
antibiotics

Article

Metagenomics-Based Analysis of the Age-Related Cumulative
Effect of Antibiotic Resistance Genes in Gut Microbiota

Lei Wu 1,2,† , Xinqiang Xie 2,†, Ying Li 2,†, Tingting Liang 1,2, Haojie Zhong 3 , Jun Ma 1,2, Lingshuang Yang 2,
Juan Yang 1,2, Longyan Li 2, Yu Xi 2, Haixin Li 2, Jumei Zhang 2, Xuefeng Chen 1, Yu Ding 4,*
and Qingping Wu 2,*

����������
�������

Citation: Wu, L.; Xie, X.; Li, Y.; Liang,

T.; Zhong, H.; Ma, J.; Yang, L.; Yang, J.;

Li, L.; Xi, Y.; et al. Metagenomics-

Based Analysis of the Age-Related

Cumulative Effect of Antibiotic

Resistance Genes in Gut Microbiota.

Antibiotics 2021, 10, 1006.

https://doi.org/10.3390/

antibiotics10081006

Academic Editors: Michael Calcutt

and Anna Psaroulaki

Received: 1 July 2021

Accepted: 13 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Food and Biological Engineering, Shaanxi University of Science and Technology,
Xi’an 710021, China; wuleigdim@163.com (L.W.); gdim_liangtt@outlook.com (T.L.); majun@sust.edu.cn (J.M.);
yj18185238563@163.com (J.Y.); chenxf@sust.edu.cn (X.C.)

2 Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied
Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences,
Guangzhou 510070, China; woshixinqiang@126.com (X.X.); liying@gdim.cn (Y.L.);
yangls8272@163.com (L.Y.); 18868006204@163.com (L.L.); xiyu_0604@163.com (Y.X.);
201920146453@mail.scut.edu.cn (H.L.); zhangjm926@126.com (J.Z.)

3 The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University,
Guangzhou 510080, China; jaxzhong@126.com

4 Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University,
Guangzhou 510632, China

* Correspondence: dingyu@jnu.edu.cn (Y.D.); wuqp203@163.com (Q.W.); Tel.: +86-020-87688132 (Q.W.)
† These authors contributed equally to this work.

Abstract: Antibiotic resistance in bacteria has become a major global health problem. One of the
main reservoirs of antibiotic resistance genes is the human gut microbiota. To characterise these
genes, a metagenomic approach was used. In this study, a comprehensive antibiotic resistome catalog
was established using fecal samples from 246 healthy individuals from world’s longevity township
in Jiaoling, China. In total, 606 antibiotic resistance genes were detected. Our results indicated that
antibiotic resistance genes in the human gut microbiota accumulate and become more complex with
age as older groups harbour the highest abundance of these genes. Tetracycline resistance gene
type tetQ was the most abundant group of antibiotic resistance genes in gut microbiota, and the
main carrier of antibiotic resistance genes was Bacteroides. Antibiotic efflux, inactivation, and target
alteration were found to be the dominant antimicrobial resistance mechanisms. This research may
help to establish a comprehensive antibiotic resistance catalog that includes extremely long-lived
healthy people such as centenarians, and may provide potential recommendations for controlling the
use of antibiotics.

Keywords: metagenomics; gut microbiota; antibiotic resistance genes; longevity people;
cumulative effect

1. Introduction

Since the discovery of penicillin in 1929 [1], antibiotic resistance in bacteria has become an
increasing threat to human health and a global health problem [2]. The emergence of antibiotic-
resistant pathogens such as the New Delhi metallo-β-lactamase superbug [3], the carbapenem-
resistant Klebsiella pneumoniae [4], multidrug-resistant Mycobacterium tuberculosis [5], and
methicillin-resistant Staphylococcus aureus (MRSA) [6] has presented a major impact on
human health. It is generally believed that the emergence and rapid spread of antibi-
otic resistance in the microbiota can be mainly attributed to the abuse of antibiotics by
humans [7].

