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A B S T R A C T

Cryo-electron microscopy (cryo-EM) has produced a number of structural models of the SARS-CoV-2 spike,
already prompting biomedical outcomes. However, these reported models and their associated electrostatic po-
tential maps represent an unknown admixture of conformations stemming from the underlying energy landscape
of the spike protein. As with any protein, some of the spike's conformational motions are expected to be bio-
physically relevant, but cannot be interpreted only by static models. Using experimental cryo-EM images, we
present the energy landscape of the glycosylated spike protein, and identify the diversity of low-energy confor-
mations in the vicinity of its open (so called 1RBD-up) state. The resulting atomic refinement reveal global and
local molecular rearrangements that cannot be inferred from an average 1RBD-up cryo-EM model. Here we report
varied degrees of “openness” in global conformations of the 1RBD-up state, not revealed in the single-model
interpretations of the density maps, together with conformations that overlap with the reported models. We
discover how the glycan shield contributes to the stability of these low-energy conformations. Five out of six
binding sites we analyzed, including those for engaging ACE2, therapeutic mini-proteins, linoleic acid, two
different kinds of antibodies, switch conformations between their known apo- and holo-conformations, even when
the global spike conformation is 1RBD-up. This apo-to-holo switching is reminiscent of a conformational pre-
equilibrium. We found only one binding site, namely that of AB-C135 remains in apo state within all the sampled
free energy-minimizing models, suggesting an induced fit mechanism for the docking of this antibody to the spike.
1. Introduction

Intensive research, primarily by cryo-Electron Microscopy (cryo-EM)
techniques, has established that the spike protein plays a critical role in the
process of infection by the coronaviruses (Walls et al., 2020; Lan et al.,
2020). The average ‘apo’ (ligand-free) and ‘holo’ (ligand-bound) confor-
mations assumed by the spike protein are now known to near-atomic res-
olution (Walls et al., 2020; Wrapp et al., 2020; Benton et al., 2020). It is
recognized that the spike protein exhibits structural variability (Walls et al.,
2020; Cai et al., 2020). However, access to an experimentally determined
conformational path between the apo- and holo-end states would substan-
tially elucidate the thermally accessible functionally relevant conforma-
tional motions of the spike protein (Dashti et al., 2020; Ourmazd, 2019).
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binding the cell surface receptors, and ending at the most probable
conformations on the holo state. Here, we focus on extracting a
multi-model representation of only the apo-like spike conformations
from a cryo-EM dataset (EMD-21375), and draw inferences on the
plausible binding mechanisms of these conformations. The apo ensemble
models reveal spike-ligand interactions that are obscure to a single
structure interpretation, reported as PDB: 6VSB, or even
microsecond-long brute force molecular dynamics (MD) simulations of
this apo-state model, therefore, stressing the importance of data-guided
modelling.

The Receptor Binding Domain (RBD) of the apo spike protein exists
primarily in two conformations. These “down” and “up” states occur with
nearly equal probability (Walls et al., 2020; Wrapp et al., 2020). In the
down state, the ACE2 binding pocket is closed, rendering membrane
fusion essentially unfeasible. The nature of the pathway between the
down and the up states of the RBD, and the transition rate between a
hidden and an accessible ACE2 binding pocket are of central importance
for understanding SARS-CoV2's ability to hide vulnerable epitopes from
the host's immune system (Lan et al., 2020). Several studies have
employed MD simulations to investigate the transitions between these
states, which uses static cryo-EM structures to characterize each endpoint
(Casalino et al., 2020; Gur et al., 2020; Fallon et al., 2020; Moreira et al.,
2020; Zimmerman et al., 2021; Pavlova et al., 2021a, 2021b; Acharya
et al., 2021). However, a single cryo-EM map represents an ensemble of
thermally accessible conformations, and not just one structure (Ourmazd,
2019; Shekhar et al., 2021; Giraldo-Barreto et al., 2021). Therefore, MD
simulations that are starting from the best map-fitted model, and
attempting to encompass the up-to-down transition, are expected to
overcome their initial-model bias and capture at least the endpoint en-
sembles accurately. Enhanced sampling simulations overcome such
conformational bias (Singharoy et al., 2016) but are computationally
cumbersome. Yet in the absence of any benchmark, it is difficult to judge
how well do the MD or enhanced sampling simulations perform towards
visiting all plausible conformations underlying a reconstructed 3D den-
sity. So, complementing the body of available studies on spike confor-
mations (Casalino et al., 2020; Gur et al., 2020; Fallon et al., 2020;
Moreira et al., 2020; Zimmerman et al., 2021; Pavlova et al., 2021a,
2021b; Acharya et al., 2021), here, we seek a joint
experimental-computational measure of conformational diversity of the
endpoint ‘up-only ensemble’, and whether such diversity can be accu-
rately modeled by brute force MD simulations.

