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Abstract: ATP-binding cassette (ABC) transporters are a superfamily of proteins that transport nutrient
substances and secondary metabolites through cell membranes. They also act as an uptake system for
N,N′-diacetylchitobiose (GlcNAc)2 in Streptomyces coelicolor. (GlcNAc)2 is an important inducer of
chitinase. However, whether the ABC transporter in Trichoderma spp. is also responsible for (GlcNAc)2

uptake and chitinase induction has not yet been confirmed. In this study, we applied RNA interference
and overexpression technologies to alter the expression level of the ABC-B transporter in order to detect
changes in its transportation ability and the expression level of inducible endo-chitinase ECH42—an
important biocontrol enzyme in Trichoderma asperellum. The results revealed that, after interference
with the expression of the ABC-B transporter, T. asperellum T4 was only able to grow normally when
glucose was the only carbon source. Compared with the wild-type, the efficiency of (GlcNAc)2 by
the overexpression strain evidently increased, along with the activity level of ECH42. In conclusion,
one of the functions of the ABC-B transporter in T. asperellum is the uptake and transport of (GlcNAc)2

into cells, and chitobiose is a strong inducer of ECH42 in T. asperellum T4.
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1. Introduction

ATP-binding cassette (ABC) transporters are a super family of membrane proteins that use energy
from ATP hydrolysis to transport substrates, such as small inorganic and organic molecules, metal ions,
polypeptides, and proteins, through the cell wall [1–3]. Early stages of research have shown that the
ABC transporter and its homologous proteins exist not only in bacteria but also in eukaryons and
mammals. The ABC superfamily is the largest known protein family [4]. ABC proteins can be divided
into two groups based on their functions: importers and exporters [5,6]. The first group can be further
divided into importers I and II, whose main function is to transport nutrients from outer to inner
regions, i.e., from the trans- to the cis-side [7,8]. Most exporters in bacteria and eukaryons, such as
ABC-A/B/C/D, are associated with the exportation of toxic substances and phytohormones [9–11].
However, recent studies have shown that exporters such as ABC-B/D/G may also play the role of
importers in eukaryons, which challenges the conclusion that the ABC importer is only found in
bacteria. Thus, the full functionality of this family requires further research [12–15].

Trichoderma asperellum is a well-known biocontrol agent with significant activity against
phytopathogens [16]. Hyperparasitism is one of the most important measures that protect plants
against fungal diseases caused by Pythium and Fusarium spp. [17]. Chitin and chitinase play crucial
roles during this process. Chitin is an important structural component of fungal cell walls that is
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required for the maintenance of structural integrity. Chitinase is the key enzyme involved in the
physical penetration of phytopathogen cell walls, and plays an important role in cell mitosis [18–21].
To date, studies have mainly focused on (1) the use of the heterologous expression of the chitinase
gene to improve plant resistance to pathogens and insects, or (2) the functions of chitinase and
chitinase-like proteins in cancer [22–24]. Only a few papers have studied the regulation mechanisms of
chitinase. Dimeric N-acetylglucosamine (GlcNAc)2 has been proven to strongly induce the expression
of chitinase in several microorganisms, including bacteria and fungi such as Streptomycetes and the
mushroom Coprinopsis cinerea [25,26]. However, it is unknown whether T. asperellum can also be
induced or whether the ABC transporter is an agent that transports (GlcNAc)2 into the trichoderma
cells. Endo-chitinase ECH42 (GenBank: GU457410.1) is an essential enzyme for biocontrol activities,
which has no chitin-binding domain and can only be induced by insoluble chitins, such as (GlcNAc),
(GlcNAc)2, (GlcNAc)3, or colloidal chitin [23,27]. In this study, RNA interference (RNAi) and
overexpression technologies were applied on a genetic level to change the expression level of the
ABC-B transporter, and the differences in the uptake of (GlcNAc)2, the expression level, and the activity
of ECH42 were detected.

