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Abstract: Biofilms are complex systems produced by bacteria and constituted by macromolecular
matrix embedding cells. They provide advantages to bacteria including protection against
antimicrobials. The protection given by biofilms produced by Klebsiella pneumoniae strains towards
antimicrobial peptides of the innate immune system was investigated. In particular, the role of matrix
bacterial exopolysaccharides was explored. Three clinical strains producing exopolysaccharides
with different chemistry were selected and the interaction of purified biofilm polysaccharides
with two bovine cathelicidins was studied by circular dichroism spectroscopy and microbiological
assays to establish their influence on the peptide’s antimicrobial activity. The spectroscopic data
indicated a different extent of interaction with the two peptides, in a manner dependent on their
sugar composition, and in particular the presence of rhamnose residues correlated with a lower
interaction. The extent of interaction was then related to the protection towards antimicrobial
peptides, conferred by the addition of the different exopolysaccharides, in minimum inhibitory
concentration (MIC) assays against a reference Escherichia coli strain. Microbiological results were in
very good agreement with spectroscopic data, confirming the active role of matrix polysaccharides
in determining a biofilm’s protective capacity and indicating lower protection levels afforded by
rhamnose containing exopolysaccharides.

Keywords: bacterial biofilm; matrix exopolysaccharides; antimicrobial peptides; bacterial protection;
exopolysaccharides biological activity

1. Introduction

Biofilms are the most common way of life for bacteria [1]. A main characteristic of these complex
communities is the production of a gelling matrix [2,3] which includes the bacterial cells and protects
them against external threats, whether mechanical or chemical. Most biofilms are produced after
adhesion of bacterial cells to a surface, but floating pellicles have also been described in the literature [4].
Of particular relevance for human health is biofilm production on internal tissues or medical devices,
which is an important cause of chronic infections, often difficult to eradicate. Besides intrinsic bacterial
resistance to antimicrobial agents and antibiotics of sessile microbes, biofilms may also enhance the
resistance level because of the increased difficulty of drug molecules permeating inside the matrix:
in fact, the permeation kinetics are impaired by the gel-like structure of the matrix, while specific
interactions with matrix components may lead to the sequestering of antimicrobials [5,6].

Biofilm matrices are complex entities, composed of different macromolecules, including
polysaccharides, proteins and extracellular DNA, as well as of molecular species with lower molecular
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masses such as lipids. Polysaccharides are considered to be mainly responsible for setting up of the
matrix architecture, as they can establish intermolecular interactions with themselves and with other
macromolecules, such as proteins [7,8]. These interactions confer stability to the macromolecular
scaffold where bacterial cells are hosted. The matrix can be modelled as a sort of macromolecular
network, swollen by water, comprising channels through which small molecules can circulate to
reach bacteria and interact with their membrane. This means that the small molecules encounter
polysaccharides on their way and can interact with them to different extents. Although this rather
coarse picture of the biofilm architecture is generally accepted, the details of the structure and
interactions of its components are not well known. In particular, also considering the great variety of
their chemical structures, the specific role of matrix polysaccharides is mostly unknown.

Infected organisms combat bacterial infections using several different weapons, among which a
relevant and interesting role is played by the antimicrobial peptides (AMPs) of the innate immune
system [9]. In many organisms these constitute a first line of defence against bacteria and they are
being actively investigated as possible alternatives to conventional antibiotics that may help solve
the burgeoning problem of antibiotic resistance. It is therefore interesting to investigate the possible
interactions between AMPs and polysaccharide constituents of biofilm matrices and to determine if
they help bacteria included in biofilms to escape the action of these relevant innate immune effectors.
It is obvious that if interactions do occur, they depend on structural features of both polysaccharides
and peptides, so structural definition is important. In fact, the chemistry of biofilm polysaccharides
depends not only on the producing bacterial strains but also on environmental conditions, so that
bacteria can conveniently modulate it in order to respond efficiently to external stresses, including the
action of antimicrobials.

In a previous investigation carried out on exopolysaccharides produced by Pseudomonas aeruginosa,
Inquilinus limosus, and two species of the Burkholderia cepacia complex [10], we were able to show
that the biopolymers obtained under planktonic conditions were able to interact with cathelicidin
antimicrobial peptide of different mammalian origin. In particular, the human cathelicidin LL-37,
upon interaction with the exopolysaccharides, adopts a α-helical conformation and becomes bound to
the polysaccharide backbone, thus impairing its action on the bacterial membranes of matrix embedded
bacteria [11,12].