By combining cryo-EM data analysis and all-atomMD simulations, we
determine a collection of low-energy conformations pertaining to the up
state of the RBD. Our results show that in this apo-state, the spike protein
assumes a heterogeneous ensemble of nearly isoenergetic conformations.
The structural difference between an ensemble model of the up vs. the
down conformations is amplified relative those seen between the average
up and down models in standard cryo-EM analyses (Walls et al., 2020;
Wrapp et al., 2020). The local movements have a dramatic effect on key
binding sites, offering fresh insights into how molecular recognition oc-
curs at the spike's ACE2, linoleic acid, antibodies-binding domains.

Second-scale all-atom MD simulations have been performed using a
distributed computing platform (Zimmerman et al., 2021) and offer new
insights on the accessibility of cryptic epitopes in the up vs. down states
of the RBD. Recently, a coarse-grained model of the entire SARS-CoV-2
virion has been produced (Yu et al., 2021). This work not only pro-
vides insights into the coupled behavior of the virion's structural pro-
teins, but also outlines a methodology for incorporating statistics from
all-atom MD simulations to increase the fidelity of large-scale coarse--
grained models. Now, our integrative modelling reveals unique confor-
mations in RBD binding sites not seen in the reported apo-up structures as
well as microsecond-long MD simulations. Our approach also offers a
protocol for future work on characterizing the most probable up to down
transitions of the RBD, by simply reprocessing the existing cryo-EM
datasets.
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2. Results

We determine an energy landscape of the spike protein in a reduced
space derived from experimental cryo-EM snapshots, and reconstruct 3D
density of low-energy conformations on this landscape in the vicinity of
the up state. MD simulations are then employed to interpret the density
information in all-atoms detail. Finally, we present the global and local
conformations of the up-state of the apo spike protein, focusing on the
conformational heterogeneity of key binding pockets.

3. Conformational coordinates, energy landscape, and molecular
rearrangements

We use geometric machine-learning (ManifoldEM) (Dashti et al.,
2021) to extract the manifold of conformational motions from cryo-EM
images. This manifold is spanned by a set of orthogonal conformational
coordinates (CC) (Dashti et al., 2020). To determine the conformational
changes along each coordinate, we compile a 3D movie of the density
maps along each of those coordinates. (Details of the density movie
generation scheme is provided in Methods). Fifty density maps were
extracted along each of the two conformational coordinates. The nominal
resolution of these maps varies from 3.2 to 4.4 Å. Molecular dynamics
flexible fitting or MDFF was employed to construct molecular models
from each of the maps (Trabuco et al., 2008, 2009), translating the
density movies along CC1 and CC2 to molecular movies (Methods and
Supplementary Movies 1 and 2). A string simulation with swarms of
trajectories (Pan et al., 2008) was then performed using the flexibly fitted
models to probe conformational transition pathways connecting the CC1
and CC2 densities (see Methods).

By construction of the conformational coordinates (Dashti et al.,
2020), the motions observed along CC1 play out in the XY plane, and
motions observed for CC2 evolve along the Z-axis. Movement along CC1
corresponds to a global change in the RBD's center of mass, which de-
forms orthogonal to the spike protein's principal axis. Similarly, motion
along CC2 captures a “projectile-like” motion of the RBD parallel to the
spike protein's principal axis. The functionally relevant conformational
movements, however, involve a combination of CC1 and CC2 along the
minimum-energy path on the conformational landscape (Van Der Vaart
and Karplus, 2007). As detailed in Methods, we infer free-energy changes
from the population of points on the CC1-CC2 conformational plane via
the Boltzmann factor (Fig. 1A) (Dashti et al., 2020). The low energy
conformations on this CC1-CC2 landscape encompasses a ‘horse-shoe’
shaped, essentially iso-energetic tube. Assuming near-equilibrium con-
ditions, the conformational states that are remote to the horse-shoe shape
energy feature are not significantly occupied. We find that comparing
SASA values from MD ensembles derived by fitting a single CC (CC1 or
CC2) with those concomitantly utilizing both CC1 and CC2 (i.e., along
the horse-shoe locations) do not agree at the same CC value (Fig. S8).
Also, the SASA values for the single CC fitting procedure generally do not
span the same range seen for the minimum energy locations. This dif-
ference indicates that the coupled CC1-CC2 pathway described confor-
mations that are distinct from 3D-densities based on single CC1 or CC2.