2. Results and Discussion

2.1. Characterization of the ABC-B Transport Genes in T. asperellum T4

Using cDNA as a template, after 29 cycles of PCR, two sequences were acquired, ABCOVER-1
and ABCOVER-2, 1923 and 2451 bp long, respectively. These two sequences were 99% identical to
the mRNA of the ABC sequence on NCBI, based on a BLAST compare. The ClonExpress II One Step
Cloning Kit was chosen to connect sequences 1 and 2. As a result, a complete sequence of the ABC
transporter cDNA was obtained (Figure 1A). ABC-I and ABC-II were connected to Psilent plasmid
through the enzyme sites mentioned in (3.3.1). The complete overexpression sequence of ABC was first
measured using a kit through the overlap section, which was then connected to the pBargpe plasmid
through enzyme sites. The plasmids pSilent-ABC and pBargpe-Hygro-ABC were sequenced after
double enzyme digestion (Figure 1B,C), and both sequences were found to be 99% identical to the
NCBI template.
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Figure 1. Construction of the ABC complete sequence, the pSilent-ABC plasmid, and the double
enzyme digest result. (A) L1. Sequences 1 and 2 and the seamless connection results. L2. DNA marker.
(B) L1. DNA marker. L2. Sequence of pBARGPE-1 and ABC after XhoI and BamHI enzyme digestion.
(C) L1. DNA marker. L2. pSilent plasmid (7056 bp) and interference sequence (500 bp) after HindIII
and XhoI digestion.

AAA regions, which contain ATPases associated with a variety of cellular activities, such as
membrane fusion, proteolysis, recombination, repair, transcription, and DNA replication, can be
found in almost every living organism. However, in this vast family, only a fraction of this alignment
was detected. The ABC membrane regions (MEM) shown in pink represent exporters with triple
2 transmembrane segment precursors. They can also be considered as conserved transmembrane
domains that are usually encoded by independent polypeptides. They act as extracytoplasmic receptors
(solute-binding proteins), with the primary function of translocating all kinds of substrates across the
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membrane. The ABC transporter formed in this study was of the ABC-B type based on its structure
(Figure 2) [28,29]. The B subfamily is widely distributed in eukaryons owing to its various functions,
such as chemical resistance, antigen synthesis, pheromone pump-out, and heavy metal tolerance [30,31].
A brown frame area of 500 bp was chosen as the interfered target, because it is the most crucial function
zone of the protein. The designed primers are shown in Table 1.
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Figure 2. The structure of the ABC transporter on SMART. Red rectangles: regions of low compositional
complexity. Blue rectangles: transmembrane helix regions. Pink rectangles: regions of the Pfam
ABC membrane with transmembrane domains comprising six alpha helices. AAA regions: ATPases
associated with various cellular activities.

Table 1. Primers used in this study.

