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Abstract: Antarctic krill is a potential and attractive resource for consumption. However, most
Antarctic krill meat is used to produce primary products with low commercial value, with few highly
processed products. This study aimed to evaluate and improve the gelling properties of Antarctic
krill surimi, with Pacific white shrimp surimi as control. Compared with Pacific white shrimp surimi,
the lower β-sheet content and protein aggregation degree had a severe impact on the formation of
the gel network of Antarctic krill surimi, which resulted in weaker breaking force, gel strength, and
viscoelasticity (p < 0.05). Moreover, water retention capacity and molecular forces had a positive
effect on the stability of the gel matrix of shrimp surimi. Thus, the high α-helix/β-sheet ratio, weak
intermolecular interactions, and low level of protein network cross-linkage were the main reasons
for the poor quality of Antarctic krill surimi. On this basis, the effects of six polysaccharides on the
texture properties of Antarctic krill surimi were studied. Chitosan, konjac glucomannan, sodium
carboxyl methyl cellulose, and waxy maize starch resulted in no significant improvement in the
texture properties of Antarctic krill surimi (p > 0.05). However, the addition of ι-carrageenan (2%) or
κ-carrageenan (1~2%) is an effective way to improve the texture properties of Antarctic krill surimi
(p < 0.05). These findings will contribute to the development of reconstituted Antarctic krill surimi
products with high nutritional quality and the promotion of deep-processing products of Antarctic
krill meat.

Keywords: Antarctic krill; shrimp surimi; gelation; cross-linkage; polysaccharide

1. Introduction

Antarctic krill is one of the most abundant biomass resources on earth, with an
estimated biomass of about 500 million metric tons [1]. From a nutritional point of view,
Antarctic krill contains 11.9–15.4% protein, which contains all the amino acids the human
body needs. The amount of each essential amino acid is sufficient to meet the FAO/WHO
requirements for adults or infants [2]. The total essential amino acid content of Antarctic
krill was 515.6 mg/g protein, which exceeded 277 (292.6) mg/g protein for the essential
amino acid requirements of adults (infants). In addition, krill total fatty acids are composed
of approximately 50% of polyunsaturated fatty acids (PUFAs) [3]. Therefore, Antarctic
krill is a more attractive resource with more potential for consumption due to its extreme
abundance and high nutritional value [4]. However, relatively rare information is available
on relevant studies of heat-induced Antarctic krill surimi gel.

Shrimp surimi products, as an essential part of processed aquatic food, are widely
welcomed by consumers due to their convenient consumption and high nutrition. In
the market, Pacific white shrimp are often processed into various types of shrimp meat
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products (shrimp balls, shrimp sticks, etc.). Compared with Pacific white shrimp, Antarc-
tic krill not only has outstanding nutritional value [2,3], but also has extremely active
endogenous enzymes, which can make Antarctic krill autolyze rapidly after death [5].
This characteristic of Antarctic krill seriously affects the functional properties of its own
proteins [6]. Shrimp surimi gel is a typical protein gel whose gel property depends on the
shrimp proteins involved [7–9]. Studies have reported that myofibrillar proteins can form a
three-dimensional gel matrix with viscoelastic properties [8]. At low temperature, myosin
(the main component of myofibrillar proteins) dissolves and unfolds in salt, exposing
hydrophobic sites. During heat-induced processes, myosin forms a rigid network due
to intermolecular association and aggregation [7]. In recent years, there have been some
studies on the preparation of shrimp surimi products using Pacific white shrimp as raw
materials [9–11]. However, most Antarctic krill is used to produce animal feed, frozen krill
meat, and other primary products (dried Antarctic krill, Antarctic krill paste, etc.) with low
commercial value, and with few highly processed products [12]; furthermore, there are few
studies on the gel quality of Antarctic krill surimi [3].

Possible solutions to improving the gel properties of Antarctic krill surimi include the
application of proteolytic inhibitors or the addition of other substances (polysaccharides,
salts, enzyme preparations, etc.) [3,5]. At present, polysaccharide–protein composite gel
has been widely used in surimi processing. It has been reported that the meat products
exhibited better gel properties with the addition of sulfate polysaccharide, modified starch,
konjac glucomannan, κ-carrageenan, β-glucan, etc. [13]. Polysaccharides would improve
the gel properties of surimi by providing additional bonding [14]. If this goal were to be
attained, Antarctic krill could be used as the main raw material in developing recombinant
Antarctic krill surimi products with high nutritional quality.

Up to now, there have been no studies on the gelling properties of heat-induced
Antarctic krill surimi gel and the measures to improve its gelation quality. This study
aimed to evaluate the macroscopic quality and gelling properties of Antarctic krill surimi
with Pacific white shrimp surimi as the control group. With this aim, the possibility of
improving the texture characteristics of Antarctic krill surimi by adding polysaccharides
was explored. According to current research, the six selected polysaccharides (chitosan,
konjac glucomannan, sodium carboxyl methyl cellulose, waxy maize starch, ι-carrageenan,
and κ-carrageenan) represent polysaccharides from different sources and cover different
ionic types (such as cationic, neutral, and anionic polysaccharides). These findings will
clarify the gel properties of heat-induced Antarctic krill surimi gel, and provide a reference
point for the in-depth development of Antarctic krill surimi with high nutritional quality.