Previously reported 6VSB (Wrapp et al., 2020) and 6VYB (Walls et al.,
2020) densities resemble ManifoldEM models pertaining to location no.
28 (CC1 21; CC2 31) and its close vicinity on the minimum free energy
structures in Fig. 1A. (See Methods for relating density maps to points on
the energy landscape.) Most of the low-energy models are nearly iso-
energetic, and thus populated with comparable probabilities. The pursuit
of high-resolution structures, however, may preferentially select a subset
of the high probability conformations present (Ourmazd, 2019). Key
spike functions (e.g., antibody and receptor binding or epitope signaling)
stem from the entire population of the low-energy structures. The
conformational heterogeneity associated with the states in this
horse-shoe shaped reaction tube highlights the range of global and local
conformations often subsumed by single-model representations, which
ignore the underlying conformational energy landscapes.



Fig. 1. (A) The energy landscape of the SARS-CoV-2 Spike Protein spanned by two conformational coordinates. In this study, each continuous conformational degree
of freedom is approximated by a spectrum of 50 states. A conformational coordinate consists of a space of 50 binned electrostatic potential maps defining confor-
mational changes in the space of these maps. The low-energy locations are traced with a white line representing the 59 independent points on the landscape, structures
for which are determined using MDFF. (B) Clustered images representing the locations traced above at CC1 ¼ 0 and CC1 ¼ 50, and CC1 ¼ 0 and CC2 ¼ 50. (C)
Structural models with varied degrees of openness at locations on the free energy landscape compared to the deposited model.
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We already observe at the level of density changes, that the confor-
mational spectrum along the horse-shoe profile of the apo up spike
conformation can result in more open (CC1 25 → 31; CC2 28 → 32) and
less open (CC1 17→ 20 and CC2 8 → 12) apo conformations (Figs. 2–3).
These conformations are as probable as those reported in the PDB-like
model in location no. 28 (CC1 21; CC2 31) (Walls et al., 2020; Wrapp
et al., 2020). The variation in conformations of the spike protein is only
partially apparent in a comparison between the reported static apo (Walls
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et al., 2020; Wrapp et al., 2020), holo (Cao et al., 2020; Barnes et al.,
2020; Toelzer et al., 2020), and long-time MD simulation models of the
spike (Shaw, 2020). We circumvent the uncertainties in inferring func-
tion from stationary snapshots (6), by compiling density movies
(Fig. 1B–C and Supplementary Movies 1 and 2) along the CC1 and CC2
dimensions to reveal a multi-model or ensemble representation of the
apo spike state.
Fig. 2. Whole RBD Solvent Accessible Surface Area
(SASA) scores calculated for the up RBD (residues 320
to 510). The SASA scores for static structures are
represented by red circles in the far-left panel, the
non-biased equilibrium MD trajectories are repre-
sented by green circles and error bars (31) in the far-
right panel, and finally each MFEP location SASA
scores are represented by blue circles and error bars in
the middle panel. The error bars show 1 standard
deviation from the mean. The red and blue high-
lighted regions are used to compare the spread of
SASA scores of the previously deposited static struc-
tures (red shading) with the range of SASA scores seen
for all MFEP locations (blue shading). (For interpre-
tation of the references to color in this figure legend,
the reader is referred to the Web version of this
article.)



Fig. 3. A pictorial representation of binding pocket RMSDs. The residues involved in binding are used to calculate the RMSD at minimum energy locations 0, 15, 28,
43, and 59 (see Fig. 1) and are shown in a licorice representation. The RMSD values range from 0 to 1 following the color scale at the top of the figure. The structure
6VSB is shown for comparison on the far left. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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4. Global conformational changes along the low energy spike
conformations