Antibiotics can have several effects on the human gut microbiota, which is a complex
and dynamic equilibrium ecosystem [8]. When exposed to antibiotics, the microbiota not
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only responds through its own resistance mechanisms, but also optimises and spreads
antibiotic resistance genes (ARG) through transformation, transfer, and recombination,
and forms a colony with antibiotic resistance phenotype [9]. This antibiotic-induced
disruption of microbiota may cause various diseases such as diabetes [10–12], neurological
disorders [13], obesity [14,15], inflammation [16], and infections [17]. The human gut
microbiota is considered to be the reservoir of ARG [18], which can quickly and easily
exchange these genes to spread drug resistance [19]. This presents a high risk of increased
antibiotic resistance in human pathogens [20], which has become a serious global public
health problem as it renders previously reliable antibiotics ineffective.

Different methods have been used to characterise ARG in human gut microbiota,
including isolation of antibiotic-resistant strains [21], polymerase chain reaction (PCR)
based on specific primers, high-throughput quantitative PCR (qPCR) [22], microarray
analysis [23] and metagenomics [24–27]. At present, metagenomic analysis based on high-
throughput sequencing is commonly used in studying ARG due to its high efficiency and
excellent characteristics [28,29]. Just as the human microbiome can constitute a mobile
ARG reservoir, pathogens can use these genes to obtain antibiotic resistance through
gene transfer [30]. Reference databases such as the Antibiotic Resistance Genes Database
(ARDB) [31] and the Comprehensive Antibiotic Resistance Database (CARD) [32] have
been developed to help researchers investigate ARG, such as those in the intestinal flora of
Chinese, Danish, and Spanish populations. The difference in antibiotic resistance can be
attributed to the different use and selection pressure of antibiotics in different countries [33].
However, the characteristics of ARG over time has not been clearly characterized. In
particular, the relationship between the ARG in gut microbiota of longevity people and age
remains unknown.

To address this problem, we analysed the ARG in the gut microbiota of 246 individuals
from the world’s longevity township Jiaoling in China. Our results indicated that ARG
in the human gut microbiota accumulate and become more complex with age given that
older groups harbour the highest abundance of these genes. Bacteroides was found to be
the main carrier of ARG in the human gut microbiota, of which tetracycline antibiotics
resistance gene type tetQ was the most abundant group. Antibiotic efflux, inactivation, and
target alteration were the dominant resistance mechanisms. This study will help establish
a comprehensive list of antibiotic resistance in healthy and long-lived people, and provide
a useful reference for the management of human ARG.

2. Materials and Methods
2.1. Study Cohort and Sample Collection

The overall research objective of the Jiaoling (world’s longevity township, Jiaoling
County, Meizhou City, Guangdong Province, China) cohort is to study how ARG in the
gut microbiota changes with age and how this affects health. The study was approved
by the Ethics Committee of The First Affiliated Hospital/School of Clinical Medicine of
Guangdong Pharmaceutical University.

From this cohort, 246 participants were randomly recruited from eight towns in June
2019. Participants must meet the following conditions: (1) born in Jiaoling; (2) have lived
in Jiaoling for five consecutive years since the time of sampling; and (3) all age groups. All
selected participants signed an informed consent form before the physical examination
and biological material collection. To proceed to the metagenomic study, additional criteria
were employed: (1) has fecal samples; (2) did not undergo antibiotic treatment within one
month before the biological material was collected; and (3) no severe disease (diabetes,
cancer, etc.). All participants met these requirements. Fecal samples were freshly collected
from each subject and immediately frozen at −20 ◦C, transported to the laboratory on an
ice pack, and stored at −80 ◦C until analysis.
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2.2. DNA Extraction

Genomic DNA was extracted according to the manufacturer’s instructions (Magen,
Stool DNA Kit, Guangzhou Magen Biotechnology Co., Ltd., Guangzhou, China) with some
modification. Briefly, 1 mL of STL buffer was added to a 0.25–1 g sample and vortexed
with glass beads for 15–20 min. It was then centrifuged at 12,000× g for 20 min, and
the supernatant was transferred to a new 2-mL tube. In addition, 160 µL PS buffer and
160 µL absorbent solution were added. After centrifugation at 12,000× g for 10 min, the
supernatant was transferred to a new 2-mL tube, and 650 µL GDP buffer was added. The
column was used to filter the product, and then the product followed by DNA elution with
200 µL of sterile water.

