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Abstract: A series of poly(meta/para-terphenylene-methyl piperidinium)-based anion exchange
membranes devoid of benzylic sites or aryl ether bonds, that are vulnerable to degradation by
hydroxide ions, are synthesized and investigated for their application as novel anion exchange
membranes. The copolymers are composed of both linear para-terphenyl units and kink-structured
meta-terphenyl units. The meta-connectivity in terphenyl units permits the polymer backbones to
fold back, maximizing the interactions among the hydrocarbon polymer chains and enhancing the
peripheral formation of ion aggregates, due to the free volume generated by the kink structure.
The effects of the copolymer composition between para-terphenyl and meta-terphenyl on the
morphology and the electrochemical and physicochemical properties of the corresponding polymer
membranes are investigated.
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1. Introduction

As environmentally friendly power sources, anion exchange membrane fuel cells (AEMFCs)
offer various advantages, including the ability to use a wide range of non-noble metal catalysts and
faster oxidation reduction rates than the proton exchange membrane fuel cells (PEMFCs) currently in
use [1–7]. The commercial application of AEMFC, however, has been impeded by the lack of materials
for anion exchange membranes (AEMs) that have both sufficient ion (OH−) conductivity and adequate
mechanical or chemical stabilities.

Through significant efforts, including controlling morphology of polymers [8,9] or changing
the polymer structure from comb-type to spacer-type [10–12], as well as tuning the cationic head
groups [13–15], a reasonably high conductivity has been achieved for the development of AEMs.
Nevertheless, alkaline stability improvement has remained a challenge in the development of AEMs
for commercialization of AEMFC [16,17].

It is recognized that both the conducting head groups and the polymer backbones are responsible
for the stability of AEMs, and the general degradation pathways are well understood [18]. In the case
of polymer main backbones, most commonly used polymers have the aryl ether (C–O) linkages in
the backbone structure, and hence are now considered vulnerable to degradation by the nucleophilic
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attack of hydroxide ions on the ipso carbon position in oxyphenylene groups. Other undesired side
reactions such as the Hofmann-β-elimination and ylide formation are also possible in conventional
polymer backbones such as poly(aryl ether sulfone), poly(phenylene oxide)s and poly(aryl ether
ketone), where the unstable benzylic positions are combined with the above mentioned aryl ether
linkages [19–25].

To improve alkaline stability, it was therefore necessary to design the polymer backbone without
aryl ether linkages.

Miyatake et al. introduced a new family of quaternized poly(arylene perfluoroalkylene)s, (QPAFs) 1
(Figure 1), having perfluoroalkylene groups and aromatic rings, avoiding heteroatom linkages in the
polymer backbone [26]. Even though these kinds of molecular varieties have shown better stabilities in
AEMs, the quaternary ammonium (QA) cations placed in the typical benzylic positions have remained
a problem, due to loss of the cation as a conducting head group.

Meanwhile, Bae et al. developed a new synthetic strategy for AEM polymers, using the
acid-catalyzed Friedel–Crafts polycondensation reaction between biphenyl and trifluoromethyl ketones
to produce poly(biphenyl alkylene)s with the QA groups on the long alkyl side chain 2 (Figure 1), instead
of the benzylic position, which demonstrated an enhanced stability along with a high conductivity for
the corresponding membranes [27,28].

Marino and Kreuer have recently investigated the stability and degradation trends of various
cationic head groups and demonstrated the exceptional stability of hetero-cycloaliphatic compounds 3
(Figure 1) [29,30]. This opened a new area for developing a wide variety of alkaline stable polymers
with hetero-cycloaliphatic backbones with cationic head groups on the polymer backbone structures.
In particular, N,N-dimethylpiperidinium is now considered one of the most stable (and highly
conductive) conducting head groups, due to a lower ring strain and conformational constraints (ring
structures which impose conformational constraints are known to increase the energy of the transition
state for both substitution and elimination reactions [29,30]).