Category Name Content Product Size (bp) Function

Overexpression primer

TAABCP1-5 CGGATCCATGGCAGACCACGGTGAAGAGAAAG 2451
ABCOVER-1

ABC upstream sequence
TAABCP1-3 GGCATGCCTTCTGCCCTCAGTATGC

TAABCP2-5 CCTCGAGAGCCCTTGTGGTCTCG 1923
ABCOVER-2

ABC downstream
sequenceTAABCP2-3 AAGGCCTAGCCCTTGTGGTCTCG

Interference primer

TAABCI-5 CAAGCTTCTTCTGCCCTCAGTATGC 500
ABCI Crucial section of ABC

to interfere
TAABCI-3 CCTCGAGAGCCCTTGTGGTCTCG

TAABCII-5 GGCATGCCTTCTGCCCTCAGTATGC 500
ABCIITAABCII-3 AAGGCCTAGCCCTTGTGGTCTCG

ABC qPCR primer TAABCq-5 CTCAGACCCACTCTCCGAA
280 Expression level of ABC

TAABCq-3 GGGTCTGAGAGCGGAAAA

ECH42 qPCR primer Ech42q-5 CAACTGGGGTATCTATGGC
250 Expression level of ECH42

Ech42q-3 TTGCTGCAGAAGGGAAG

β-tubulin qPCR primer Tubulin-5 CACCTTCCTCCATACCCTCACC
200

Reference gene

Tubulin-3 TGTCCAACACCACCGCCATC

2.2. Growth of Protoplasts and Expression Level of the ABC-B Transporter

Based on 10× and 40×magnification images, the quantity of T. asperellum protoplasts is >106 as per
the PEG-mediated plastid transformation (i.e., at least 20 protoplasts in one mid-chamber; Figure 3A).
After two days of growth, the spores of the RNAi and overexpressed strains on the PDA agar plate
were collected using a certain concentration of hygromycin B as a selective agent. They were cultured
in MM for three days. Then, their RNA was extracted, and RT-qPCR was applied to identify the
strain with the highest ABC-B interference or overexpression efficiency. The expression level of the
ABC-B transporter in the RNAi strain was 22% of the WT expression level. Under the same conditions,
the level of the ABC-B transporter in the overexpressed strain was found to be 95% greater than
that of the WT (Figure 3C,D). The Western blot analysis revealed that the expression level of RNAi-1
strain was 21.7% of the level of WT-2, and the level of OVER-1 was 95% higher than level of WT-2.
Though OVER-2 was 18.5 times more than WT-2 (Figure 3B), this result could not be repeated. At same
time, the ABC level of OVER-1 was stable, so OVER-1 was chosen as the most overexpressed strain for
subsequent experiments.
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Figure 3. Protoplast state. Western blot of the expression level of ABC-B. Semi-quantitative and
RT-qPCR results for the expression of ABC-B. (A1,2) Digestion of the cell wall and enrichment condition
under 10× and 40×magnification. (3) Growth condition of protoplasts on agar plates. (B) Western blot
result for ABC-B and the corresponding α-tubulin reference. RNAi-1,2: Expression level of protein
ABC-B of the interfered strains selected from the plate. RNAi-1 was chosen as the most interfered
strain. WT-1,2: Expression level of the wild-type (WT) groups. WT-2 was chosen as the standard.
OVER-1,2: Protein level of ABC-B of the overexpressed strains. OVER-1 was chosen as the most
overexpressed strain. (C) Semi-quantitative PCR results for ABC-B and the reference, β-tubulin.
RNAi: Genetic expression level of ABC-B of the RNAi-1 strain. WT: Expression level of WT-2. OVER:
Expression level of the overexpressed strain OVER-1. (D) Histogram of the RT-qPCR result with
statistical analysis (p < 0.01).

2.3. Growth Conditions Causing a Lack of ABC on Different Polysaccharides

Based on the known functions of ABC transporters, their ability to uptake polysaccharides,
such as maltose, cellulose, chitin, and sucrose, could be influenced by genetic engineering. The growth
conditions of the ABC RNAi and overexpressed strains were tested on MM agar plates using glucose,
maltose, cellulose, chitin powder, and sucrose as the single carbon sources. By comparing the growth
of the colonies, their abilities to utilize the sugars were analyzed. The diameters of all plates were
measured when the overexpressed colony reached the maximum range. The results showed that the
WT strains grew normally on every polysaccharide, whereas the overexpressed strains utilized the
sugars better than the WT. The growth of overexpressed and WT strains showed obvious differences.
The interfered strains could grow normally only on glucose medium. The utilization conditions
of all other sugars were much less efficient. Although the conditions of the interfered strain were
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extremely poor when utilizing the polysaccharides, and the efficiency of the overexpressed strain in
utilizing chitin was definitely increased, the results revealed that the difference in efficiency between
the overexpressed and WT strains was not as large as in other groups (Figure 4).
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Figure 4. Growth of ABC-B interfered strains, overexpressed strains, and WT. The different colors
indicate the hours of incubation. Except for glucose, the diameters of all other overexpressed strains
were significantly increased compared with their respective interfered strains (p < 0.01).