2.3. Metagenomic Sequencing and Data Quality Control

The samples were sequenced using an Illumina HiSeq PE150 platform (Beijing Novo-
gene Technology Co., Ltd., Beijing, China). The following standards were used for quality
control: (1) reads were removed that contained low-quality bases (quality value ≤ 38)
exceeding a certain percentage (default is 40 bp); (2) N bases were removed to reach a
certain proportion of reads (default is 10 bp); (3) reads were removed whose overlap with
the adapter exceeded a certain threshold (default is 15 bp); (4) if the sample had human
contamination, it was compared with the human sequence to filter out the possible source
of the human reads [34–36]. Bowtie2 software was used by default.

2.4. Metagenomic Assembly

After preprocessing, clean data were obtained and SOAPdenovo software [9] was
used for assembly analysis. For the single sample assembly, parameters were: -d 1, -M 3, -R,
-u, -F [37–39]. The assembled Scaffolds were broken from the N junction to obtain sequence
fragments without N, called Scaftigs (i.e., continuous sequences within scaffolds) [40].
Bowtie2 software was used to compare the Clean Data after quality control of each sample
to the assembled Scaftigs of each sample to acquire unused PE reads. The unused reads of
each sample were then put together, and K-mer = 55 was selected for mixed assembly [41].
For Scaftigs generated by single sample and mixed assembly, fragments below 500 bp were
filtered out [42–44].

2.5. Gene Catalog Construction

Starting from each sample- and mixed-assembled Scaftigs, MetaGeneMark was used
for ORF (Open Reading Frame) prediction [45–47]. For the ORF prediction results of
each sample and hybrid assembly, CD-HIT software was used for de-redundancy to
obtain a non-redundant initial gene catalogue [48,49]. The clean data of each sample were
compared to the initial gene catalogue using Bowtie2, and the number of reads on the
gene comparison was calculated in each sample. The genes that support the number of
reads ≤ 2 in each sample were filtered out, and the gene catalogue (unigenes) was obtained
for subsequent analysis.

2.6. Species Annotation

(1) DIAMOND [50] software (V0.9.9, https://github.com/bbuchfink/diamond/) (ac-
cessed on 17 November 2020) was used to blast the unigenes to the sequences of Bacteria
which are all extracted from the NR database (Version: 2018-01-02, https://www.ncbi.
nlm.nih.gov/) (accessed on 17 November 2020) of NCBI. (2) The LCA algorithm which
was applied to system classification of MEGAN [51] software was taken to make sure the
species annotation information of sequences. (3) The table containing the number of genes
and the abundance information of each sample in each taxonomy hierarchy (kingdom,
phylum, class, order, family, genus, species) were obtained based on the LCA annotation
result and the gene abundance table.

https://github.com/bbuchfink/diamond/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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2.7. Analysis of Antibiotic Resistance Genes

The core component of the CARD database is Antibiotic Resistance Ontology (ARO),
which integrates information such as sequence, antibiotic resistance, mechanism of action,
and associations between AROs, and provides online interfaces between ARO and PDB,
NCBI and other databases [52]. The basic steps of resistance gene annotation were as fol-
lows: (1) Resistance Gene Identifier software (RGI has built-in blastp, and uses the bitscore
value to compare the results to score [53]) was used to compare unigenes; (2) Starting from
the abundance of ARO, an abundance bar graph display, an abundance cluster heat map
display, an abundance distribution circle graph display, and resistance gene species attribu-
tion analysis (annotate to unigenes of ARO) were performed. For part of the ARO with a
long name, the first three words and an underscore were used to display the abbreviation.
Finally, there were a total of 5,364,988 ORFs after the original de-redundancy, 3096 genes
were compared to the CARD database, and a total of 606 types of ARO were included.