A total of 59 points on the horse shoe shaped low energy profile were
refined using a multi-grid MDFF procedure (Vant et al., 2020a; Singharoy
et al., 2019) to gauge the most probable conformational changes of the
spike in an apo-only state. Shown in Supplementary Movie 3, the set of
conformations reveals deviations from the static apo structures at both
ends of the horseshoe-shaped tube. As expected, models stemming from
the cryo-EM data-guided free energy landscape resemble previously
published open state structures 6VSB and 6VYB (Walls et al., 2020;
71
Wrapp et al., 2020), with RMSD ranging from 2.7 to 4.2 Å (Fig. S1). This
agreement is especially close in the lowest-energy region of the profile
(Locations: 20 to 30 in Fig. 1) and is corroborated by comparable
inter-domain distances between the atomic models and those previously
reported (Fig. S2). The magnitude of the sub–1 kcal/mol energy features
in the vicinity of the RBD-up state in previously reportedmetainferencing
model are also comparable to the ones found in our maifoldEM studies
(Brotzakis et al., 2021). The structural attributes determined from the
string simulations remain within error of the ensembles determined
directly from the density data (Fig. S3 and Fig. S4), reaffirming the sta-
tistical validity of the density-guided low energy models.
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Despite these similarities, Fig. 2 shows that, along the low energy
ensemble of spike conformations, the RBD's Solvent Accessible Surface
Area (SASA) scores span the range of values previously assigned to dif-
ferences between open and closed static structures. The non-biased MD
trajectories starting from the apo model span a smaller range of SASA
values than those seen along the horse-shoe landscape, despite using an
800-fold longer simulation time. The up RBD's global conformation is
similar to the open spike structures. However, coupling of the global
conformations to local changes at key antibody or inhibitor pockets is
expected to be significant. This issue is investigated in the next section.

Globally closed or in RBD-down conformation were not observed in
our analysis. The distribution of RBD “all-down”, “1-up”, and “2-up”
conformations varies across studies (Walls et al., 2020; Wrapp et al.,
2020; Henderson et al., 2020). Typically, both the “RBD down” and
“1-up” conformations have been reported to be in equilibrium, as re-
flected in the 2:1 to 1:1 population distribution of the 2D images (Walls
et al., 2020; Wrapp et al., 2020). The lack of RBD-down conformations
reflects the absence of equilibrium between the up and the down states in
the picked particles used to construct the 6VSB structure. This observa-
tion supports the fact that in early SARS-CoV-2 spike protein data (Walls
et al., 2020), the crown of the spike was over stabilized by adding two
stabilizing proline mutations in the C-terminal S2 fusion machinery.

5. Local conformational motions at binding pockets

The starting structure can have a significant impact on the outcome of
computations of ligand protein binding interactions (Robertson et al.,
2019; Vant et al., 2020b). Using the energy-minimizing structures
Fig. 4. Individual binding pocket Solvent Accessible Surface Area (SASA) scores calc
scores for static structures are represented with red circles, non-biased equilibrium M
each MFEP location SASA score is represented with blue circles and error bars. The re
the previously deposited static structures (red shading) with the range of SASA score
C135, the spread of SASA scores seen for all MFEP locations is comparable to those se
color in this figure legend, the reader is referred to the Web version of this article.)
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derived from experimental data, we are able to investigate the impact of
the global conformational changes on individual binding sites. We
choose six previously identified sites: three neutralizing antibodies
(Barnes et al., 2020); linoleic acid (LA) (Toelzer et al., 2020); a compu-
tationally designed neutralizing mini-protein (Cao et al., 2020); and
ACE2 (Benton et al., 2020). By comparing the ManifoldEM derived
structures to apo and holo-structures, we investigate excursions from the
reported models in terms of internal deformations, solvent-accessibility,
and the energetics of the individual binding pockets. We also consider the
impact of two important glycans N165 and N234 on stabilizing the spike
protein complex.