To combine the two latter strategies (acid-catalyzed Friedel–Crafts polycondensation reaction
between biphenyl and trialkyl ketones and the formation of hetero-cyclic backbone structure having
N,N-dimethylpiperidinium conducting head group), Jannasch et al. developed a new class of
polymers that are poly(arylene piperidinium)s 4 (Figure 1) as highly stable and conductive anion
exchange membranes, following the acid-catalyzed Friedel–Crafts polycondensation reaction [16,31].
The same group has also investigated the effect of backbone geometry on the properties of
poly(terphenylene)-based AEMs and found that the more flexible meta-terphenyl backbone contributed
greater conductivity than the rigid para-terphenyl units [32]. A meta-terphenyl as a monomer has
benefits over linear and rigid para-terphenyl because the former with its kink structure exhibits
the distorted spatial configuration able to regulate the morphology of the corresponding polymer
membranes [25].

In fact, the geometry of the polymer structure can play a key role in controlling the microstructure
of the polymers, which helps to facilitate hydroxide ion transport and hence improve fuel cell
performance. Notably, an increase in the flexibility of the polymer backbone has a positive effect on the
polymer’s mobility and helps to form well-developed ionic channels, hence enhancing ion conductivity.
The higher flexibility of the polymer backbone can also facilitate water uptake of the membranes,
which may affect the stability of AEMs by diluting the concentration of reactive hydroxide ions toward
the nucleophilic attack [32–34].

Recently, QA-functionalized poly(meta-terphenylene-methyl piperidinium)-based anion exchange
membranes (QMter-co-Mpi) 5 (Figure 1) having the non-aryl ether-type backbone structure were also
developed by He et al. for high-performance water electrolysis application [35]. The introduction of
twisted meta-terphenyl monomer in the polymer backbone efficiently built the ion transport channel
and resulted in a comparably high conductivity but has not been investigated for AEMFC application.

Another example of using poly(meta-terphenylene-alkyl piperidinium)s as an AEM material
introduces a long hydrophobic alkyl group grafted onto the side chain of the piperidinium group in
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order to inhibit problems such as swelling of the corresponding membranes caused by high water
uptake in this type of kink-structured polymer [25]. Despite the reduced swelling, the long alkyl
side chain on the conducting head group (alkyl piperidinium in this case) has an additional potential
drawback of reducing the alkaline stability of the corresponding polymer membranes [36].

We report herein for the first time the development of the copolymers between para-terphenyl
and meta-terphenyl 6 (Figure 1) units with different ratios to balance the conformational changes,
due to the twisted/kink and rigid structures in the corresponding copolymer membranes, together
with the cyclic methyl piperidium in the backbone as a conducting head group, and we investigate
the possibility of applying these poly(meta/para-terphenylene-piperidinium)-based AEMs to AEMFC
application. The effects of the copolymer composition between para-terphenyl and meta-terphenyl on
the morphology and electrochemical and physicochemical properties of the corresponding polymer
membranes 6 are investigated in this study.
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Figure 1. Structure of polyarylene backbone-type anion exchange membranes (AEMs) as poly(arylene 
perfluoroalkylene)s (1) [26] and poly(biphenyl alkylene)s (2) [27], hetero-cycloaliphatic-type 
conducting head groups (3) [29], and poly(arylene piperidinium)s (4) [16], poly(meta-terphenylene-
methyl piperidinium) (5) [35] reported in the literature, and poly(meta/para-terphenylene-methyl 
piperidinium) (6) developed in this study. 