Klebsiella pneumoniae is an enteric gram-negative bacillus causing a wide range of hospital-acquired
infections, among which ventilator-associated pneumonia and urinary tract infections are the most
frequent, especially in patients who undergo procedures with inserted medical devices such as
endotracheal tubes or catheters. This is due to the ability of Klebsiella to adhere both to biotic and abiotic
surfaces thanks to its sticky phenotype conferred by production of fimbriae and exopolysaccharides,
which favour biofilm formation [13].

In this study, three clinical strains of Klebsiella pnemoniae (named KpTs101, KpTs113, and KpMn7),
collected from urinary tract infections and producing three different polysaccharides (extracellular
polysaccharides (EPOLs)), have been investigated [14–16]. The structures of these polysaccharides,
defined in our laboratory, are very different to each other and are described in Table 1.
The structure of the polysaccharide produced by the strain KpMn7 is identical to that published
by Kubler-Kielb et al. [16].

The exopolysaccharides were purified from biofilms (BF) and investigated in the presence of
two bovine cathelicidins: BMAP-27 and Bac7(1–35). The former is a membranolytic helical peptide,
the latter is a fully active fragment of Bac7, which translocates into susceptible bacteria by using a
specific transporter, where it then interferes with ribosomes [17].

Strain KpTs101 produces two similar polysaccharides that are identical to the O-chains of the
lipopolysaccharides characterized from K. pneumoniae serotype O1. Of particular interest is the fact that
the exopolysaccharide present in biofilm from the strain KpMn7 is rich in rhamnose residues. This is a
6-deoxy sugar having methyl groups on the C-6 position, in place of the more usual primary alcohol
function. Compared with more common aldohexoses, this confers a distinctly less polar character to
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the polymer, which might favour hydrophobic interactions within itself or with other components of
the biofilm matrix.

The interactions between polysaccharides and antimicrobial peptides were investigated using
circular dichroism spectroscopy in systems composed of the purified exopolysaccharide and peptides
and by microbiological assays, in which a bacterial strain was exposed to the antimicrobial peptides in
the presence of exopolysaccharides. This test was performed using the reference strain E. coli ML-35
rather than a Klebsiella one to get rid of the interference of exopolysaccharides produced by bacteria
themselves during the test.

Table 1. Primary structure of the exopolysaccharides extracted from biofilms of three Klebsiella pnemoniae
strains—KpTs101, KpTs113, and KpMn7—and antimicrobial peptides aminoacid sequences.

K. pneumoniae Strain Biofilm Polysaccharide Structure Reference

KpTs101
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2. Results and Discussion 

BMAP-27 and Bac7(1–35) have a different mechanism of action towards bacteria. Upon 
interaction with bacterial membranes, BMAP-27 acquires an amphipathic α-helical conformation, 
with the polar sector of the cylinder characterized by the presence of numerous positively charged 
residues, and the opposite one having a markedly hydrophobic character. This configuration 
favours interaction with, and insertion into, the bacterial membrane, and the peptides then 
aggregate to form pores and/or disaggregates the membranes by the so-called “carpet mechanism” 
in a concentration dependent manner [18]. On the contrary, Bac7(1–35), after crossing the membrane 
without lysis, acts by targeting ribosomes [17]. Because of these very different modes of actions, the 
following description will consider the two peptides separately. 

2.1. Interaction of Biofilms EPOLs and BMAP-27 AMP 

Circular dichroism experiments were carried out on solutions with a fixed peptide 
concentration (20 μM) and increasing EPOLs concentrations. They showed that BMAP-27 is induced 
to adopt a α-helical conformation in the presence of EPOLs from BF produced by all three strains, 
KpTs101, KpTs113, and KpMn7, but to different extents (Figure 1). From the spectra in Figure 1 it is 
clear that, while KpTs101 and KpTs113 EPOLs have rather similar helix-inducing effects, KpMn7 
EPOL is less effective in inducing the conformational change. This result can be quantified and better 
visualized by transforming molar ellipticity values into percentage α-helix content, induced by the 
three polysaccharides (Figure 2).   
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Antimicrobial Peptide Aminoacid Sequence