Fig. S5 shows RMSD plots calculated using residues specific to each
binding pocket. Despite the highest similarity to 6VSB at locations 20 to
30 for the global analysis, local variations in RMSD are more pronounced
when the binding pockets are aligned by the residues involved in ligand-
protein interactions. In Fig. 3, we investigate RMSD excursions from the
static structure 6VSB aligned using the entire monomer. The pattern
observed in the global RMSD analysis recurs, whereby location 28 has the
lowest RMSD to 6VSB. However, each binding pocket deviates from
6VSB. The binding pockets for ACE2 and the mini-protein have high
RMSD values at both ends of the horseshoe shaped energy feature, while
the binding pockets for LA, AB-EY6A, and AB-CR3022 maintain similar
RMSD values in all low-energy locations. The binding pocket for AB-
C135 deviates strongly from 6VSB throughout the entire ensemble of
models. This is discussed further below. In the RMSD space, it is difficult
to determine how amenable a site is to binding. However, the LA and AB-
C135 binding sites display large differences in RMSD between the apo
(6VSB) and holo-structures. The LA binding pocket is distinctly more
ulated from only those residues involved in binding. For all six panels, the SASA
D trajectories are represented with green circles and error bars (31), and finally
d and blue highlighted regions are used to compare the spread of SASA scores for
s seen for all MFEP locations (blue shading). For all binding pockets except AB-
en for the static apo and holo structures. (For interpretation of the references to
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apo-like, while the converse is true for the AB-C135 binding pocket. To
avoid uncertainties in interpreting the local RMSD values, we examine
SASA at the local binding-pocket level.

Fig. 4 shows a clear difference in SASA values between apo and holo
binding sites, allowing a direct comparison between the structures we
located using ManifoldEM, and the tight vs. loose binding pocket con-
formations determined from the reported holo and apo models. For five
of the six binding pockets, the low-energy structures along the horse shoe
profile achieve solvent accessibility that spans the range of SASA seen
across the apo “1-up” RBD structures (6VSB, and 6VYB), the “all-down”
RBD structure (6VXX), the holo structure, and 10 μs MD ensembles
(Shaw, 2020). This binding mode encompassing both holo and apo-like
conformations, even prior to the ligand binding, appears to involve a
conformational selection mechanism. As an example, the mini-protein
binding pocket in Fig. 4, at locations 4, 47, 49, and 54, the calculated
SASA scores are commensurate with the holo-structure (PDBID: 7JZU),
while the rest of the locations involve more open structures (higher SASA
scores). This dichotomy suggests that even without the presence of the
mini-protein, the binding pocket is able to adopt a tight binding config-
uration amenable to spike protein neutralization. Interestingly, we
observe a key interaction between the LA binding pocket of the “up” RBD
and the N234 glycan of the same chain (see Fig. 5). At locations 51 to 59,
the N234 glycan on chain A hydrogen bonds with residues 387 (Leu) and
388 (Asn), pulling the binding pocket open, and resulting in the
“super-open” states (compared to apo 6VXX and holo 6ZB4/6ZB5) seen
in Fig. 4 at the same locations. Such enhanced binding pocket opening
also facilitates the binding of AB-EY6A.

The AB-C135 binding pocket has a decidedly more closed confor-
mation (Fig. 4). The hydrophobic residues near the AB-C135 binding
Fig. 5. Glycan conformations and interaction energies for all chains. (A) Shows each c
The glycan chains are shown a red and green surface representation and are labeled
the glycan and the spike protein RBD (residues 330 to 520) for each chain. (For inter
the Web version of this article.)
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pocket and at the surface of 6VSB are buried in our simulations, as
indicated by the lower SASA score calculated for 6VSB (see Fig. S6). This
suggests the binding mechanism involves an induced fit. The AB-C135
binding pocket is a “hidden epitope”, indicating that the closed state
we find is biologically relevant (Cao et al., 2020). The local map reso-
lution surrounding this binding pocket has a lower resolution (see
Fig. S7), decreasing confidence in reported, comparatively more open
conformations. Alternatively, the presence of a closed local pocket in an
overall up or open spike RBD further suggests that AB-C135 binding
entails an induced fit. Indeed, this pocket is found to be also closed in the
recently published MD simulations (Zimmerman et al., 2021). Worth
noting, locations 2 to 8, 25 to 32, 33 to 37 and 46 to 55 also exhibit less
accessible ACE2 binding conformations, possessing SASA values below
both the reported apo and holo structures. However, unlike AB-C135
there exists locations where the ACE2-accessible surface is comparable
to both the apo and holo structures, still allowing a conformational
pre-equilibrium for binding.