2.8. Statistical Analysis

Statistical analysis was implemented using the R platform and SPSS 16.0 software
(SPSS Inc., Chicago, IL, USA). The “ggplot2” package and GraphPad Prism 8 software
(GraphPad Software Inc., San Diego, CA, USA) were used to visualize. SOAPdenovo
software [9] was used for assembly analysis. DIAMOND software [50] was used to blast.
MEGAN software [51] was used to make sure the species annotation information of
sequences. The Wilcoxon rank-sum test was used to evaluate the significance of differences
in six groups. * for p < 0.05; ** for p < 0.01; *** for p < 0.001.

3. Results
3.1. Abundance of Antibiotic Resistance Genes Is an Age-Related Cumulative Effect

We established 5.36 million human gut microbiota genes from the sequencing data of
246 individuals. The subjects were divided into six age groups, Y20 group (0–20 years old),
Y40 group (21–40 years old), Y60 group (41–60 years old), Y80 group (61–80 years old),
Y100 group (81–100 years old), Y120 group (100–120 years old). Of these, 3096 unique ARG
were found after the original de-redundancy. These genes account for 0.057% of the total
genes of the human gut microbiota. This is higher than the 0.026% reported in the previous
literature in 2013 [33]. Similarly, compared with other natural environments (including soil,
ocean, lake, etc.), antibiotic resistance genes are obviously very abundant in the human gut
microbiota [33].

To compare the ARG abundances of different age groups, we calculated the number
of ARG in each group based on sequencing coverage. The number of resistance genes in
the older group (Y100) was significantly higher than that in the younger groups (Y20, Y40
and Y60; Figure 1). There is no difference between Y20–Y60 and that, from Y100, Y120, the
number decreased (Figure 1). Our results indicate that ARG in the human gut microbiota
accumulate and become more complex with age, with older groups harbouring the highest
abundance of these genes.

3.2. Representative Resistance Gene Types in Different Age Groups

The top twenty most abundant antibiotic resistance gene types varied among the
different age groups (Figure S1) with the exception of tetQ, which was the most abundant
type in all groups (Figure 2a). Previous literature has shown that the prevalence of the
tetQ gene in Bacteroides isolates has nearly tripled [54]. The mechanism of tetracycline
resistance gene type tetQ is antibiotic target protection, and tetQ belongs to the gene
family of tetracycline-resistant ribosomal protection proteins (Table 1). The second most
abundant gene type was the fluoroquinolone and tetracycline (FT) resistance gene type
adeF (Figure 2a). It operates through antibiotic efflux and belong to the gene family of
resistance–nodulation–cell division (RND) efflux pumps (Table 1). ermF and ermB were
the third and fourth most abundant the gene types, respectively (Figure 2a). They are
macrolide–lincosamide–streptogramin B (MLS) resistance genes that alter the antibiotic
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target and belong to gene family of erm 23S ribosomal RNA methyltransferases (Table 1).
We found that the mechanisms of ARG in Proteobacteria, Firmicutes, and Bacteroidetes are
mainly antibiotic efflux, inactivation, and target alteration. Antibiotic efflux is mainly
present in Proteobacteria, while antibiotic inactivation and target alteration mainly occur in
Firmicutes (Figure S2).
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In the different age groups, different representative resistance gene types were ob-
served (Figure 2b). aph3−Ib, ermB, tet41, ermX, efrB, aph3−IIc, sul2, oxa−85, aadA5, dfrA17,
sul1, mel, mphA, aac3−IIa, and Mrx resistance gene types have the highest abundance in the
Y20 group. Meanwhile, adeF, tetBP, cmy−19, dfrF, and ant4−IIa resistance gene types were
the most abundant in the Y40, Y60, and Y80 groups. In the Y100 group, aac6−Ie−aph2−Ia,
sul3, dfrA12, qacH, cmlA6, aadA3, qnrS1, vgaC, ermF, tetW, and floR were found to have
the highest abundance. Lastly, mdtO and pedo−1 resistance gene types have the highest
abundance in the Y120 group. Other categories of drugs and resistance mechanisms were
listed in Supplementary Table S1.
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Table 1. Top 20 antibiotic resistance genes in the gut microbiota.