BMAP-27 GRFKRFRKKFKKLFKKLSPVIPLLHL-NH2

Bac7(1-35) RRIRPRPPRLPRPRPRPLPFPRPGPRPIPRPLPFP-NH2

2. Results and Discussion

BMAP-27 and Bac7(1–35) have a different mechanism of action towards bacteria. Upon interaction
with bacterial membranes, BMAP-27 acquires an amphipathic α-helical conformation, with the polar
sector of the cylinder characterized by the presence of numerous positively charged residues, and the
opposite one having a markedly hydrophobic character. This configuration favours interaction with,
and insertion into, the bacterial membrane, and the peptides then aggregate to form pores and/or
disaggregates the membranes by the so-called “carpet mechanism” in a concentration dependent
manner [18]. On the contrary, Bac7(1–35), after crossing the membrane without lysis, acts by targeting
ribosomes [17]. Because of these very different modes of actions, the following description will consider
the two peptides separately.

2.1. Interaction of Biofilms EPOLs and BMAP-27 AMP

Circular dichroism experiments were carried out on solutions with a fixed peptide concentration
(20 µM) and increasing EPOLs concentrations. They showed that BMAP-27 is induced to adopt a
α-helical conformation in the presence of EPOLs from BF produced by all three strains, KpTs101,
KpTs113, and KpMn7, but to different extents (Figure 1). From the spectra in Figure 1 it is clear
that, while KpTs101 and KpTs113 EPOLs have rather similar helix-inducing effects, KpMn7 EPOL
is less effective in inducing the conformational change. This result can be quantified and better
visualized by transforming molar ellipticity values into percentage α-helix content, induced by the
three polysaccharides (Figure 2).
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Figure 1. Circular dichroism (CD) spectra of BMAP-27 as a function of increasing extracellular 
polysaccharide (EPOL) concentrations. (a) KpTs101; (b) KpTs113; (c) KpMn7. Polysaccharide 
concentrations are indicated. [BMAP-27] = 20 μM, T = 25 °C, phosphate buffer. 

Figure 1. Circular dichroism (CD) spectra of BMAP-27 as a function of increasing extracellular
polysaccharide (EPOL) concentrations. (a) KpTs101; (b) KpTs113; (c) KpMn7. Polysaccharide concentrations
are indicated. [BMAP-27] = 20 µM, T = 25 ◦C, phosphate buffer.
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α-helix-stabilized complex. Rather surprisingly, EPOL KpMn7 exhibited a negative slope indicating 
an increase of the negative α-helical band at 222 nm. 

Figure 2. Percentage of α-helix of BMAP-27 induced by the EPOLs purified from KpTs101, KpTs113,
and KpMn7 biofilms. [BMAP-27] = 20 µM, T = 25 ◦C, phosphate buffer.

Both KpTs101 and KpTs113 EPOLs are able to induce a considerable level of α-helical conformation
(as compared also to that induced by 50% trifluoroethanol [19]), with KpTs113 being the most efficient.
On the contrary, the KpMn7 EPOL induces only 25% of ordered conformation at the same concentration.
The data clearly show that the interaction of KpMn7 EPOL with BMAP-27 is less intense than that
given by the other polysaccharides. The stability of the interaction between EPOLs and BMAP-27 was
also investigated as a function of the temperature (Figure 3) with the EPOL concentration set in the
middle of the range used in the above described experiments (See legend of Figure 4).
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Figure 3. Increasing temperature effect on the BMAP-27 conformation in phosphate buffer in the
presence of the investigated EPOLs. The CD ellipticity was measured at 222 nm. The EPOL
concentrations were KpTs101 = 200 µM; KpTs113 = 198 µM; KpMn7 = 179 µM.