So far, we have observed the effect of glycosylation on the LA binding
pocket. Fig. 5B shows that N165 has similar pairwise potential energies
for all three intermolecular interactions between N165 and the RBD of
the counterclockwise chain. The pairwise potential energies for the
intramolecular interaction between N234 and the RBD of the same chain
show large differences in the ability of the glycan either to stabilize or
destabilize the RBD conformation. Both the N234B RBDB and N234C
RBDC pairwise interactions show positive potential energies in many of
the minimum energy locations due to strong van der Waals interactions.
These steric interactions suggest the “down” RBD conformation is
destabilized by the presence of N234, as noted by Amaro and colleagues
(Casalino et al., 2020; Cao et al., 2020), albeit only for their
hain of the spike protein trimer individually colored in a cartoon representation.
accordingly. (B) Shows intramolecular or intermolecular interaction energies of
pretation of the references to color in this figure legend, the reader is referred to
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intermolecular interactions. In contrast, the intramolecular N234A RBDA
interaction is negligible in most of the locations along the horse-shoe
profile, except in the 50 to 59 range of locations. In this region, RBDA
is stabilized by its interactions with N234A, incidentally creating the
“super-open” LA binding pocket that is only observed in the manifoldEM
analysis.

6. Discussion

An equilibrium sample of biological macromolecules is inherently
conformationally heterogeneous, because a range of conformational
states can have significant thermally induced occupancies. Conventional
cryo-EM data analysis techniques align and average snapshots with
similar particle orientations. While this improves contrast in the 2D im-
ages, there is a loss of thermodynamic information. Also, static models
that fit the averaged 3D reconstruction are ill-suited to describing the
system's conformationally dynamical nature. Starting from such static
models, even unbiased MD cannot capture all the low thermally acces-
sible conformational states for a given system due to limited sampling
times. By combining data-driven machine learning and MD computa-
tions, we have extended the conformational search around the one-up
RBD state by making use of experimentally determined energy land-
scapes. This approach has revealed a broad spectrum of hitherto unob-
served iso-energetic conformations associated with RBD binding sites.
Guided by experimental data, the conformational heterogeneity
observed in our modelling which totals 32 ns of MDFF simulations, and
subsequent 400 ns of string simulations, is far greater than what is
accessible to 10 μs of brute-force MD.

The experimentally determined horseshoe shaped energy profile
shows that the simple rigid one-up RBD is inadequate to describe the
complex multi-dimensional conformational motions of the Spike protein.
The concerted motions of the RBD have regional effects, which entail
substantial conformational heterogeneity compared with either the apo
or holo structures alone. Nearly all binding pockets analyzed in this study
indicate conformational selection mechanism, where specific minimum-
energy locations are more or less favorable to binding. The locations with
SASA values higher than those from 6VSB are interpreted as more
amenable to binding, with potential therapeutic implications. The in-
clusion of a broad spectrum of low-energy conformations could poten-
tially offer new drug discovery routes by considering the extensive
conformational flexibility of important binding pockets. By going beyond
static structures fitted to heavily averaged maps, our approach reveals
the flexible nature of biological macromolecules, with possible implica-
tions for novel drugs.

7. Methods

7.1. Cryo-EM data

In this study, we used the cryo-EM images from a previous study
(Wrapp et al., 2020), in which Sars-CoV-2 spike ectodomain residues 1 to
1208 were expressed based on the first reported genome sequence (Wu
et al., 2020), adding two stabilizing proline mutations in the C-terminal
S2 fusion machinery. Excess protein was blotted away for 6 s using grade
595 vitrobot filter paper (Ted Pella Inc.) with a force of �1 at 4 �C in
100% humidity before being plunged frozen into liquid ethane using a
Vitrobot Mark IV (Thermo Fisher).

Cryo-EM grids were prepared using purified fully glycosylated spike
protein. Frozen grids were imaged in a Titan Krios (Thermo Fisher)
equipped with a K3 detector (Gatan). Movies were collected using
Leginon at a magnification of 22,500-fold (Carragher et al., 2000), cor-
responding to a calibrated pixel size of 1.047 Å/pixel. A full description
of sample preparation and data collection parameters can be found in
(Wrapp et al., 2020). Motion correction, CTF-estimation, and
non-templated particle picking were performed in Warp (Tegunov and
Cramer, 2019). There were thousands of images in the 631,920 extracted
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particles which had artifacts e.g., harsh line/boxes. Those images were
removed. The remaining 574,324 were imported to CryoSPARC and
non-uniform refinement was used to get the orientation of each particle.

7.2. Geometric machine learning (ManifoldEM)

The details of our data-analytic approach are available at (Dashti
et al., 2020). In brief, having assigned an orientation to each snapshot, we
divide the snapshots to small orientational bins, which we call projection
directions (PD). In other words, each PD includes the snapshots which are
in closely similar orientations.