2. Materials and Methods 

2.1. Materials 

meta-Terphenyl (m-terphenyl) (99%, Alfa Aesar, Seoul, Korea), para-terphenyl (p-terphenyl) 
(>99%, TCI, Seoul, Korea), N-methyl-4-piperidone (>98%, TCI, Seoul, Korea), iodomethane (99%, 
Sigma Aldrich, Yongin,Korea), trifluoromethane sulfonicacid (TFSA) (99%, Acros Organics, Seoul, 
Korea), and trifluoroacetic acid (>99%, TCI, Seoul, Korea) were purchased and used as they were 
unless mentioned. The p- and m-terphenyls were recrystallized from ethyl acetate and isopropyl 
alcohol respectively, prior to the polymerization. N-Methyl-4-piperidone was used after purification 
by vacuum distillation. HPLC grade dichloromethane (DCM) and dimethyl sulfoxide (DMSO) were 
used as received throughout the synthetic procedures. K2CO3, NaOH, KOH, and other solvents such 
as methanol, isopropyl alcohol, and ether were purchased from Daejung Metals & Chemicals Co., 
Ltd. (Shiheung, Korea) and used as received. 

Synthesis of Poly(meta/para-terphenylene-methyl piperidinium) Copolymers with Various Contents 
of m-terphenyl Units, m-p-MP-y, 6 
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Figure 1. Structure of polyarylene backbone-type anion exchange membranes (AEMs) as poly(arylene
perfluoroalkylene)s (1) [26] and poly(biphenyl alkylene)s (2) [27], hetero-cycloaliphatic-type conducting
head groups (3) [29], and poly(arylene piperidinium)s (4) [16], poly(meta-terphenylene-methyl
piperidinium) (5) [35] reported in the literature, and poly(meta/para-terphenylene-methyl piperidinium)
(6) developed in this study.

2. Materials and Methods

2.1. Materials

meta-Terphenyl (m-terphenyl) (99%, Alfa Aesar, Seoul, Korea), para-terphenyl (p-terphenyl) (>99%,
TCI, Seoul, Korea), N-methyl-4-piperidone (>98%, TCI, Seoul, Korea), iodomethane (99%, Sigma
Aldrich, Yongin, Korea), trifluoromethane sulfonicacid (TFSA) (99%, Acros Organics, Seoul, Korea),
and trifluoroacetic acid (>99%, TCI, Seoul, Korea) were purchased and used as they were unless
mentioned. The p- and m-terphenyls were recrystallized from ethyl acetate and isopropyl alcohol
respectively, prior to the polymerization. N-Methyl-4-piperidone was used after purification by
vacuum distillation. HPLC grade dichloromethane (DCM) and dimethyl sulfoxide (DMSO) were used
as received throughout the synthetic procedures. K2CO3, NaOH, KOH, and other solvents such as
methanol, isopropyl alcohol, and ether were purchased from Daejung Metals & Chemicals Co., Ltd.
(Shiheung, Korea) and used as received.

Synthesis of Poly(meta/para-terphenylene-methyl piperidinium) Copolymers with Various Contents of
m-terphenyl Units, m-p-MP-y, 6

The synthesis of poly(meta/para-terphenylene-methyl piperidinium)s, m-p-MP-y, where y represents
the percentage ratio of m-terphenyl content, was carried out by reacting m/p-terphenyl with
N-methyl-4-piperidone through the acid-catalyzed Friedel–Crafts polymerization reactions [16,37,38],
followed methylation of the piperidine. Three sets of copolymers with different m-terphenyl molar
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ratios of 20%, 50%, and 60% were reacted with N-methyl-4-piperidone to give copolymers with
three different meta-terphenylene-piperidinium units, and the copolymers were termed m-p-MP-20,
m-p-MP-50 and m-p-MP-60, respectively.