In good agreement with the data of Figure 2, the system containing EPOL KpTs113,
which interacted rather strongly with the peptide, did not show any variation in circular dichroism (CD)
spectra upon increasing temperature; EPOL KpTs101, which induced the highest content of α-helical
conformation in BMAP-27, showed a small decrease of the ordered conformation upon increasing
the temperature (positive slope of the curve in Figure 3) probably due to small dissociation of the
α-helix-stabilized complex. Rather surprisingly, EPOL KpMn7 exhibited a negative slope indicating
an increase of the negative α-helical band at 222 nm.
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Since, among the investigated EPOLs, KpMn7 exhibited the lowest degree of interaction with
BMAP-27, suggesting a rather high concentration of free peptide in solution, the temperature behaviour
of the peptide alone in phosphate buffer was also investigated. This experiment showed a 10% increase
of the α-helix content driven by the temperature increase (Figure 4). This behaviour was almost
identical to that reported in Figure 3 and obtained for the exopolysaccharide KpMn7, further supporting
the low extent of interactions between the peptide and this BF component. To explain the increase
of the peptide α-helix content with temperature, it might be speculated that by raising the energy
of the system, intermolecular interactions with solvent are disrupted in favour of the intramolecular
ones characterized by the α-helical hydrogen bonds. The temperature behaviour of the peptide alone
nicely explains why the system containing EPOL KpMn7 and BMAP-27 exhibited a small increase
in the peptide ordered conformation content as a function of the temperature. The rather weak
interaction between EPOL KpMn7 and BMAP-27 indeed leaves a not minor amount of free peptide,
which might increase by increasing the temperature; consequently, the temperature behaviour of the
BMAP-27/EPOL KpMn7 system is dominated by the behaviour of the free peptide.
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The interaction between BMAP-27 and KpTs101, KpTs113, and KpMn7 EPOLs, and its relation
with bacterial protection, was then confirmed by evaluating the EPOLs’ ability to reduce the
antimicrobial activity of the AMP against Escherichia coli ML-35 planktonic cells using the minimum
inhibitory concentration (MIC) assay. Preliminary experiments showed that the three Klebsiella isolates
were more resistant than E. coli ML-35 to both AMPs (Table 2) probably due to the action of the EPOLs
produced by these strains.

Table 2. Minimum inhibitory concentration (MIC) values of BMAP-27 and Bac7(1–35) against
the three Klebsiella strains and the E. coli ML-35 strain used to evaluate the protective effect of
the exopolysaccharides.

Bacterial Strain BMAP-27 Bac7(1–35)

KpMn7 4 µM 4 µM
KpTs101 4 µM 4 µM
KpTs113 4 µM 4 µM

E. coli ML-35 2 µM 2 µM

For this reason, a different bacterium was selected for MIC measurements in the presence of
EPOLs extracted from K. pneumoniae BF, as indicated in the introduction.

The MIC experiments (Figure 5) fully confirmed the spectroscopic findings, revealing a lower
protective effect of KpMn7 EPOL compared to the other two EPOLs.
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2.2. Interaction of Biofilms EPOLs and Bac7(1–35) AMP

Bac7(1–35), a proline-rich antimicrobial peptide, adopts a conformation quite different from the
α-helical one of BMAP-27. In fact, Bac7(1–35) CD spectrum in phosphate buffer recalls that of the
polyproline II conformation (Figure 6a, black curve) [20], which is not surprising considering the high
percentage of proline residues in its primary structure. The addition of K. pneumoniae EPOLs to a
Bac7(1–35) buffered solution caused small variations in the CD spectra (Figure 6) indicating some
change in the peptide conformation.
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Figure 6. Bac7(1–35) CD changes in phosphate buffer as a function of increasing concentration of
polysaccharides extracted from KpTs101 (a); KpTs113 (b); and KpMn7 (c) biofilms.

The small changes observed might be due either to limited interaction between the peptide and
the EPOLs or to the fact that interaction do exists but does not greatly affect the peptide conformation.
Nevertheless, the lowest spectroscopic variation in the CD curves was obtained for the peptide/KpMn7
EPOL system, as in the case of the BMAP-27 study. In fact, the first addition of the polysaccharide
(Figure 6c, red curve) did not change the shape of the spectrum, which is identical to that of the
peptide alone.

In order to better characterize the possible interactions, the Bac7(1–35)/EPOLs systems were also
investigated as a function of the temperature in the range 25 to 65 ◦C (Figure 7).
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Figure 7. Increasing temperature effect on the Bac7(1–35) conformation in phosphate buffer in
the presence of the investigated EPOLs. The CD ellipticity was measured at 205 nm. The EPOL
concentrations were KpTs101 = 201 µM; KpTs113 = 198 µM; KpMn7 = 489 µM.

Figure 7 shows that, upon increasing the temperature, the polyproline II type spectra changed
for all the investigated systems with an almost identical slope. The only observation which might
be derived is that Bac7(1–35) in the presence of EPOL KpTs113 exhibited a lower CD intensity in the
temperature range explored.

