to the presence of substantial

T2
* leakage effects (Fig. 6d–6f). As shown in Fig. 3b, cell density

may also influence the shape of DSC-MRI signals, with the

magnitude of T2
* leakage effects decreasing (and T1 leakage effects

increasing) as the cell density increases. Consequently, DSC-MRI

data from tumors with tightly packed, smaller-sized cells would

likely present with pronounced T1 leakage effects (e.g. signal

overshoot). Given the clinical importance of DSC-MRI signal

recovery characteristics to help differentiate among tumor types

[37,56], a systematic in silico study of DSC-MRI signal recovery

and its dependence on physiological, pulse sequence and physical

parameters is currently under investigation.

Prior studies have shown the potential and value of incorpo-

rating image-based vascular structures into susceptibility simula-

tions [39]. Similar to these previous studies we sought to

demonstrate the versatility of the FPFDM by determining the

dose-response of relaxation rates for vascular structures derived

from ex vivo micro-CT scans of perfused kidney vasculature. The

dose-response curves from MRI voxel-sized regions of the kidney

vasculature were used to determine the distribution of vascular

susceptibility calibration factors, kp, within the kidney. For

vascular volume fractions up to 30%, kp values were very

heterogeneous (Fig. 8), with decreased heterogeneity for vascular

volume fractions greater than 5%. The kp decreased over vascular

volume fractions between 0 and 5% with a slower decrease above

5%, consistent with a previous study in rodent brain that found

grey matter kp to be nearly twice that of tumor [34]. It should be

noted that the kidney microvascular structure presented in this

study is limited by the spatial resolution of the micro-CT data.

With a 5 mm, resolution individual capillaries could not be

resolved and capillary dense regions, such as in the glomeruli,

present as a single large perturber. The differentiation and

inclusion of these capillaries will likely influence the overall kp

heterogeneity across voxels for both SE and GE computations. For

the purposes of this study, this example illustrates the ability of the

FPFDM to explore susceptibility contrast in tissue structures

acquired using ex vivo imaging modalities. As the FPFDM only

requires that structures consist of a digital format it could accept

structural input from any imaging modality (e.g. optical, CT,

electron microscopy, MRI).

One of the limitations of the FPM is the use of FFT to calculate

the spatial convolution of the vascular structure with the finite

perturber magnetic field perturbation. As demonstrated in [33] the

resulting field perturbation is equivalent to the field perturbation

from a periodic array of the tissue structure under consideration.

Although realistic tissue structures extend beyond the boundary of

the simulation space, which introduces a ‘‘boundary problem’’, we

used zero-padding of the tissue structure to avoid additional field

perturbation at the boundaries from the neighboring array. The

padding size to eliminate boundary field effects depends on the

perturber size and the tissue structure. Here we used a zero-pad

size of one-tenth of the simulation box, since the field perturbation

changes we observed by using higher zero-pad sizes were

negligible.

The FPM was designed to compute the magnetic field changes

from a single finite perturber convolved with a digitized tissue

structure array, and hence this approach cannot be used for

arbitrary magnetic susceptibility distributions. While methods

capable of computing arbitrary susceptibility distributions are

more comprehensive and should be explored [57,58], it is typically

assumed that contrast agent instantaneously distributes within

each tissue compartment (e.g. intravascular and extravascular

extracellular space) at each imaging time point. Accordingly, the

FPFDM is a practical approach to compute field perturbations

Figure 8. Computed kp values for vascular structure extracted from micro-CT. (a) SE and (b) GE kp values as a function of vascular volume
fraction computed using the FPFDM for the kidney microvascular models (with vascular volume fractions .0.1%) shown in Fig. 7. SE kp values ranged
from 3.6–27.8 (mM–sec) 21, and GE kp values ranged from 53.8–174.3 (mM–sec) 21. Above 5% volume fraction, the GE kp values were relatively
constant with a mean value of 103.3(mM–sec) 21.
doi:10.1371/journal.pone.0084764.g008
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arising from tissue structure with only a few susceptibility

compartments, such as the intravascular, intracellular, and

extravascular extracellular spaces.

The sampling of tissue structures at higher resolution increases

the computational accuracy of the FPM but it comes at the

expense of computational time. Such increases in resolution would

also add to computational time needed to compute the MR signal

using the FDM. This is particularly true if a need arises to reduce

the simulation time step (Dt) due to increased resolution or

decreased perturber size (Dx), in order to satisfy the constraint that

the jump probability (see Eq. 6) should be #1/6. This is because

when the number of spins leaving a given node exceeds the

number that was present, the FDM becomes unstable [35]. With

the parallel high-performance computing techniques we previously

developed [36], we are exploring ways to increase the computa-

tional efficiency of the FPFDM at higher resolutions so that we can

more accurately characterize fine tissue microstructure across a

broader range of structural dimensions (e.g. a few microns up to a

hundreds of microns).

Conclusion

The FPFDM is an alternative computational tool for efficiently

modeling susceptibility induced MR signal relaxation from

complex perturber geometries. In general, the proposed FPFDM

could be used to investigate the influence of realistic tissue

microstructure on any susceptibility based contrast mechanism

such as vessel size imaging, BOLD contrast, single cell imaging,

and quantitative susceptibility mapping. Currently, the proposed

method is being utilized to assess the influence of geometrical,

morphological and physiological parameters of microvessels and

cells on susceptibility induced MR relaxation rate changes. Such

studies should shed new insights into DSC-MRI contrast

mechanisms and enable the systematic evaluation of how

acquisition and analysis methods influence the measurement of

reliable perfusion parameters in brain and tumor tissue.
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