2. Materials and Methods
2.1. Materials

Frozen Antarctic krill was purchased from Dalian Haiyue Shangpin International
Trade Co., Ltd. (Liaoning, China). Antarctic krill was immediately shelled and washed, and
cold chain transported. Frozen Pacific white shrimp was obtained from Dalian Xinzhilian
Market (Liaoning, China). Antarctic krill and Pacific white shrimp are 4–5 cm and 16–20 cm
in length, respectively. Both krill and shrimp were frozen at −20 ◦C until use but not
longer than 4 months. Before the experiments, frozen samples were thawed at 4 ◦C for
8 h. Chitosan (CS) was purchased from Shandong Aokang Biotechnology Co., Ltd. (Jinan,
China). Konjac glucomannan (KG) and waxy maize starch (WMS) were purchased from
Shanghai Beilian Biotechnology Co., Ltd. (Shanghai, China). Sodium carboxyl methyl
cellulose (CMC-Na) was purchased from Henan Wan Bang Industrial Co. Ltd. (Zhengzhou,
China). ι-Carrageenan (ιCG) and κ-carrageenan (κCG) were purchased from Shanghai
Beilian Biotechnology Co., Ltd. (Shanghai, China). All other chemical reagents (NaCl,
β-Mercaptoethanol, urea, sodium dodecyl sulfate, glycerin, etc.) are of analytical grade.
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2.2. Preparation of Shrimp Surimi Gels

Both krill and shrimp were thawed at 4 ◦C for 8 h before being decapitated, peeled, and
chopped. The shrimp meat (approximately 300 g) was washed three times with cold water
(4 ◦C) and mixed with 3.0% salt (1800 rpm, 2 min, < 10 ◦C) in a cutter. The water content of
shrimp surimi was adjusted to 80% with cold water (4 ◦C), and mincing was performed for
another 3 min. Finally, the shrimp surimi was inserted into plastic tubing with a diameter of
30 mm. A quarter of the shrimp surimi sols were kept in a 4 ◦C refrigerator for subsequent
experiments. Three quarters of the shrimp surimi samples were heated at 40 ◦C for 30 min
and at 90 ◦C for 20 min in a water bath, and then immediately placed in ice water and
maintained at 4 ◦C for 24 h [15].

The thawed Antarctic krill meat (approximately 300 g) was prepared in the same
way as that of Pacific white shrimp. Antarctic krill meat was mixed with 3.0% salt and
polysaccharides were added to obtain final polysaccharide levels of 0.5, 1.0, 1.5, and 2.0%
(based on shrimp surimi content). The water content of shrimp surimi was adjusted to 80%,
and mincing was performed for another 3 min. Finally, the shrimp surimi was inserted into
plastic tubing and prepared in the same way as that of Pacific white shrimp.

2.3. Texture Profile Analysis (TPA)

Gel texture analysis was conducted using a TA-XT Plus Texture Analyzer (Stable Micro
Systems, Godalming, UK). The shrimp surimi gels were cut into sections (20 mm thick)
and tested with a P36R cylinder (diameter: 36 mm). Then, the TPA analysis was performed
with a pre-test speed (5 mm/s), a test speed (2 mm/s), a post-test speed (2 mm/s), a 60%
compression ratio, and a 5 g trigger force.

2.4. Gel Strength

A TA-XT Plus Texture Analyzer (Stable Micro System Co., Godalming, UK) with a
cylindrical probe (P/0.5, diameter: 12.7 mm) was used to determine the breaking force and
deformation of the cylindrical gels with 2 cm height. Firstly, shrimp surimi gels were stored
at room temperature for 2 h, and then the determination mode was set as gel strength, the
testing speed was 1 mm/s, and the strain was 60%. The trigger force was 5 g, and the gel
strength was equal to the breaking distance multiplied by the breaking strength.

2.5. Rheological Tests

The rheological properties of shrimp surimi sols were determined using a rheometer
(Discovery DHR-1, New Castle, TA, USA). The specific operational conditions of 1 mm gap,
40 mm parallel plate geometry, 1 Hz, 25 ◦C, and 0.01 to 100% strain were used to monitor
the linear viscoelastic region. The specific operational conditions for frequency sweep were
as follows: 40 mm parallel plate geometry, 1 mm gap, 25 ◦C, 1.0% strain, and 0.1 to 10 Hz.
The frequency variation of viscoelastic modulus was measured.

Temperature sweep measurements (20 to 80 ◦C, 1 ◦C/ min) were carried out on the
unheated sols. The specific operational conditions of 1 Hz, and 1% strain within the linear
viscoelastic region were used to monitor storage modulus (G′), loss modulus (G”) and the
loss factor during heating.

2.6. Water-Holding Capacity

Aliquots of approximately 5 g shrimp surimi gel was weighed as W1 and centrifuged
(8000 rpm, 15 min) at 4 ◦C. After centrifugation, the surface moisture of the sample was
removed. The shrimp surimi gel after centrifugation was weighed as W2. The water-
holding capacity was calculated according to the following equation:

WHC (%) = W2/W1 × 100
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2.7. Low Field Nuclear Magnetic Resonance

The relaxation time tests of the shrimp surimi gel were conducted using a low field
nuclear magnetic resonance (LF-NMR) analyzer (Niumag Electric Copporation, Shanghai,
China). The CarrPurcellMeiboomGill (CPMG) was used to measure the relaxation times
(T2) and peak area with test conditions as follows: the echo time (1000 ms), resonance
frequency (20 MHz), number of scans (16), and echo counts (18,000).