As for the BMAP-27 containing systems, the evaluation of Bac7(1–35) activity against E. coli ML-35
by MIC assays in the presence of different concentrations of the investigated EPOLs (Figure 8) was
carried out and the results confirmed the trend suggested by the spectroscopic data. EPOL from
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KpMn7 biofilms did not significantly increase MIC values, indicating a protection lower than that
offered by the other two EPOLs. KpTs113 EPOL was the most effective, while KpTs101 exhibited an
intermediate activity. Thus, the extent of protection followed the trend KpTs113 > KpTs101 > KpMn7,
in a dose-dependent manner, for the first two polysaccharides.
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3. Materials and Methods

3.1. Bacterial Strains and Biofilm Culture

Three clinical isolates of Klebsiella pneumoniae, were collected from patients with urinary tract
infections attending hospitals of the Friuli Venezia Giulia region (Italy) and named KpTs101, KpTs113,
and KpMn7. For the production of biofilms, K. pneumoniae strains were grown on cellulose membranes
deposited on solid agar medium [21]. Cellulose membranes (Sigma, St. Louis, MO, USA, cut-off
14,000 Da) were cut in circle the size of the Petri dish (90 mm Ø), washed first in a boiling solution of
5% Na2CO3 for 15 min and then in boiling water for 15 min, autoclaved and placed over Petri dishes,
containing Müller Hinton (MH) solid medium. The excess of water was removed before seeding the
bacteria. Two drops of 10 µL each of an overnight liquid culture of K. pneumoniae strain in MH broth
were placed on the cellulose membranes. After 2 days of incubation at 30 ◦C, the material from each
Petri dish was scraped from the membranes using about 3 mL of 0.9% NaCl, centrifuged at 48,000× g
at 4 ◦C for 20 min, and filter-sterilized (Millipore membranes 0.22 µm, Merck KGaA, Darmstadt,
Germany). UV spectroscopy was used to check for the presence of proteins, which eventually were
eliminated by incubating the solution with protease (from Streptomyces griseus, Sigma) at 37 ◦C for 16 h,
followed by centrifugation to remove insoluble material. EPOLs were precipitated from the solutions
with 4 volumes of cold ethanol, centrifuged, dissolved in water and dialyzed (cut-off 14,000 MM) first
against 0.1 M NaCl, then water, taken to pH 6.5–7.0, filtered on membranes (Millipore, cut-off 0.45 µm)
and recovered by lyophilisation.

3.2. Antimicrobial Susceptibility Testing

Peptides were purchased from NovoPro Bioscience Inc. (Shanghai, China). The purity of peptides
was ≥90%, and the molecular weight was verified by ESI mass spectrometry. Antimicrobial susceptibility
testing was carried out by the microdilution susceptibility assay according to the CLSI guidelines [22].
Briefly, 5 × 105 bacterial cells/mL were inoculated in presence of twofold dilutions of each AMP
and incubated for 18 h at 37 ◦C. The MIC (minimum inhibitory concentration) was the lowest
concentration of AMP that completely inhibited growth of bacteria. To evaluate the protective effect
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of the different EPOLs, MIC value of each peptide was evaluated against Escherichia coli ML-35 (that
does not produce polysaccharides similar to those of Klebsiella) both in the absence and in presence of
different concentrations of the EPOLS purified from biofilm produced by KpTs101, KpTs113, and KpMn7.
The experiments were repeated at least three times in duplicate.

3.3. Circular Dichroism Spectroscopy

All CD measurements were performed on a Jasco J-710 instrument (JASCO Inc., Easton, MD,
USA) either at 25 ◦C or as a function of the temperature (from 25 to 65 ◦C, step of 10 ◦C). Spectra were
recorded in 10 mM sodium phosphate buffer at pH 7.4, using 2 mm quartz cells in the wavelength
region from 190 to 300 nm. A correction for solvent baseline and polysaccharide contribution was
made digitally in each case. Analyses were performed using a peptide concentration of 20 µM and
varying the polysaccharide concentrations (referred to the mass of the polysaccharide’s repeating unit)
as indicated in figures. Spectra were the result of accumulation of two scans. In all experiments,
the polysaccharide-buffered solution was added to the buffered solution of peptide up to the
desired concentration.