The following is the general procedure for the synthesis of m-p-MP-20 as an example: the
N-methyl-4-piperidone (1.00 g, 8.84 mmol), m-terphenyl (0.41 g, 1.77 mmol) and p-terphenyl (1.63 g,
7.07 mmol) were taken in a 25 mL round bottom flask equipped with a magnetic stirrer and dissolved
in 6 mL of DCM. The TFSA (7.82 mL, 88.37 mmol) was then added to this solution dropwise under an
ice bath. The reaction vessel was kept in an ice bath during polymerization to inhibit the elimination
products. The color of the reaction mixture changed gradually from light yellow to dark brown.
The reaction was stopped when the viscosity of the reaction mixture had increased to a limit which
prevented normal magnetic stirring. The mixture was then poured into a 5 M aqueous NaOH solution
yielding a white fibrous solid. The precipitate was then chopped and stirred in the same alkaline
solution and washed several times with deionized water. The product was then filtered and dried
overnight in an oven at 80 ◦C to yield poly(meta/para-terphenylene-piperidine), m-p-Pip-20 as a white
solid (2.75 g, 91%); δH (400 MHz, DMS-d6/TFA) 7.91–7.36 (12H, m, H4,5,6,7,8,9), 3.52 (2H, broad signal,
H2), 3.20 (2H, broad signal, H2), 2.91 (2H, broad signal, H3), 2.78 (3H, broad signal, H1), 2.31 (2H, broad
signal, H3). This was further functionalized for quaternization using methyl iodide and K2CO3 in
DMSO; that is the copolymer m-p-Pip-20 (2.75 g, 8.44 mmol) and K2CO3 (0.58 g, 4.23 mmol) were taken
in DMSO in a 25 mL round bottom flask. Methyl iodide (2.63 mL, 42.21 mmol) was then added to
this heterogeneous solution and allowed to stir at 80 ◦C for 48 h. It was observed that the color of the
reaction mixture changed from light yellow to dark brown. The reaction mixture was precipitated in
a 4:1 ether-isopropyl alcohol mixture several times before filtration. The solid precipitate obtained
was filtered and dried in the oven at 80 ◦C overnight to give poly(meta/para-terphenylene-methyl
piperidinium), m-p-MP-20, as a brown powder (2.61 g, 95%); δH (400 MHz, DMSO-d6) 7.80–7.43 (12H,
m, H4,5,6,7,8), 3.42 (2H, broad signal, H2), 3.11 (5H, broad signal, H2,1), 2.81 (5H, broad signal, H3,1) and
2.46 (2H, broad signal, H3).

The same procedure was carried out to synthesize m-p-MP-50 and m-p-MP-60 by using 0.5:0.5 and
0.6:0.4 molar ratios of meta/para-terphenyl comonomers respectively.

2.2. Membrane Fabrication

All the membranes based on poly(meta/para-terphenylene-methyl piperidinium), m-p-MP-ys,
were prepared by a solution-casting method using the corresponding polymer solution in DMSO as
a solvent. A 3 wt.% homogeneous polymer solution was prepared in a glass vial, filtered through a
cotton plug under reduced pressure and then poured on a flat glass plate. The membrane film was cast
in an oven and dried under vacuum at 80 ◦C for 24 h to evaporate the solvent completely. The resulting
membranes were further treated for hydroxide exchange by immersing them in distilled water for
about 4 h to remove the residual solvent from the film. The membranes were then soaked in 1 M KOH
solution for 36 h in a closed vial under nitrogen environment at room temperature to exchange the
iodide anions for hydroxide ions. Finally, the membranes were washed thoroughly with deionized
water prior to any measurements.

2.3. Characterization and Miscellaneous Measurements

All the detailed characterizations and various types of measurement techniques were conducted
following the previous reports [8,21] and are included in the supporting information.

3. Results and Discussions

3.1. Polymer Synthesis and Characterization

In the present work, we synthesized poly(meta/para-terphenylene-methyl piperidinium)
copolymers with various contents of m-terphenyl units, m-p-MP-ys, using Friedel–Craft polymerization
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between the corresponding meta/para-terphenyl monomers and N-methyl-4-piperidone as shown in
Scheme 1. First, the electron-rich aromatic terphenyl monomers rapidly reacted with ketone in the
presence of the TFSA catalyst [16]. The poly(meta/para-terphenylene-piperidine) copolymers with
molar ratios between meta-terphenyl and para-phenyl comonomer were set to 20:80, 50:50, and 60:40
and were designated as m-p-Pip-20, m-p-Pip-50, and m-p-Pip-60, respectively, where the number (y) in
each designation (m-p-Pip-y) represents the contents of the meta-terphenyl unit in the copolymer.
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Scheme 1. Synthetic route to the poly(meta/para-terphenylene-methyl piperidinium)s, m-p-MP-ys.