2.8. SDS-PAGE

The samples (AK, Antarctic krill; AKS, Antarctic krill surimi gel; PWS, Pacific white
shrimp; and PWSS, Pacific white shrimp surimi gel) were mixed with nine times volume
SDS solution (5%, w/v) and stirred overnight to dissolve the total protein. The precipitation
was removed by centrifugation (4000× g, 10 min) and the supernatant was retained. SDS-
PAGE was performed at room temperature with 5% stacking gel and 10% separating gel.
An amount of 40 µL protein solutions (2 mg/mL) were mixed with 10 µL loading buffer
(2% sodium dodecyl sulfate, 12% glycerin, 5% 2-mercaptoethanol, 0.0025% bromophenol
blue, and 0.0625 M Tris-HCl), and then heated at 100 ◦C for 5 min. The samples were
centrifuged (10,000× g, 5 min) at 4 ◦C. Aliquots (15 µL) of the protein samples were loaded
into the gel lanes. The gels were stained for 1 h with Coomassie Brilliant Blue-R250 and
decolorized for 4 h in a decolorizing solution. The gray values were quantified by ImageJ
software (ImageJ 1.47v National Institute of Health, Maryland, USA).

2.9. Cryo-Scanning Electron Microscopy (Cryo-SEM)

The shrimp surimi gels were cut into small pieces of 2 × 1 × 1 mm3 for microstructure
observation. The gel pieces were set on a sample holder, and immersed in liquid Nitrogen.
Then the sample holder was put into a cryogenic (−140 ◦C) preparation chamber under
vacuum. Then, a blunt wedge was used to fracture the samples to expose the internal
structure. All samples were sublimated (−65 ◦C, 30 min) and etched (60 s). Then, the
shrimp surimi gels were observed at accelerating voltage (1.0 kV) with a SEM (SU8010,
Hitachi Co., Tokyo, Japan).

2.10. Fourier-Transform Infrared (FTIR) Spectroscopy

The shrimp surimi gels were dried using a lyophilizer. Freeze-dried gel powder (2 mg)
was ground with KBr (200 mg) and then pressed into a disk for further measurement. FTIR
spectrum (4000–400 cm−1) of shrimp surimi gel was determined using a FTIR spectrometer
(Spectrum Two, PerkinElmer Co., Japan) [16]. Air (25 ◦C) was recorded as the background
spectrum. Protein secondary structure data were analyzed with OMNIC 9.2.

2.11. Molecular Forces

The shrimp surimi gels (3.0 g) were homogenized (10,000 rpm, 2 min) in five kinds
of denaturing solutions (27 mL), including S1 (0.05 mol/L NaCl), S2 (0.6 mol/L NaCl), S3
(1.5 mol/L urea + 0.6 mol/L NaCl), S4 (8 mol/L urea + 0.6 mol/L NaCl), and S5 (0.5 mol/L
β-Mercaptoethanol + 8 mol/L urea + 0.6 mol/L NaCl). Then the obtained liquid was stored
(4 ◦C, 1 h) and centrifuged (15,000× g, 10 min). The concentrations of the dissolved protein
were measured adopting the Bradford method, and differences in protein concentrations
were used to determine the presence of molecular forces (ionic bonds, hydrogen bonds,
hydrophobic interactions, and disulfide bonds) in protein gels [16].

2.12. Statistical Analysis

Data were analyzed from at least three independent experiments (n = 3) and expressed
as mean ± standard deviation. The data were analyzed by SPSS 18.0 software (SPSS Inc.,
Chicago, IL, USA) and statistical significance of differences with p < 0.05 was evaluated
with a Least significance difference (LSD) test.
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3. Results and Discussion
3.1. Analysis of Gel Quality of Heat-Induced Antarctic Krill Surimi

The gel strength and water-holding capacity are important indexes for the evaluation of
the quality of meat and meat products, because they are directly related to their acceptability
to customers. Deformation and breaking force are related to the elasticity and gel strength
of shrimp surimi gels, respectively [17,18]. Breaking force and deformation of the two
kinds of shrimp surimi gels are shown in Figure 1a,b. The Antarctic krill surimi had lower
breaking force compared with Pacific white shrimp surimi (p < 0.05) (Figure 1a), revealing
that the interchain force maintaining the structural stability of Antarctic krill surimi was
not as strong as that of Pacific white shrimp surimi. This might result in a low level of
cross-linkage of myofibrillar proteins, which weakened the gel matrix of Antarctic krill
surimi [19]. This was demonstrated by the result that the gel strength of Antarctic krill
surimi was markedly lower than that of Pacific white shrimp surimi (p < 0.05) (Figure 1c).
Pacific white shrimp surimi had high gel strength and dense microstructure [11]. As shown
in Figure 1b, the deformation of Antarctic krill surimi gel was markedly weaker than that
of Pacific white shrimp surimi gel (p < 0.05), reflecting that Antarctic krill surimi formed a
low elastic gel. Therefore, both the gel strength and elasticity of Antarctic krill surimi were
lower than those of Pacific white shrimp surimi. The protease of Antarctic krill has the
characteristics of high activity and strong adaptability to low temperature, so the Antarctic
krill will be rapidly autolyzed under the action of protease after death [6]. Earlier, Grantham
reported that the autolysis of Antarctic krill weakened the protein gelation properties [6].
However, there was no report on the viscoelastic change trend of Antarctic krill surimi
during heat-induced process.
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Water-holding capacity is often used to assess the water retention capacity of shrimp
surimi gels [20]. As shown in Figure 1d, the water-holding capacity of Antarctic krill
surimi was markedly lower than that of Pacific white shrimp surimi (76.21% vs. 83.95%),
indicating that the myofibril network interlacing ability of Antarctic krill surimi was weaker
and thus less water could be retained or bound in the gel network [21]. A weak water
retention capacity was not conducive to the formation of gel texture properties, which was
consistent with the result of breaking force (Figure 1a). The lower water-holding capacity
of Antarctic krill surimi might be due to the water having migrated out of the gel network
during processing, indicating that the protein network structure of Antarctic krill surimi
might be less compact than that of Pacific white shrimp surimi.