ARO Name Drug Class Resistance Mechanism AMR Gene Family

tetQ tetracycline antibiotic antibiotic target protection tetracycline-resistant ribosomal
protection protein

adeF fluoroquinolone antibiotic;
tetracycline antibiotic antibiotic efflux Resistance–nodulation–cell division

RND antibiotic efflux pump

ermF macrolide antibiotic; lincosamide
antibiotic; streptogramin antibiotic antibiotic target alteration erm 23S ribosomal RNA

methyltransferase

ermB macrolide antibiotic; lincosamide
antibiotic; streptogramin antibiotic antibiotic target alteration erm 23S ribosomal RNA

methyltransferase

tetW/N/W tetracycline antibiotic antibiotic target protection tetracycline-resistant ribosomal
protection protein

tetW tetracycline antibiotic antibiotic target protection tetracycline-resistant ribosomal
protection protein

sul2 sulfonamide antibiotic; sulfone
antibiotic antibiotic target replacement sulfonamide resistant sul

cfxA3 cephamycin antibiotic inactivation cfxA beta-lactamase

aph3-Ib aminoglycoside antibiotic antibiotic inactivation aph3

cfxA6 cephamycin antibiotic inactivation cfxA beta-lactamase

aac6-Ie-aph2-Ia aminoglycoside antibiotic antibiotic inactivation aph2; aac6

tetX glycylcycline; tetracycline antibiotic antibiotic inactivation tetracycline inactivation enzyme

dfrF diaminopyrimidine antibiotic antibiotic target replacement trimethoprim resistant dihydrofolate
reductase dfr

ermG macrolide antibiotic; lincosamide
antibiotic; streptogramin antibiotic antibiotic target alteration erm 23S ribosomal RNA

methyltransferase

mdtO nucleoside antibiotic; acridine dye antibiotic efflux major facilitator superfamily MFS
antibiotic efflux pump

ermX macrolide antibiotic; lincosamide
antibiotic; streptogramin antibiotic antibiotic target alteration erm 23S ribosomal RNA

methyltransferase

efrB
macrolide antibiotic;

fluoroquinolone antibiotic;
rifamycin antibiotic

antibiotic efflux ATP-binding cassette ABC antibiotic
efflux pump

mdtP nucleoside antibiotic; acridine dye antibiotic efflux major facilitator superfamily MFS
antibiotic efflux pump

oxa-85 cephalosporin; penam antibiotic inactivation oxa beta-lactamase

tem-1 monobactam; cephalosporin;
penam; penem antibiotic inactivation tem beta-lactamase

3.3. Representative Types of Antibiotics in Different Age Groups

We mapped each resistance gene type to its corresponding antibiotic, and calculated
the sum of the relative abundances of antibiotic types (Figure 3). The results showed that
tetracycline, MLS, aminoglycoside, FT, and sulfonamide and sulfone (SS) were the top five
ARG types in each of the age groups, with tetracycline being the most abundant (Figure 3,
Figure S3). At the same time, the trend of antibiotics consumption gradually increased with
age. This was observed for antibiotics such as aminoglycoside and aminocoumarin (AA),
fluoroquinolone, cephalosporin, glycylcycline, penam, tetracycline, rifamycin, phenicol,
and triclosan (FCGPTRPT), fosfomycin, and peptide (Figure S3). Abbreviations of antibiotic
types are listed in Supplementary Table S1.
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3.4. Representative Antibiotic Resistance Types of Different Bacterial Genera