These results indicate that T. asperellum T4 requires the presence of the ABC-B transporter to utilize
different polysaccharides, such as maltose, cellulose, chitin, and sucrose. The overexpressed ABC-B
obviously increased the ability of the ABC system to transport polysaccharides. Furthermore, the lack
of ABC-B significantly affected its ability to uptake disaccharides. This result matches the growth
conditions of Streptomycetes found in a previous study [25]. In that study, the msik gene, which encodes
part of the ABC transporter in Streptomycetes, was mutated, and the ability of the bacteria to utilize
polysaccharides was also severely damaged. This is because the ABC-B protein is responsible for
transporting polysaccharides into the cell. Above all, this result suggests that, in eukaryons, the exporter
of the ABC transporter also plays the role of an importer as a supplementary function.

2.4. ABC-B Is Essential for (GlcNAc)2 Transportation

To detect the uptake ability of (GlcNAc)2 after interference and overexpression, 99% pure (GlcNAc)2

was used as the only carbon source in the medium. The same original (GlcNAc)2 concentration was
added to the three groups: the ABC-B-interfered strain, WT, and the ABC-B overexpressed strain.
Samples were taken from culture supernatants every 24 h after four days of incubation. The (GlcNAc)2

concentration of each sample was determined using HPLC. Samples with patterns of decreasing
(GlcNAc)2 concentrations were compared with those of other samples. The results revealed that
the interfered group showed little (GlcNAc)2 degradation because only 22% of the ABC-B protein
remained, and due to the stability of the chitobiose Na salt form. Concentrations of overexpressed and
interfered strains were lower on days 2 and 3. On day 4, no (GlcNAc)2 was detected using HPLC in the
culture of overexpressed strain, whereas 30% remained in the WT group. The (GlcNAc)2 transportation
efficiency of the ABC overexpressed strain was evidently improved compared to WT. The (GlcNAc)2

concentration in the RNAi group hardly changed, indicating that a lack of the ABC-B transporter
markedly affected its uptake ability of (GlcNAc)2 (Figure 5). This demonstrates that the overexpressed
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ABC-B protein improved the fungus’s ability to uptake (GlcNAc)2. Thus, the ABC-B transporter plays
an important role as an importer in (GlcNAc)2 transportation. Intracellular fluids from the three groups
were also extracted and analyzed using HPLC. However, no (GlcNAc)2 was detected. Scarcelli studied
GlcNAc using [C14]GlcNAc and a scintillation counter and concluded that Saccharomyces cerevisiae
transports GlcNAc at a rate of 0.016–0.445 pmol per min [32].
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The ability of the ABC transporters to transport GlcNAc and (GlcNAc)2 in Streptococcus pneumoniae
and Streptomyces coelicolor has been studied previously [25,33]. However, whether ABC transporters in
other microorganisms bear the same function remains unknown. The improved uptake efficiency of
(GlcNAc)2 and the growth conditions of polysaccharides suggest that ABC-B plays roles as both an
importer and an exporter in T. asperellum T4.

2.5. The ABC-B Transporter Is Essential for Chitinase Induction

Several studies have reported that chitobiose and chitinase have a mutual induction phenomenon.
Chitinase plays a crucial part in chitobiose production [34]. To determine whether chitobiose plays the
same role as the chitinase inducer in T4, the activity of ECH42 was analyzed. ECH42 is an important
agent in chitin degradation and biocontrol. It can only be induced by an insoluble chitin, such as
(GlcNAc)2 or colloidal chitin. Therefore, using it as a model enzyme can reduce the inductive effect of
chitin powder. The reduced chitin utilization efficiency of the interfered strain suggests that ABC-B is
a key protein for the transportation of chitin or chitosan through the membrane into the cell. Similar to
the wild-type, both interfered and overexpressed strains were incubated in MM supplemented with
colloidal chitin as the only carbon source. The activity of chitinase in the three groups was detected
after 6 days of incubation using colloidal chitin as the substrate. The (GlcNAc)2 concentration in
the culture was detected using HPLC, and this indicated that the lack of ABC-B transporter had an
obvious effect on the uptake of (GlcNAc)2. The interfered strains almost completely lost the ability to
transport chitobiose (Figure 5). The crude enzyme activity curve of chitinase indicated that the enzyme
production of the overexpressed strain is more efficient than that of the WT (Figure 6), and the enzyme
activity of the ABC-B-interfered strain remained negligible after day 1 of incubation, which matched
the results of the colony culture.
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Figure 6. Enzyme activity of chitinase from the extracellular fluid of T. asperellum T4.