3.2. Changes in the Rheological Properties of Antarctic Krill Surimi during the Heat-Induced
Gelation Process

Thermodynamic viscoelastic properties are closely associated with meat product devel-
opment. As it is well known, storage modulus (G’) symbolizes solid-like behavior, whereas
loss modulus (G”) represents liquid-like behavior. Strain sweep tests were performed to
measure the linear viscoelastic region. The linear viscoelastic region of both Antarctic krill
surimi and Pacific white shrimp surimi was 0.1–10%. Therefore, the strain condition of
Pacific white shrimp surimi and Antarctic krill surimi was set at 1%.

The frequency sweep mainly reflected the relationship between mechanical properties
and frequency of the material, and the variation of G’ and G” values with frequency is
shown in Figure 2a. The two kinds of shrimp surimi exhibited high elasticity over the entire
frequency range, with the G’ value consistently higher than the G” value, indicating that
gelation was present in both cases. The G’ value of Antarctic krill surimi gel was lower than
that of Pacific white shrimp surimi gel, revealing that the gel structure of Antarctic krill
surimi was not as dense as that of Pacific white shrimp surimi, and the molecular chain
flow was easier. The entire viscoelastic modulus increased with increasing frequency. The
slope of the modulus of Antarctic krill surimi gel was smaller than that of Pacific white
shrimp surimi gel, indicating the dependence of modulus on frequency [22]. Therefore,
the elasticity and structural stability of Antarctic krill surimi gel were weaker than those
of Pacific white shrimp surimi gel. This finding was consistent with the results of the
texture analysis.

Changes in G′ and G” of the two kinds of shrimp surimi during transition from sol to
gel are shown in Figure 2b. With the change of temperature, the G ‘value of Antarctic krill
surimi was always lower than that of Pacific white shrimp surimi. Generally, G’ is closely
related to changes of sample elasticity during the gelling process [23]. The two kinds of
shrimp surimi had higher G’ values at the initial stage (20 ◦C), which demonstrated the
formation of a protein gel network via hydrogen bonds [24]. Thereafter, G ‘decreased with
the increase of temperature and reached its lowest value around 40 ◦C. This phenomenon
could be attributed to the degradation of the myofibrillar protein network mediated by
endogenous proteolytic enzymes, resulting in enhanced protein mobility [25]. However,
the variation of the G’ curve with temperature of Antarctic krill surimi was smaller than
that of Pacific white shrimp surimi, which might be due to the enzymatic hydrolysis of
Antarctic krill proteins after harvesting. G’ gradually increased with increasing temper-
ature, probably because heat treatment promoted the interaction between myofibrillar
proteins, thereby forming a stable gel network structure [26]. As reported by Buamard and
Benjakul, unfolded proteins might facilitate intermolecular aggregation through domains
or reactive groups [25]. Among them, the hydrophobic domains underwent cross-linking
via hydrophobic interactions, while sulfhydryl groups were oxidized to form disulfide
bonds [25]. Tan δ (G ‘/G’) was used to monitor the rheological properties of the gel during
the heating process. Tan δ of a perfectly elastic substance is zero, and tan δ of a perfectly
viscous substance is infinite. As shown in Figure 2c, the curve of tan δ showed the main
type (the elasticity/viscosity dominant) of the formed shrimp surimi gel. Throughout
the process of heat-induced gelation, the tan δ was <1, indicating that the elasticity of the
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sample plays a major role. During temperature ramping from 25 ◦C to 70 ◦C, the tan δ of
Antarctic krill samples was always lower than that of Pacific white shrimp samples, indi-
cating that the viscosity and cohesiveness of Antarctic krill samples were not as strong as
those of Pacific white shrimp samples, which were stronger within the temperature range.
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3.3. Analysis of Water State and Distribution of Antarctic Krill Surimi after Heat-Induced
Gel Formation

The relaxation time and peak area determined by LF-NMR are important indexes
that illustrate the tightness between moisture and protein molecules. Three components
(T21, T22, and T23) were observed in shrimp surimi samples (Figure 3a). The first peak
(T21, bound water) corresponded to water molecules bound by strong hydrogen bonds.
The second peak (T22) represented immobilized water, which was strongly bonded to the
monolayer water molecules. The third peak (T23, free water) reflected weakly bound water
molecules [27]. The T22 was the main component of water present in shrimp surimi gel.
The study showed that the shorter the T2 relaxation time, the more hydrogen protons are
bound, and the water was less free. As shown in Figure 3a, it could be clearly observed that
the relaxation times (T21, T22, and T23) of Antarctic krill surimi were all longer than those
of Pacific white shrimp surimi, indicating that the tightness between Antarctic krill surimi
protein and water was lower than that of Pacific white shrimp surimi. This indicated that
Antarctic krill surimi gel has weaker binding force to water and higher freedom of water
than that of Pacific white shrimp.