The structure of all three copolymers (m-p-Pip-y)s was confirmed by spectroscopic analysis using
1H NMR in DMSO-d6/Trifluoro acetic acid (TFA) mixture (Figure S1 in Supporting Information), and it
was observed that the characteristic peaks of the aromatic protons appeared between 7.91 and 7.36 ppm.
The protonation of piperidine by TFA caused a separation and splitting of the piperidine protons;
the methylene protons (H2 and H3) appeared around 3.52 ppm, 3.22 ppm, 2.91 ppm, and 2.30 ppm.
In addition, the peak at 2.78 ppm corresponded to the methyl protons on the nitrogen atom. All these
results indicate a successful synthesis of poly(meta/para-terphenylene-piperidine)s. The compositional
analysis of meta-phenyl units in the copolymers was, however, not possible, since all the aromatic
peaks corresponding to the meta- and para-terphenyls were overlapped at the range of 7.91 to 7.36 ppm
(Figure S1). The feed ratio was, therefore, used for the composition between the meta-phenyl and
para-phenyl unit in the poly(meta/para-terphenylene-piperidine)s.

The poly(meta/para-terphenylene-piperidine) copolymers were further functionalized for
quaternization using methyl iodide and K2CO3 to the desired poly(meta/para-terphenylene-methyl
piperidinium)s with three different meta-phenyl units. The functionalized polymers were soluble in
organic solvents such as N,N-dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP).

Finally, the structure of the poly(meta/para-terphenylene-methyl piperidinium) after the
methylation process was further confirmed by spectroscopic analyses using 1H NMR, and it was
found that a new characteristic peak appeared around at 3.11 ppm, due to methyl protons from the
quaternized piperidinium group, while all other peaks remained almost constant, indicating that the
piperidine group was successfully quaternized to methyl piperidinium as a conducting head group
(Figure S2).
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3.2. Membrane Preparation

Membranes based on poly(meta/para-terphenylene-methyl piperidinium) copolymers, m-p-MP-ys,
in their hydroxide (OH−) forms with three different meta-phenyl units were prepared by the solvent
casting method using 3 wt.% solutions of each polymer in DMSO. The prepared brown membranes in
their iodide forms were of a thickness controlled to 30 to 40 µm. The immersion of the membranes
in a KOH solution finally afforded the desired poly(meta/para-terphenylene-methyl piperidinium)
copolymer membranes with hydroxide anions. The membranes that formed appeared uniform and
flexible (Figure 2).
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3.3. Morphological Analyses

The morphologies of the prepared m-p-MP-ys were analyzed by small angle X-ray scattering
(SAXS) and atomic force microscopy (AFM). At first, clear ionomeric peaks with long range order
were observed for all three copolymer membranes (m-p-MP-20, m-p-MP-50, and m-p-MP-60) from
the SAXS analysis, indicating a good phase separation between hydrophilic ionic domains and
hydrophobic domains (Figure 3). Among three copolymer membranes with different meta-phenylene
units, the m-p-MP-50 membrane with 50% m-phenyl showed the lowest q-value at 0.00149 Å−1,
and also the most distinct diffraction patterns, strongly indicating the formation of continuous and
well-interconnected ionic channels required for enhanced ionic conductivity. It was suggested that
the meta-connectivity in terphenyl units permits the polymer backbones to fold back to maximize
interactions between the hydrocarbon polymer backbones and enhances the peripheral formation of
ion aggregates [39]. Furthermore, the m-p-MP-50 membrane also displayed ionomeric peaks at 0.00342,
0.00739, and 0.00931 Å−1, indicating the presence of a long-range-ordered morphology [40,41].

In contrast, the m-p-MP-60 copolymer membrane with the highest content of the meta-phenyl unit
showed a strong scattering peak at q = 0.00822 Å−1 with high intensity, suggesting that a large amount
of small ionic clusters were dominant in this membrane and so the continuous ionic channel might not
form within it. This may be associated with the aggregation of polymeric chains, due to the largest free
volume occupied within the polymer chains [16,42].