Differences in the activity of the interfered and overexpressed ABC-B strains further suggested
that (GlcNAc)2 is essential for chitinase induction in T. asperellum T4. The expression level of ECH42 in
the overexpressed strain, interfered strain, and WT when (GlcNAc)2 was the only carbon source was
compared. Under (GlcNAc)2 conditions, the expression level of ECH42 was 160% and 9% that of WT
in the overexpressed and interfered strains, respectively (Figure 7C). On a genetic level, ECH42 was
barely detected in the interfered strain (Figure 7B). The Western blot result of ECH42 showed that the
expression level of ABC-B was markedly improved in the overexpressed strain. Based on the Image
J results, since the ABC-B of the interfered strain could not be detected, the expression level of the
overexpressed strain was determined to be 175% that of the WT. This was in accordance with the qPCR
result (Figure 7A,B) and growth conditions (Figure 4).

Although the ability of ABC-B overexpressed strains to utilize polysaccharides (Figure 4) did
not show the three-fold increase demonstrated by the western blot results of overexpressed strains
(Figure 3B), the ability to uptake (GlcNAc)2 and produce ECH42 with (GlcNAc)2 as a single carbon
source was dramatically increased. The increases in the activity of crude chitinase and the expression
level of ABC-B in the overexpressed strain did not increase as promisingly, as shown in Figure 4.
This may indicate that the uptake system of the ABC transporter has an inhibitory mechanism or,
more likely, because of its main function of exporting hazardous substances, rather than transporting
substrates into cell, the (GlcNAc)2 transportation of the ABC-B is limited. The WB result for ECH42
further revealed that the (GlcNAc)2 concentration is related to ECH42 expression, which indicates
that (GlcNAc)2 is an inducer of ECH42 in T. asperellum T4. The ABC-B protein is the most essential
importer for T. asperellum in the uptake of chitobiose. However, whether chitobiose directly binds to
the ECH42 promoter region or stimulates the expression of ECH42 through another pathway requires
further research.
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Figure 7. Western blot results for ECH42. Semi-quantitative and Realtime-qPCR results for ECH42 with
(GlcNAc)2 as the only carbon source and the reference (α-tubulin). (A) Western blot result for ECH42
and α-tubulin. OVER: Western blot result for ECH42 from the ABC-B-overexpressed strain, OVER-1.
WT: ECH42 protein level from WT-2. RNAi: Western blot result for the interfered strain, RNAi-1.
(B) Semi-PCR results for ECH42 and β-tubulin. M: 2000 bp DNA marker. WT: ECH42 semi-PCR
result for WT-2. RNAi: ECH42 from the ABC-B-interfered strain, RNAi-1. OVER: ECH42 from the
ABC-B-overexpressed strain, OVER-1. (C) Histogram of the ABC-B RT-qPCR (p < 0.01).

3. Materials and Methods

3.1. Bacteria, Fungus, Plasmids, and Culture Conditions

T. asperellum T4 was isolated from soil samples from Mishan City, China (preservation number
CGMCC3.14975). Escherichia coli Top10 was used as the competent cell. T4 was cultured in a Minimal
Medium (MM culture comprised of 1.0 g NH4NO3, 0.5 g KH2PO4, 1.5 g Na2HPO4, 1.0 g NaCl,
and 0.2 g MgSO4·7H2O per liter, with a pH of 7.2) with glucose, (GlcNAc)2, or other polysaccharides
as the single carbon source. The E. coli strains Top 10, pBargpe, and pSilent carrier were cultured
in LB medium (10 g NaCl, 10 g tryptone, and 5 g yeast extraction per liter, with a pH of 7.0) with
antibiotics. T4 was incubated at 28 ◦C, and bacteria were incubated at 37 ◦C in a rotating shaker
at 180 rpm. Plasmids (pBargpe-Hygro-1 and Psilent-1) were purchased from Miaoling Company,
Wuhan city, China.