To find out which bacterial genera contributed to the ARG reservoir, we performed
an association analysis of ARG and bacterial genera. We found that the most predomi-
nant genus in the gut microbiota was Bacteroides, followed by Firmicutes and Proteobacteria.
However, Firmicutes was the main carrier of antibiotic resistance gene bacteria, followed
by Proteobacteria and Bacteroides (Figure S4). We observed that the distribution of bacteria
rich in resistance genes at the phylum level was different between ARG and gut microbiota
genes. This inconsistency indicates that, compared with other genes, ARG are less likely to
appear in Bacteroides, but more likely to exist in Firmicutes and Proteobacteria. Interestingly,
among the top twenty most abundant antibiotic resistance gene types, Bacteroides was
the main carrier (Figure 4). The top ten contributing bacteria were Bacteroides (28.18%),
Prevotella (10.06%), Faecalibacterium (6.43%), Roseburia (3.58%), Bifidobacterium (1.13%),
Escherichia (0.93%), Phascolarctobacterium (0.66%), Klebsiella (0.31), Fusobacterium (0.28%),
and Pseudomonas (0.03%). Similarly, the main carrier of ARG was Bacteroides (Figure 5).

We then characterised the antibiotic resistance types present in these bacteria. We
observed that abundant antibiotic resistance types in Bacteroides were tetracycline resis-
tance, followed by MLS. Similar to this, tetracycline was also the main antibiotic resis-
tance type in Roseburia, Fusobacterium, and other unclassified bacteria (48.35%). Mean-
while, the main type of antibiotic resistance in Prevotella and Klebsiella was that of fluoro-
quinolone. The main type of antibiotic resistance in Faecalibacterium was MLS, followed
by aminoglycoside. Remarkably, aminoglycoside was the main antibiotic resistance type
in Bifidobacterium, Escherichia, and Shigella and was also widely distributed in Bacteroides,
Faecalibacterium, and Roseburia. Lastly, we found that Phascolarctobacterium, Actinobacillus,
Lelliottia, Capnocytophaga, and Shigella possessed only one type of antibiotic resistance
(Figure 5).
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4. Discussion

In this study, we characterised the reservoir of ARG in the human gut microbiota at
the metagenomic level. We found that these genes were widespread in the microbiota and
were more abundant and diverse in older (Y100 groups) individuals than in younger (Y20
and Y40 groups) ones. Bacteroides was revealed to be the main carrier of ARG, of which tetQ
genes were the most abundant group. Antibiotic efflux, inactivation, and target alteration
were the dominant mechanisms of resistance.

The detection of a large number of antibiotic resistance genes in the human gut
microbiota has a technical reason that we cannot ignore. Due to the rapid development of
high-throughput technology, which allows resistance genes that could not be sequenced on
plasmids to be sequenced. The rapid change of bioinformatics analysis technology and the
improvement of resistance gene database have made the resistance genes that were missed
on the plasmids fully excavated. Therefore, the plasmid borne genes may have made a
greater contribution.

The problem of microbial resistance to antibiotics can be attributed to several factors.
It is an accepted fact that antibiotic abuse is the main reason for the development of resis-
tance [55–57]. The difference in ARGs among the different age groups may be explained by
the different selection pressures of antibiotics [58]. Based on previous studies, there is a
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direct correlation between antibiotic use and degree of resistance [59]. Antibiotic treatment
disturbs the balance between the human host and its different microbes, leading to the
emergence of antibiotic-resistant strains and related diseases [60,61]. In China, the abuse of
antibiotics and the resulting problems of resistance are very serious. It is estimated that
approximately 75% of seasonal flu patients take antibiotics [62]. In addition, compared
with other countries, China has the fastest growth rate of resistance and the highest number
and types of ARG [63,64]. It can be inferred that, due to the relatively weak supervision of
antibiotics in China in the past few decades, antibiotics have been used in large quantities
from childhood and accumulated over the life course. This may partly explain why the
gut microbiota of the elderly in China have the largest number of ARG, although there are
several other issues that need to be explored and traced, including how these resistance
genes are human-related are acquired and spread.