Foods 2022, 11, x FOR PEER REVIEW 8 of 17 
 

 

The relaxation time and peak area determined by LF-NMR are important indexes 
that illustrate the tightness between moisture and protein molecules. Three components 
(T21, T22, and T23) were observed in shrimp surimi samples (Figure 3a). The first peak (T21, 
bound water) corresponded to water molecules bound by strong hydrogen bonds. The 
second peak (T22) represented immobilized water, which was strongly bonded to the mon-
olayer water molecules. The third peak (T23, free water) reflected weakly bound water 
molecules [27]. The T22 was the main component of water present in shrimp surimi gel. 
The study showed that the shorter the T2 relaxation time, the more hydrogen protons are 
bound, and the water was less free. As shown in Figure 3a, it could be clearly observed 
that the relaxation times (T21, T22, and T23) of Antarctic krill surimi were all longer than 
those of Pacific white shrimp surimi, indicating that the tightness between Antarctic krill 
surimi protein and water was lower than that of Pacific white shrimp surimi. This indi-
cated that Antarctic krill surimi gel has weaker binding force to water and higher freedom 
of water than that of Pacific white shrimp. 

The moisture composition (T21, T22, and T23) and content (A21, A22, and A23) of the two 
kinds of shrimp surimi are shown in Figure 3b. The immobilized water content (A22) of 
Antarctic krill surimi was lower than that of Pacific white shrimp surimi, but the free water 
content (A23) was higher than that of Pacific white shrimp surimi (p < 0.05). The results of 
gel strength and water distribution indicated that the three-dimensional network struc-
ture of Antarctic krill surimi gel might be weaker than that of Pacific white shrimp [28]. 

 
Figure 3. Nuclear magnetic resonance spin–spin relaxation (T2) of Antarctic krill and Pacific white 
shrimp surimi gels: (a) The curve of T2 relaxation time, and (b) the percentage of T21, T22, and T23. 
PWSS, Pacific white shrimp surimi; and AKS, Antarctic krill surimi. Different letters (a–d) within the 
same sample indicate significant differences (p < 0.05). 

3.4. Three-Dimensional Microstructure of Heat-Induced Antarctic Krill Surimi Gel 
The microstructure of shrimp surimi gel is closely related to its texture properties and 

water distribution. The microstructures of heat-induced Antarctic krill surimi and Pacific 
white shrimp surimi gels were visualized by Cryo-SEM (Figure 4). The heat-induced Ant-
arctic krill surimi gel had a rougher network with larger cavities or void, compared with 
Pacific white shrimp surimi gel. This was consistent with lower breaking force (Figure 1a) 
and water-holding capacity (Figure 1d). In contrast, a more ordered microstructure with 
higher interconnection was observed in Pacific white shrimp surimi gel. The results re-
confirmed that the protein network of Pacific white shrimp surimi had a higher degree of 
cross-linking. The more ordered and dense network structure was more conducive to the 
water absorption of the gel [24]. This was consistent with the high water-holding capacity 
of Pacific white shrimp surimi gel and further verified the previous inferences. It has been 
reported that a rough microstructure might be related to the low unfolding degree of the 
α-helix [1]. 

Figure 3. Nuclear magnetic resonance spin–spin relaxation (T2) of Antarctic krill and Pacific white
shrimp surimi gels: (a) The curve of T2 relaxation time, and (b) the percentage of T21, T22, and T23.
PWSS, Pacific white shrimp surimi; and AKS, Antarctic krill surimi. Different letters (a, b) within the
same sample indicate significant differences (p < 0.05).

The moisture composition (T21, T22, and T23) and content (A21, A22, and A23) of the
two kinds of shrimp surimi are shown in Figure 3b. The immobilized water content (A22) of
Antarctic krill surimi was lower than that of Pacific white shrimp surimi, but the free water
content (A23) was higher than that of Pacific white shrimp surimi (p < 0.05). The results of
gel strength and water distribution indicated that the three-dimensional network structure
of Antarctic krill surimi gel might be weaker than that of Pacific white shrimp [28].

3.4. Three-Dimensional Microstructure of Heat-Induced Antarctic Krill Surimi Gel

The microstructure of shrimp surimi gel is closely related to its texture properties
and water distribution. The microstructures of heat-induced Antarctic krill surimi and
Pacific white shrimp surimi gels were visualized by Cryo-SEM (Figure 4). The heat-induced
Antarctic krill surimi gel had a rougher network with larger cavities or void, compared with
Pacific white shrimp surimi gel. This was consistent with lower breaking force (Figure 1a)
and water-holding capacity (Figure 1d). In contrast, a more ordered microstructure with
higher interconnection was observed in Pacific white shrimp surimi gel. The results
reconfirmed that the protein network of Pacific white shrimp surimi had a higher degree of
cross-linking. The more ordered and dense network structure was more conducive to the
water absorption of the gel [24]. This was consistent with the high water-holding capacity
of Pacific white shrimp surimi gel and further verified the previous inferences. It has been
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reported that a rough microstructure might be related to the low unfolding degree of the
α-helix [1].
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3.5. Protein Patterns of Antarctic Krill Surimi with and without Heat Treatment