3.2. Extraction of RNA, PCR Amplification, and RT-qPCR

The mycelia cell wall of T4 was embrittled, dehydrated with liquid nitrogen, and triturated into
powder after four days of incubation in MM culture. Mycelia powder was processed with Trizol
reagent, separated by chloroform, and precipitated by isopropanol. The sediment was washed with
absolute ethyl alcohol and dissolved in RNase-free water. Later, it was treated with RNase-free DNase I
(Thermo Fisher™, Shanghai, China) to remove any remnant genomic DNA fragments. Then, total RNA
was conversed into cDNA with Toyobio™ (Shanghai, China) (1 µg RNA). The RNA quality was
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analyzed using agarose gel electrophoresis, and a five-fold diluted cDNA was used as the template
for RT-qPCR. For RT-qPCR, Go Taq qPCR Master Mix (Promega™, Beijing, China) and the β-tubulin
gene (GenBank: Accession KF595249.2) of T. asperellum were used as internal controls. The relative
abundance of ABC and ECH42 cDNA was standardized using the expression levels of the β-tubulin
gene. PCR was conducted using the Pfu DNA polymerase Ex taq. The regular amplification process of
the ABC sequence was as follows: 2 min at 95 ◦C, 30 cycles of 1 min at 95 ◦C, 2 min at 60 ◦C, 2 min
at 72 ◦C, 10 min at 72 ◦C, and then a hold at 4◦C. The annealing temperature for ECH42 was 57 ◦C.
The number of cycles was reduced to 24 for both sequences for semi-quantitative PCR. The RT-qPCR
steps were as follows: 95 ◦C for 1 min, the following two steps were then repeated for 40 cycles:
(1) 95 ◦C for 14 s and (2) 60 ◦C for 1 min, 95 ◦C for 15 s, 60 ◦C for 1 min and 95 ◦C for 15 s. All RT-qPCR
and Western blot results were quantified with software.

3.3. Plasmid Construction

3.3.1. Construction of the Interference Plasmid

The amino acid sequence of the ABC transporter of T. asperellum (GenBank: JN808453.1) was
analyzed using the online Simple Modular Architecture Research Tool (SMART) (available online:
http://smart.embl-heidelberg.de/) to confirm the essential functional areas of the ABC-B protein that had
been interfered. The primers were designed based on the sequence selected, and the target sequence
was 500 bp long, which covered one main area of the transmembrane region and one ATP-binding
domain. The enzyme sites were HindIII and XhoI for ABCI and SphI and StuI for ABCII on the pSilent
plasmid as Figure 8 shown. The primers designed for T. asperellum T4 in this paper are shown in Table 1.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 10 of 13 
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3.3.2. Construction of the Overexpression Plasmid

Two pairs of primers were designed based on the mRNA sequence of the T. asperellum ABC-B
transporter family protein base to reduce the mutation probability in one-step PCR. The two sequence
parts had a 25 bp mutual zone to allow seamless assembly. These two sequences were connected as
per the instructions provided on the ClonExpress II One Step Cloning Kit. Judging by the direction of
pBargpe expression, the enzyme sites at the 5′ upstream position and the 3′ downstream position were
BamHI and XhoI as Figure 9 shown.

http://smart.embl-heidelberg.de/
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ABCOVER-1 and ABCOVER-2 have a 25 bp overlap at their junction.

Both the interference and overexpression plasmids and their respective target sequences were
linked using T4 ligase and the competent cell of E. coli, Top10, for transformation. Transformants were
selected using ampicillin+ LB agar plates, and plasmids were confirmed through double enzyme
digestion before being forwarded for sequencing.