Another contributing factor to the development of resistance are human-related activi-
ties, which may also explain how genes are acquired and spread. Antibiotics are widely
used in activities such as livestock, agriculture, and aquaculture. Due to the increased
demand for protein products, antibiotic use in livestock has increased significantly [65].
The persistent use of antibiotics in these contexts will increase the selective pressure for
antibiotic resistance and the emergence of antibiotic-resistant strains, in which significant
genetic exchange and recombination can occur and be easily transmitted to humans [66–68].
Bacteria from food, farm animals, and human clinical isolates can acquire antibiotic resis-
tance through horizontal gene transfer [69], that is, antibiotic-resistant bacteria and ARG
can be transmitted from animals to humans through various channels such as the food
chain [70,71]. Forslund et al. demonstrated that the long-term use of antibiotics in livestock
is a decisive factor for the high abundance of the ARG in the human gut microbiota [72].

The environment is also an important factor. As a variety of microorganisms are
present in the environment, humans may interact with these microorganisms harbouring
ARG directly or indirectly [73]. Antibiotics are not completely metabolized in the human
body and may escape degradation and be excreted via urine and feces [74]. Since traditional
wastewater treatment plants are not specifically designed to remove antibiotics, they are
then discharged directly into the environment [75,76]. In addition, applying manure and
sludge as fertilizer to soil, coupled with reclaimed water for irrigation, can promote the
spread of antibiotics and ARG in the soil. Indeed, it has been shown that most of the
ARG and genetic elements found in clinical isolates were also isolated in samples collected
from wastewater [77,78]. Soil [79], sewage [80], and even air dust [81] may be important
reservoirs involved in the spread of ARG. This suggests that the environment is a huge
reservoir involved in the spread of ARG [82].

Finally, it should be noted that the problem of antibiotic resistance is not only due
to external factors such as antibiotic abuse, but also internal mechanisms of bacteria that
can cause antibiotics resistance—for example, enzymatic inhibition of antibiotic molecules,
where bacteria can detoxify antibiotics by producing enzymes that can add specific chemi-
cal functional groups or destroy drugs through hydrolysis. Aminoglycoside-modifying
enzymes can acetylate, phosphorylate, or adenylate aminoglycoside antibiotics so that they
are unable to bind to bacterial ribosomal target sites [83]. Decreased antibiotic penetration
can also occur [84]. For instance, a decrease in the number of porins can change the selec-
tivity of the porin channel and limit drug uptake [85]. Efflux pumps are also an efficient
antibiotic resistance mechanism as they actively remove antibiotics from the inside of the
cell [86]. Lastly, target site modification can change the structure of the target such as the
penicillin binding protein in the case of MRSA [87].

Together, these findings suggest that, in the human gut microbiota, the abundance
of ARG is an age-related cumulative effect and different gene types are predominant in
differently aged individuals. Several factors contribute to the development of ARG in the
human gut microbiota; however, the extent to which these genes are affected by the factors
needs to be further studied. Transformation of these factors may work synergistically with
other factors, such as age, physical sex, and eating habits. Future research should seek to
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clarify the key role of hosts, carriers, and vectors in the transmission chain and determine
the mechanisms that promote the spread of ARG between humans, the environment,
and bacteria.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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The box chart represents the distribution of a certain type of antibiotic resistance in the different
age groups. Figure S4: Comparison of the distribution of the human gut ARG (inner cycle) and the
microbiome gene set (outer cycle) at the bacterial phylum level. The ratios of genes (>1%) assigned to
each phylum are shown in the pie charts. Table S1: Categories of drugs and resistance mechanisms.
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