Figure 5a,b depicts the SDS-PAGE patterns and Grayscale map of shrimp surimi gels
with and without heat treatment, respectively. It can be seen that the two kinds of shrimp
meats contained a wide variety of proteins, and the protein bands of Antarctic krill in the
high molecular weight region (60–250 kDa) are greater than those of Pacific white shrimp,
but the low molecular weight bands (10–60 kDa) are fewer than those of Pacific white
shrimp. Salt-soluble protein plays a major role in the gelling properties of shrimp surimi,
including myosin light chain (17 kDa), troponin T (34 kDa), actin (45 kDa), paramyosin
(100 kDa), and myosin heavy chain (200 kDa) [29].

In Antarctic krill surimi gels, the protein content at the top of the lane in the heated
groups (AKS and PWSS) was markedly higher than that in the unheated groups (AK and
PWS) (p < 0.05) (Figure 5c,d). As reported by Singh and Benjakul, high levels of cross-
linkage of proteins played an important role in the disappearance of myosin heavy chain
band [30]. Myosin heavy chain plays a major role in the formation of protein networks [31].
In addition, the protein concentrations of paramyosin, troponin T, and myosin light chain
bands in Pacific white shrimp surimi also decreased significantly after heat treatment
(Figure 5e–h), which might also be due to protein cross-linking and aggregation caused by
thermal denaturation. In Antarctic krill surimi gels, protein concentrations of paramyosin,
actin, troponin T, and myosin light chain bands in the heated group were all higher than
those in the unheated group (p < 0.05) (Figure 5e–h). This might be attributed to the
hydrolysis of endogenous enzymes during heat treatment, resulting in the degradation
of high molecular weight protein to low molecular weight protein [3]. Therefore, the low
aggregation degree of myofibrillar protein had a severe impact on the formation of the gel
network of Antarctic krill surimi, resulting in a less dense gel structure of Antarctic krill
surimi than that of Pacific white shrimp.
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3.6. Analysis of Protein Secondary Structure in Antarctic Krill Surimi Gel

The protein secondary structure of Antarctic krill surimi gel has not been reported so
far. FTIR is commonly used to study the changes of secondary structures in protein systems.
Figure 6a shows the FTIR result of the shrimp surimi gels at 4000–400 cm−1. The trend of
infrared curves of Antarctic krill surimi and Pacific white shrimp surimi were generally
consistent, indicating that the chemical structures of Antarctic krill surimi gel were like
that of Pacific white shrimp surimi gel. The amide A band (3500–3000 cm−1) is known as
the “water region”, which is usually used to assess the interaction between protein and
water. The groups (–OH and –NH) were helpful in forming the chemical bonds and were
highly relevant to the strength of the hydrophobic interactions and hydrogen bonds [32].
The peak in Antarctic krill surimi gel at 3292.98 cm−1 shifted to a lower frequency of
3289.01 cm−1 in Pacific white shrimp surimi gel, which could be attributed to the complex
vibrational stretches associated with free, inter-, and intramolecular hydroxyl groups [33].
Compared with the Pacific white shrimp surimi gel, Antarctic krill surimi gel had a higher
peak frequency, which indicated that the intermolecular hydrogen bond of Antarctic krill
surimi is not as strong as that of Pacific white shrimp surimi gel [34]. Studies have re-
ported that the peak (3280 cm−1) might represent the presence of NH stretching vibrations,
indicating multimolecular interactions, which might reflect the structural properties of
paramyosin [11,35].
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Figure 6. FTIR of Antarctic krill and Pacific white shrimp surimi gels: (a) FTIR spectra curve, and
(b) the change of secondary structure. PWSS, Pacific white shrimp surimi; and AKS, Antarctic krill
surimi. Different letters (a, b) within the same protein structure tested indicate significant differences
(p < 0.05).

The amide I band (1700–1600 cm−1) is usually used to analyze the secondary structure of
proteins (β-turn ~1680–1690 cm−1, β-sheet ~1670–1680 cm−1, random coil ~1660–1670 cm−1,
and α-helix ~1645–1660 cm−1) [36]. As shown in Figure 6b, the β-sheet content of Antarctic
krill surimi was significantly lower than that of Pacific white shrimp surimi (0.40 ± 0.01 vs.
0.44 ± 0.01), which meant that the gel structure of Antarctic krill surimi was not as ordered
and stable as that of Pacific white shrimp surimi [37]. In addition, the α-helix content of
Antarctic krill surimi was significantly higher than that of Pacific white shrimp surimi
(0.22 ± 0.02 vs. 0.16 ± 0.02). This phenomenon is consistent with the result of SDS-PAGE.
The above analysis indicates that β-sheet had a positive effect on gel properties, which
partly explained the difference in gel formation between Antarctic krill surimi and Pacific
white shrimp surimi.