3.4. Construction of Protoplasts and Transformants

After constructing the plasmids pSilent-ABC and pBargpe-Hygro-ABC, promega mediated plastid
transformation was performed. Protoplasts were collected according to the steps described by
Anthony [35], with the following modifications. After three days of incubation, mycelia were digested
using lyticase (Guangdong Institute of Microbiology) in an orbital shaker incubator at 30 ◦C and
120 rpm. After filtration with double-level lens paper, the supernatant was centrifuged at 4000 rpm
and 4 ◦C for 5 min. After dumping the supernatant, sediments were resuspended in 0.06 mol/L STC
(27.3 g sorbitol, 0.75 g Tris-HCl, 0.13 g CaCl2, and 125 mL water, with a pH of 7.5). This step was
repeated, and the concentration of protoplasts was calculated after another resuspension in 200 µL
STC. After this, 10 µg of pSilent-ABC or pBargpe-Hygro-ABC was added into the STC and incubated
for 20 min at 0 ◦C. After adding 50% PEG4000 (50 g PEG4000, 8.48 g Tris-HCl, 0.11 g CaCl2, and 100 mL
water, with a pH of 7.5) into the protoplast–plasmid mixture, the new mixture was incubated at 0 ◦C
for 20 min. This mixture was added to 10 mL of regeneration medium (0.1 g yeast extract and peptone,
3.42 g sucrose, 0.15 g agar, and 10 mL water, with a pH of 7.0) as the first layer and covered with
a second layer of selection medium (0.1 g agar, 10 mL PDA, and 30 µg hygromycin B) at 28 ◦C. This was
incubated for 12 h as an inverted plate. The growth situation of transformants was observed after
addition on the second layer for 24 h, and a single colony was isolated.

3.5. Detection of the (GlcNAc)2 Concentration

High-performance liquid chromatography (HPLC) was applied to detect the changes in the
transportation efficiency of (GlcNAc)2 after genomic engineering. Given the chemical properties
of (GlcNAc)2, a Shimadzu LC-20AD, Shodex NH2P-50 4E 4.6 × 250 mm, 5 µm NH2 column was
used at 30 ◦C with a flow rate of 1.0 mL/min and a mobile phase of 75% acetonitrile and 25% water.
The (GlcNAc)2 concentration was calculated using the corresponding peak areas based on the standard
curve of (GlcNAc)2.

3.6. Western Blot

To detect the changes in the protein expression levels of ABC-B and ECH42 in the
overexpressed, wild-type (WT), and interfered strains, rabbit anti-ABC-B1 and anti-ECH42 antibodies
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(General Biosystems Co, Ltd., Chuzhou, China) were chosen as primary antibodies. Goat anti-rabbit
antibodies were chosen as secondary antibodies, and the α-tubulin antibody #2144 (Cell Signalling
Technology™, Shanghai, China) was used as a reference. All results were analyzed using Image J
software (National Institutes of Health, Bethesda, MD, USA).

3.7. Extraction of Fungi Wall Protein

After four days of incubation, the mycelia were centrifuged at 4000 rpm for 10 min. This step was
repeated until the supernatant became clear. Cell wall sediment was ground chemically (2% CTAB
and 2-mercaptoethanol) and ultrasonically until the wall-broken rate was 95%. Solutions of 5%, 2%,
and 0.9% NaCl were added into the sediment successively and centrifuged at 4000 rpm for 10 min.
Each step was repeated three times. The sediment was washed and resuspended in water and then
dried in a lyophilizer.

3.8. Chitinase Activity

(GlcNAc)2 disturbs the DNS reaction because of its reducing sugar nature, so the chitinase in
the (GlcNAc)2 environment must be separated before detecting its activity. Therefore, saturated
ammonium sulphate was added to the extracellular fluid of the culture before centrifugation for
30 min at 8000 rpm. The sediment was dissolved in water and dialyzed through a dialysis bag in
water. The mixture was centrifuged, and the sediment was washed with 2 mL of acetone. This step
was repeated several times, and the sediment was dissolved in Tris-EDTA (TE) buffer solution in
a proportion of 100 to 1 (100 mL extracellular fluid to 1 mL TE). One unit of chitinase activity was
defined as the amount of enzyme that degraded 1 µmol of colloidal chitin in 1 min at 37 ◦C.
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