The AFM phase images of m-p-MP-y copolymer membranes further supported the phase separated
morphologies between the dark hydrophilic and the bright hydrophobic domains for all three
membranes (Figure 4). It was also found that, as the meta-phenyl unit increased from m-p-MP-20
to m-p-MP-50, the size of the hydrophilic ionic domains increased by peripheral development of
hydrophilic ion aggregates, due to the conformational changes brought about by the kink-structured
meta-phenyl unit [25,43], hence causing the formation of continuous ionic channels. Further increase of
the meta-phenyl unit to 60 mol% for m-p-MP-60, however, caused more aggregation of ionic domains



Membranes 2020, 10, 329 7 of 16

voiding the continuous channel formation, possibly due to the excess free volume brought on by the
high content of meta-phenyl in the poly(meta/para-terphenylene-methyl piperidinium) copolymers.
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Figure 4. Atomic force microscopy (AFM) phase images of the m-p-MP-20, m-p-MP-50, and m-p-MP-60
copolymer membranes.

The AFM height and 3D top view images of the m-p-MP-ys further supported the morphological
difference in three copolymers (Figures S3 and S4). The m-p-MP-20 membrane with only 20% of
meta-terphenyl unit showed a rather discrete phase-separation, due to strong interactions between the
polymer backbones of the linear para-phenyl units which constitute a major part of the copolymers.
In contrast, the formation of aggregated ionic clusters was confirmed from the 3D AFM images for the
m-p-MP-60 having the highest content of the meta-phenyl unit: the AFM 3D side view image of this
membrane showed large peaks representing the hydrophobic region and troughs representing the
hydrophilic region, suggesting the aggregation of the hydrophilic domain (Figure S5).

The results from the AFM analyses were consistent with those of SAXS and indicate that an
introduction of meta-phenyl unit in the polymer structure of the poly(meta/para-terphenylene-methyl



Membranes 2020, 10, 329 8 of 16

piperidinium)s increased the free volume, but there is also an optimum level of this kink-structured unit
to achieve well-separated morphology. Overall, the m-p-MP-50 with 50% molar ratio of meta-phenyl
unit showed the best morphology, due to the most balanced spatial configuration between the folded
meta-terphenyl unit and extended para-terphenyl unit, hence both the highest conductivity and the
highest dimensional stability are expected for this membrane.

3.4. Ion Exchange Capacity, Water Uptake, Swelling Ratio, and Density Measurements of the Membranes

The ion exchange capacity (IEC) of ion-conducting polymers (or ionomers) is defined as
the milli-equivalents of cationic groups (conducting head groups) per gram of polymer and has
a significant effect on the performance of AEMs. In general, high IEC values of AEMs lead
to high conductivity, but at the same time membranes with higher IECs tend to have poor
physical properties, including low dimensional stability [44]. The experimental IEC values of the
poly(meta/para-terphenylene-methyl piperidinium)s were measured by back titration and were found
to be in the range of 2.21–2.49 meq·g−1. It was also found that the experimental IEC values were
almost similar with the theoretical IEC values calculated from the polymer structure in the OH− form,
indicating that the poly(meta/para-terphenylene-piperidine)s were fully quaternized to the desired
poly(meta/para-terphenylene-methyl piperidinium)s.

The water uptake of the AEM is directly related to swelling and ionic conductivity: while high
water uptake is generally required for high conductivity, as water is a medium for ion conduction,
excessive water uptake inevitably causes swelling (or low dimensional stability) of the membrane [25,45].
Therefore, a moderate water uptake to obtain high conductivity while minimizing swelling is essential
for the development of high performance AEMs. The water uptake and swelling ratio of the
poly(meta/para-terphenylene-methyl piperidinium)s were measured at temperatures ranging from
20 ◦C to 80 ◦C (Table 1). It was found that the m-p-MP-20 showed the least water uptake, due to its
linear structural conformation, and the water uptake increased as the meta-phenyl unit increased from
m-p-MP-20 to m-p-MP-60, due to the increased free volume created by the increased content of the
kink-structured meta-terphenyl unit in the copolymers.