We select all the projection directions lying on a great circle around
the orientational sphere. Then in each projection direction, we use
manifold embedding (Dashti et al., 2020) to extract the conformational
manifold. To this end, we use diffusion-map embedding of the snapshots
in each projection direction to determine the conformational manifold.
This family of dimensionality reduction techniques establishes a rigorous
link between the eigenfunctions (more precisely eigenvectors) of the
Laplace–Beltrami operator with respect to a Riemannian metric and the
similarity between snapshots, as measured by the diffusion distance be-
tween them.

In practice, the information content of a cryo-EM snapshot depends
on the defocus at which it is obtained. The effect of such defocus on the
similarity measure between two otherwise identical snapshots must be
eliminated from the diffusion distance. We achieve this by a double-
filtering kernel that ensures a zero Euclidean distance between two
snapshots differing in defocus only. Distances from this Defocus-tolerant
kernel are employed to determine the eigenvectors of the Lap-
lace–Beltrami operator to determine the conformational coordinates.

We use the two topmost conformational coordinates to describe the
conformational manifold If we sort the snapshots along each of these
eigenfunctions. We can compile a movie of the conformational changes
along those eigenfunctions by using Non-Linear Spectral Analysis
(Giannakis and Majda, 2012). Fig. 1 shows the first and last frames of the
movies (Supplementary Movie 1 and 2) along with the two conforma-
tional coordinates. As the movies show, CC1 corresponds to a breathing
like motion, while in CC2, the RBD moves from a down position to up.

Analysis of noisy synthetic data has shown that ManifoldEM correctly
assigns the snapshots with an accuracy of 80%, with accuracy defined as
the ratio of correct assignments to the total number of assigned snap-
shots. This error in occupation probability results in an error in the en-
ergy via the Boltzmann factor A exp –(E/kT), with A stemming from
partition function. Consequently, errors in occupancy are related to er-
rors in energy logarithmically, resulting in an error estimate of ~0.1
kcal/mol for our approach (Dashti et al., 2020).

Integrating the information from all the PDs on a great circle, we
compiled 3D conformational movies of electrostatic potential maps along
each of these conformational coordinates (Supplementary Movie 1 and
2). We have measured the RMSD of MDFF models changing along the
CC1 direction (setting CC2 ¼ 0) and vice versa. We observe that changes
along just the CC2 dimension are more pronounced as reflected in an
RMSD of 5.5 Å between the (0,0) and (0,50) models. The same between
(0,0) and (50,0) reflecting only changes along the CC1 dimension is 2.9
Å. From this analysis it can be inferred that the structural changes in most
of the minimum energy conformations along the horse-shoe shaped
profile are dominated by CC2.

7.3. Map preparation

We compiled 50 maps (.spi) along each conformational coordinate.
The maps along each conformational coordinate were then converted
from. Spi format to. mtz format with Chimera (Pettersen et al., 2004).
The. mtz maps were then converted to potentials thresholding the maps
at the solvent density peak by utilizing the voltools pot command, which
is part of the Voltools Plugin within VMD (Humphrey et al., 1996). These
potentials were used to guide the spike protein trimer's dynamics. The
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maps were thresholded again where the RBD density was weak to in-
crease the magnitude of the potential map gradients for the RBD.

7.4. Molecular dynamics simulations

We used the fully glycosylated 6VSB model from the CHARMM-GUI
Archive - COVID-19 Proteins Library (Woo et al., 2020). The models
were stripped of all water molecules with the molecular visualization
program VMD (Humphrey et al., 1996). All simulations utilized the
generalized Born Implicit Solvent (GBIS) model and Charmm Force Field
(Huang and Mackerell, 2013), with the molecular dynamics engine
NAMD 2.14b1 (Phillips et al., 2020). The simulation parameters are
provided in the supplementary NAMD input file.

7.5. Molecular dynamics flexible fitting

MDFF was used to bias simulations and fit atomic models to the
extracted conformational coordinates (Trabuco et al., 2008, 2009).
Noting the medium resolution of our experimental maps, only the
backbone of the models was coupled to the density, with the conforma-
tions of the remainder of the system (sidechains and glycans) responding
to the MD force fields. To ensure that the protein backbone conforms to
the density, we constrained the protein by knowledge of its secondary
structure, chirality, and cis-peptides; while the less resolved sidechains
and glycans continued to refine under the chemical constraints (bonds,
angles, dihedrals, and non-bonded interactions) imposed by the
CHARMM36m force fields.