3.7. Molecular Forces Involved in Antarctic Krill Surimi Gel Formation

The three-dimensional network skeleton of shrimp surimi gel is maintained by molec-
ular forces between myofibrillar protein molecules (and their aggregates). Numerous
analyses have shown that the myofibrillar protein structure changes during heat-induced
process, which leads to altered interactions between protein molecules. As mentioned
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above, molecular forces (hydrogen bonds, ionic bonds, disulfide bonds, and hydrophobic
interactions) are the main factors in maintaining the structure and quality of shrimp surimi
gels [38]. Therefore, different force-disruption agents were used to determine the alteration
of molecular forces involved in the formation of shrimp surimi gels.

As depicted in Table 1, the molecular forces of Antarctic krill surimi were all lower
than those of Pacific white shrimp surimi (p < 0.05), which might be due to the low
unfolding degree of Antarctic krill protein, resulting in less exposed active sites. This was
consistent with the results of gel strength, SDS-PAGE, and SEM. Moreover, it could be
found that disulfide bonds and hydrophobic interactions are higher than other molecular
forces, suggesting that disulfide bonds and hydrophobic interactions played major roles in
maintaining the gel properties of shrimp surimi. Heat treatment could induce the unfolding
of the protein helix structure, exposing sulfhydryl groups and hydrophobic amino acids,
and resulting in intermolecular interactions via disulfide bonds and hydrophobic forces [39].
Disulfide bonds played a major role in maintaining gel matrix stability [40]. In contrast,
weak molecular forces might be one of the reasons for the poor gelation of Antarctic krill
surimi. Therefore, the outcome of molecular forces could partly explain heat-induced gel
differentiation between Antarctic krill surimi and Pacific white shrimp surimi.

Table 1. Molecular forces involved in Antarctic krill and Pacific white shrimp surimi gels.

Samples
Molecular Forces in the Gel (mg/L)

Ionic Bonds Hydrogen
Bonds

Hydrophobic
Interactions Disulfide Bonds

PWSS 47.87 ± 2.45 a 150.29 ± 1.18 a 667.29 ± 17.16 a 1677.41 ± 29.26 a

AKS 39.66 ± 1.33 b 144.69 ± 4.17 b 536.17 ± 9.15 b 1496.92 ± 23.75 b

Different letters in a column indicate significant differences (p < 0.05).

3.8. Correlation Analysis and Principal Component Analysis

Correlation analysis and PCA were conducted to clarify the relationship between the
gel qualities (gel strength, breaking force, and deformation), the water properties (water-
holding capacity, A21, A22, and A23), the protein secondary structure (β-turn, β-sheet,
random coil, and α-helix) and the molecular forces (hydrogen bonds, ionic bonds, disulfide
bonds, and hydrophobic interactions) of the two kinds of shrimp surimi. As shown in
Figure 7a, water-holding capacity was positively related to the gel qualities (gel strength,
breaking force, and deformation) of shrimp surimi, indicating that a strong water retention
capacity was conducive to the formation of gel texture properties. The immobilized water
(A22) in the myofibrillar protein lattice was positively correlated with the gel qualities,
which indicated that the dense protein network structure contributed to the improvement
of gel quality. Meanwhile, a positive correlation between molecular force and gel quality
could be observed, and hydrophobic interaction was significantly positively correlated
with the gel qualities of shrimp surimi, indicating that hydrophobic interaction played a
major role in maintaining the stability of shrimp surimi. Moreover, there was a significant
positive correlation between β-sheet and gel quality, indicating that β-sheet had a positive
effect on gel properties. However, A21, A23, and α-helix were all negatively correlated
with gel quality, and there was a significant negative correlation between free water (A23)
and gel quality. The high content of free water indicated that the gel structure was loose,
and the water retention capacity was relatively weak.

Through principal component analysis of each index of shrimp surimi, the contribution
rate of PC1 and PC2 were 71.5% and 14.9%, respectively, and the cumulative contribution
rate was 86.4% (>85%). The higher contribution rate could better reflect the information
of the original index [41,42]. As shown in Figure 7b, the gel properties of Antarctic krill
surimi were worse than those of Pacific white shrimp surimi. In contrast, Antarctic krill
surimi had weaker water retention capacity and molecular forces, but higher α-helix and
free water levels. Thus, the high α-helix / β-sheet ratio, weak intermolecular interactions,
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and low level of protein network cross-linkage were the main reasons for the poor quality
of Antarctic krill surimi gels.

Foods 2022, 11, x FOR PEER REVIEW 13 of 17 
 

 

contribution rate was 86.4% (>85%). The higher contribution rate could better reflect the 
information of the original index [41,42]. As shown in Figure 7b, the gel properties of Ant-
arctic krill surimi were worse than those of Pacific white shrimp surimi. In contrast, Ant-
arctic krill surimi had weaker water retention capacity and molecular forces, but higher α-
helix and free water levels. Thus, the high α-helix / β-sheet ratio, weak intermolecular 
interactions, and low level of protein network cross-linkage were the main reasons for the 
poor quality of Antarctic krill surimi gels. 

 
Figure 7. The correlation analysis and principal component analysis (PCA): (a) Correlation analysis; 
(b) the score scatter and loading plot of PCA. PWSS, Pacific white shrimp surimi; and AKS, Antarctic 
krill surimi. 