As expected, the swelling ratio in the length direction (∆l) also rose with the increase of the
meta-phenyl unit. It was, however, found that the m-p-MP-50 with 50% molar ratio of the meta-phenyl
unit showed the lowest swelling ratio (or highest dimensional stability) in the thickness direction (∆t),
both at low (20 ◦C) and high (80 ◦C) temperatures, among copolymers with three different meta-phenyl
units. The lower swelling (or higher dimensional stability) of this membrane means that it is possible
to more effectively suppress significant hygrothermal stresses that can occur while membranes are
subjected to repeated expansion and contraction due to humidity variation under actual cell operating
conditions [46]. This high dimensional stability of m-p-MP-50 is ascribed to the best-defined phased
separated morphology for this membrane, caused by the balanced spatial configuration between the
folded meta-terphenyl unit and extended para-terphenyl unit, as confirmed by the AFM and SAXS.

The density of the m-p-MP-ys was further measured, and it was found that this value
decreased with the increase of the meta-phenyl unit from m-p-MP-20 to m-p-MP-60, suggesting
that the free volume increased with the incorporation of the kink-structured meta-phenyl unit in the
poly(meta/para-terphenylene-methyl piperidinium) copolymers (Table 1).

Table 1. Ion exchange capacity (IEC), water uptake, swelling ratio, and density of the m-p-MP-y membranes.

Membrane
Code

IEC (meq/g) Water Uptake (%) Swelling Ratio (%) Density
(Dry)

Calc. a Exp. b 20 ◦C 80 ◦C 20 ◦C (∆l) 80 ◦C (∆l) 20 ◦C (∆t) 80 ◦C (∆t)

m-p-MP-20 2.80 2.21 ± 0.06 45.6 ± 0.4 96.4 ± 0.5 19.0 ± 0.3 28.6 ± 0.6 17.6 ± 0.5 19.0 ± 0.6 1.74
m-p-MP-50 2.80 2.49 ± 0.01 49.3 ± 0.7 107.5 ± 1.8 19.0 ± 0.2 33.3 ± 0.3 11.1 ± 0.7 12.5 ± 0.4 1.66
m-p-MP-60 2.80 2.30 ± 0.03 59.4 ± 0.8 201.7 ± 2.9 20.0 ± 0.5 45.0 ± 0.4 19.4 ± 0.6 23.7 ± 0.7 1.64

a Theoretical values calculated from the polymer structure in the OH− form. b Experimental values.
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3.5. Ion Conductivity

Ionic conductivity is the key property for evaluating the AEM performance of fuel cell applications
in which high conductivity is generally required to achieve high power density for the AEMFC
operation. The conductivity data obtained for the poly(meta/para-terphenylene-methyl piperidinium)s
measured at temperatures ranging from 20 ◦C to 80 ◦C are given in Table 2 and Figure 5. Although the
m-p-MP-y copolymer membranes with all three different meta-phenyl units had similar IEC values,
the m-p-MP-50 copolymer membrane exhibited the highest conductivity of 53.53 mS/cm at 20 ◦C and
130.39 mS/cm at 80 ◦C. This is again ascribed to the well-developed interconnected ionic channels
originating from the balanced spatial configuration between the linear and rigid para-phenyl unit and
the folded meta-terphenyl unit, as confirmed by the AFM and SAXS. The m-p-MP-60 with the highest
content of para-phenyl showed almost identical conductivity with m-p-MP-20 up to 60 ◦C despite its
high water uptake, but this was reversed at 80 ◦C, and this is ascribed to the dilution of the ionic
charge concentration due to the high water content—the so-called “dilution effect” caused by excess
water uptake which in turn results from high free volume of the poly(meta/para-terphenylene-methyl
piperidinium) membrane in this composition [47].