The percentage of α-helix content was determined as [θ]/[θ]α, where [θ] is the observed molar
ellipticity at 222 nm and [θ]α the molar ellipticity of a fully structured peptide calculated using the
equation [θ]α = −40,000·(1 − 2.5/n), where n is the number of amino acid residues in the peptide and
−40,000 the estimated ellipticity of a fully structured infinitely long helix [23,24].

4. Conclusions

Polysaccharides have an important and probably unique role in biofilm matrices, and it is
becoming increasingly clear that this role is not limited to simply being a physical constituent of
the porous scaffold entrapping bacterial cells and allowing permeation of active small molecules.
In addition, their protective effect is not limited to that of a physical barrier blocking or limiting the
penetration dynamics of molecular species dangerous for bacterial colonies. The high variability of BF
polysaccharide chemical structures and the finding that a single bacterial species can produce many
different polysaccharides [25] suggest that these polymers can play specific biological roles affecting
the functioning of the biofilm way of bacterial life.

In a previous investigation on the interaction of AMPs with exopolysaccharides produced
by bacteria different from those considered in this paper, we proposed a model [10] of
peptide–polysaccharide backbone interaction where the peptide adopts an ordered conformation.
In this way, the more hydrophilic sector of the peptide secondary structure can interact with the
hydroxyl groups of the polysaccharide backbone throughout polar contacts. The formation of these
complexes, detected by the increase of the AMP ordered conformation, disfavors the interaction of
AMPs with the bacterial membranes and eventually their antimicrobial action.

In this study, we investigated a possible role of exopolysaccharides extracted from biofilms
produced by three clinical strains of Klebsiella pneumoniae. They exhibit different structures so that the
relation between monosaccharide composition and activity could be explored. Specifically, KpTs113
EPOL has an ionic character due to the presence of an uronic acid, while KpTs101 EPOL is composed of
two neutral galactans identical to the K. pneumoniae serotype O1 chains of the LPS. More interestingly,
the EPOL from KpMn7 is an ionic polymer rich in rhamnose monosaccharides, which may confer
a less polar character to the backbone for the presence of methyl groups on their carbon 6 position
instead of the more common primary alcohol function.

Considering the latter EPOL, its interaction with both BMAP-27 and Bac7(1–35) AMPs resulted in
its being the lowest of the three polysaccharides, as determined by CD analysis and MIC assays.
This behaviour can be traced back to the less-polar character of the polysaccharide backbone,
which might produce three-dimensional conformations not able to establish a stable and strong
interaction with the peptides. In fact, the intrinsic propensity of a polysaccharide to adopt an
elongated chain conformation or a more compact and folded one, may strongly affect its capacity to
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interact with the peptide in the α-helix conformation. On one hand, the helical conformation may
favour the interaction with the polysaccharide backbone due to its amphiphilic nature, on the second
hand its rod-like nature could require an extended conformation of the polysaccharide for a stable
interaction. The other two investigated polysaccharides reduce the antimicrobial activity of both
peptides, offering a stronger protection to bacteria against these molecules. However, they behave
differently with respect to BMAP-27 and Bac7(1–35). In the presence of the former, the interaction,
and the consequent protection, is high in spite of their quite different ionic nature. Evidently,
in this system ionic interactions are not essential to form suitable complexes between peptide and
polysaccharides: different forces such as hydrogen bonds and van der Waals interactions may lead
to an efficient complexation, causing conformational changes in the peptide. Bac7(1–35) showed a
different scenario, where KpTs113 EPOL was the most efficient in inhibiting its antimicrobial action
while the inhibitory effect of KpTs101 on peptide activity was intermediate between KpTs113 and
KpMn7 EPOLs. Again, details of the chemical structure of the polysaccharides play a critical role in
defining their biological action.

Considering together the spectroscopic evidence and results from microbiological assays,
the interaction of both peptides with the biofilm polysaccharides leads to the formation of complexes,
to some extent preventing the antimicrobials to reach the bacterial membrane or impeding a proper
interaction with it, therefore lowering the activity of the peptide.

As a concluding remark, it can be speculated that the ability of bacteria belonging to the same
species to biosynthesize EPOLs with very different primary structures is an efficient way to respond to
external stimuli and threats. The chemistry of the EPOLs is then modulating the function of biofilms,
which should not be considered as a passive scaffold enveloping bacterial colonies but an active tool in
the hands of bacteria.
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