3.9. Feasibility Exploration of Polysaccharide Addition to Improve the Texture Properties of 
Heat-Induced Antarctic Krill Surimi Gel 

In general, the effect of polysaccharides on the texture properties of protein gels de-
pends on their molecular structure, and polysaccharides with different molecular struc-
tures can either inhibit or enhance the gel properties. Texture Profile Analysis mode uti-
lizes a probe to compress a shrimp surimi sample twice to simulate chewing, which is 
often used to objectively describe the sensory properties of shrimp surimi, such as hard-
ness, springiness, cohesiveness, and chewiness. Textural profiles of shrimp surimi gels are 
shown in Figure 8. Compared with Pacific white shrimp surimi, Antarctic krill surimi gel 

Figure 7. The correlation analysis and principal component analysis (PCA): (a) Correlation analysis;
(b) the score scatter and loading plot of PCA. PWSS, Pacific white shrimp surimi; and AKS, Antarctic
krill surimi.

3.9. Feasibility Exploration of Polysaccharide Addition to Improve the Texture Properties of
Heat-Induced Antarctic Krill Surimi Gel

In general, the effect of polysaccharides on the texture properties of protein gels de-
pends on their molecular structure, and polysaccharides with different molecular structures
can either inhibit or enhance the gel properties. Texture Profile Analysis mode utilizes a
probe to compress a shrimp surimi sample twice to simulate chewing, which is often used to
objectively describe the sensory properties of shrimp surimi, such as hardness, springiness,
cohesiveness, and chewiness. Textural profiles of shrimp surimi gels are shown in Figure 8.
Compared with Pacific white shrimp surimi, Antarctic krill surimi gel had a significant
decrease in hardness (Figure 8a). Hardness refers to the maximum force during the first
compression process and is usually related to the rupture strength [43]. Therefore, Antarctic
krill surimi gels were easily crushed, indicating that their internal structure was not as
dense as that of Pacific white shrimp surimi gels. There were significant differences in the
effects of six polysaccharides on gel quality of Antarctic krill surimi. Among them, chitosan,
konjac glucomannan, sodium carboxyl methyl cellulose, and waxy maize starch resulted
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in no significant improvement to the gel quality of Antarctic krill surimi (p > 0.05). It has
been reported that the addition of excessive chitosan to surimi diluted the concentration of
myofibrillar proteins, leading to a decrease in breaking force of surimi [44]. However, the
addition of ι-carrageenan or κ-carrageenan significantly improved the gel quality of Antarc-
tic krill surimi (p < 0.05). When ι-carrageenan (2%) or κ-carrageenan (1~2%) was added, the
hardness of Antarctic krill surimi was similar to, or higher than that of Pacific white shrimp
surimi. In addition, Antarctic krill surimi showed lower springiness and cohesiveness than
Pacific white shrimp surimi (p < 0.05) (Figure 8b,c), reflecting that the molecular interactions
maintaining the structural stability of Antarctic krill surimi were weaker than those of
Pacific white shrimp surimi. The addition of polysaccharides improves the springiness and
cohesiveness of Antarctic krill surimi, and increases with the increase of polysaccharide
content. These results indicated that the addition of polysaccharides enhanced the molecu-
lar interaction of Antarctic krill surimi, which was beneficial to maintaining the stability of
the gel structure. Moreover, the chewiness of Antarctic krill surimi was markedly lower
than that of Pacific white shrimp surimi (128.06 ± 38.12 vs. 524.36 ± 91.78) (Figure 8d).
This might be due to the denser tissue structure of Pacific white shrimp surimi, resulting
in the tighter meat quality of Pacific white shrimp surimi. Thus, Antarctic krill surimi
had worse mouthfeel than Pacific white shrimp surimi. By contrast, carrageenan could
significantly enhance the chewiness of Antarctic krill surimi (p < 0.05), suggesting that
the composite Antarctic krill surimi with ι-carrageenan (2%) or κ-carrageenan (1~2%) had
better mouthfeel than Pacific white shrimp surimi. Therefore, the addition of ι-carrageenan
(2%) or κ-carrageenan (1~2%) is an effective way to improve the gel quality of Antarctic
krill surimi, and will contribute to the development of reconstituted Antarctic krill surimi
products. The internal mechanisms by which carrageenan improves the gel properties of
Antarctic krill surimi will be studied in depth in the future.
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4. Conclusions

The results revealed the gel quality and gelation properties of heat-induced Antarctic
krill surimi gel, and the possibility of improving the texture properties of Antarctic krill
surimi by adding polysaccharides. The low aggregation degree of myofibrillar protein had
a severe impact on the formation of the gel network of Antarctic krill surimi. As a result,
breaking force, gel strength, water retention capacity, and viscoelasticity of Antarctic krill
surimi were significantly lower than those of Pacific white shrimp surimi. Moreover, β-
sheet structure and intermolecular forces had positive effects on the texture characteristics
and gel matrix formation of shrimp surimi. Thus, the high α-helix / β-sheet ratio, weak
intermolecular interactions, and low level of protein network cross-linkage were the main
reasons for the poor quality of Antarctic krill surimi gels. On this basis, the effects of
polysaccharides that could provide additional bonding to improve the texture properties
of heat-induced Antarctic krill surimi gel were studied. It was found that the addition of
ι-carrageenan (2%) or κ-carrageenan (1~2%) is an effective way to improve the gel quality
of Antarctic krill surimi. These findings revealed the gelation properties of heat-induced
Antarctic krill surimi gel, and the possibility of improving the texture properties of Antarctic
krill surimi by adding polysaccharides, which would provide a point of reference for the
in-depth development of Antarctic krill surimi with high nutritional quality.
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