7.6. Conformational coordinate fitting

To obtain references for the fitting atomic models on the extracted
energy landscape, atomic models were fitted to each map for both
conformational coordinates. Simulations were biased with two map po-
tentials coupling the singular threshold maps to all backbone atoms
except chain A residues 320 to 520, and the doubly thresholded maps
were coupled to the backbone atoms chain A and residues 320 to 520.
The fitting process occurred in two steps starting from the same starting
structure following the cascade-MDFF procedure (Singharoy et al.,
2016). The blurred maps were created with the command voltools
smooth in the VMD Voltools Plugin. The first step utilized a 2 Å Gaussian
blurred potential map, while the second step used maps at their original
resolution of the maps.

7.7. Flexible fitting

A movie of molecular motions was compiled along the low energy
segment of the energy landscape using a so-called “multigrid” fitting
procedure (Vant et al., 2020a; Singharoy et al., 2019). This procedure
enables the construction of atomic models under the influence of two or
more density maps. The multigrid procedure is employed withinMDFF to
enable the fitting of the XY-dimension of the spike protein backbone
under the influence of the CC1 maps, while Z-dimensions of these atoms
conform to the CC2 maps. A cascade-MDFF protocol was employed
(Singharoy et al., 2016) in two steps. First, the structure was fitted to
maps with a 2 Å Gaussian blur and then fitted to the original maps
coming from the ManifoldEM analysis. The convergence of the fitted
structures in terms of RMSD is shown in Fig. S9.

First the 6VSBmodel was individually fitted to all 50 maps along CC1,
setting CC2 to 0, and vice-versa. This procedure created 100 single-map
fitted models. To concomitantly fit two maps at any (CC1, CC2) location,
that starting model is chosen from (CC1, 0) when CC1 > CC2, or from (0,
CC2) if CC2 > CC1. So, to model the location (Pavlova et al., 2021b; Cao
et al., 2020), the (0,30) model will be used as a starting point. Fig. S10
shows the comparison between the CC1-only, CC2-only and 2-map fitted
structures in terms of radius of gyration. For each 50 locations along CC1
(setting CC2 ¼ 0) and CC2 (setting CC1 ¼ 0), and 59 locations along the
75
horse-shoe profile, 200 ps of MDFF is performed. So, a total of (50 þ 50
þ 59) x 200 ps ¼ 31.8 ns of flexible fitting simulations are performed.

7.8. String simulations

To corroborate the statistical relevance of the minimum energy lo-
cations derived from themultigrid fitting procedure, we choose to use the
string method with swarms of trajectories (Pan et al., 2008) and monitor
the deviation of the converged string method derived pathway and the
ManifoldEM generated low energy models. Starting with an initial path
made of Mþ1 images (M ¼ 10) connecting low energy location 1 to 59
(see Fig. 1) 100 iterations of the string method were performed using 10
replica per image, 20 ps of sampling of biased MD to update the pathway
and 20 ps of unbiased MD from which the drift of the pathway is
calculated, totaling 400 ns of sampling. The pathway was defined in the
space of 8 distance vector reaction coordinates where the distances of 4
regions of the up RBD are calculated from both endpoints of the mini-
mum free energy pathway or MFEP.

Fig. S11 shows the convergence of the string pathway in terms of
RMSD from each images starting position. The string images are well
converged by iteration 80. Furthermore, we can look at the arc length of
the pathway defined in the collective variable space to ensure that the
string pathway has converged. From Fig. S12 we see again that the string
pathway has converged by iteration 80. We also see that there is a modest
6% change in total arc length. Indicating that the ManifoldEM pathway
and string method pathway are similar. Lastly, we can compare the Rg
values from the ManifoldEM fitted models and the string method
pathway to determine the deviation between the two pathways. Fig. S4
shows the Rg values calculated for both pathways in the XY and Z di-
mensions. While the deviation of the string method pathway is higher in
the XY plane, the relative change remains below 15%. These simulations
were repeated at room temperature and at 4 �C i.e. at a temperature prior
to plunge freezing. The converged string invoked comparable arch length
between the two temperatures, within 5–10% deviation, and structural
features within 1–2 Å local structural difference at every image
(Fig. S12).

7.9. SASA calculations

We used VMD's measure Plugin to calculate SASA values. The radius
sampled around each atom selected was that atom's radius and an
additional 1.4 Å. The static models used for comparison were built with
VMD using the autopsf Plugin to add H at the physiological pH.
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