Table 2. Conductivity values of m-p-MP-y copolymer membranes.

Membrane
Code

OH− Conductivity (mS/cm)

20 ◦C 40 ◦C 60 ◦C 80 ◦C

m-p-MP-20 32.76 ± 0.12 48.60 ± 0.01 72.50 ± 0.01 103.67 ± 0.71
m-p-MP-50 53.53 ± 0.15 70.96 ± 0.37 99.07 ± 0.21 130.39 ± 0.59
m-p-MP-60 39.18 ± 0.12 55.67 ± 0.11 77.62 ± 0.30 83.79 ± 1.27Membranes 2020, x, x FOR PEER REVIEW 10 of 17 
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In addition, we further compared the hydroxide conductivities of our m-p-MP-y membranes with
other AEMs prepared from the polyphenylene-type AEMs reported in the recent papers [16,25,26,35,36,48]
(Figure S6). It was found that all the m-p-MP-y copolymer membranes exhibited similar or higher
conductivities than other polymer electrolytes having a similar range of IECs. Among three,
the m-p-MP-50 showed the highest conductivity, due to the well-separated morphology developed,
as mentioned above.

3.6. Thermal Stability and Mechanical Properties

The thermal stability of three poly(meta/para-terphenylene-methyl piperidinium)s were analyzed
by thermo gravimetric analysis (TGA) up to 600 ◦C (Figure 6). The first weight loss observed below
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200 ◦C was ascribed to the evaporation of the residual solvents and water in the membranes. This was
followed by two-stage mass losses, where the first degradation between 200 ◦C and 300 ◦C was due to
the decomposition of piperidinium groups and the second degradation between 300 ◦C and 450 ◦C was
ascribed to the polymer backbone degradation. Overall, all three membranes showed high thermal
stability up to 200 ◦C, good enough for fuel cell operation. In addition, the differential scanning
calorimetry (DSC) analyses of the m-p-MP-y copolymer membranes were further carried out to confirm
the effect of the backbone structure on the polymer chain mobility of the membranes (Figure S7).
As expected, the higher molar ratio of the rigid p-phenyl segment brought a higher glass transition
temperature (Tg). It can be seen that from m-p-MP-20 to m-p-MP-60, the Tg decreased from 110.6 ◦C to
106.0 ◦C, which confirmed a higher free volume generated in the m-p-MP-ys copolymers [42].
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Another important factor for assessing the properties of the developed AEMs is their mechanical
property, which was analyzed by monitoring the stress-strain curves of the membranes (Figure 7).
The tensile stress for all three membranes was observed in the range of 40.00–56.16 MPa and the
elongation at break was from 3.41% to 8.90%. The m-p-MP-50 membrane showed the highest tensile
strength and elongation at break of 56.16 MPa and 8.90%, respectively. The controlled polymer design,
and hence the well-developed morphology, are obviously related with this excellent mechanical
property of this membrane. The m-p-MP-60 with the highest content of the kink-structured meta-phenyl
unit showed the lowest tensile strength and elongation at break, due to especially high water uptake
by this membrane. These results strongly suggest that too much free volume adversely affects the
mechanical property of the AEMs, and there is an optimum level for the conformational structure.
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3.7. Single Cell Performance

The m-p-MP-50 membrane with 50 mol% of meta-phenyl unit was found to be the best among
three copolymer membranes with different meta-phenylene units in terms of chemophysical and
electrochemical properties. With these results in hand, this membrane was further investigated for
the single-cell performance for AEMFC application. Figure 8a represents the polarization and power
density curves of the corresponding membrane with a thickness of 27 µm performed at 60 ◦C and 95%
RH conditions. The cell test was carried out under H2/O2 conditions and the copolymer membrane
manifested a good fuel barrier ability by attaining an open circuit voltage of 0.943 V [49]. The peak
power density (Pmax) achieved for the m-p-MP-50 membrane was 172 mW/cm2 at a current density of
407 mA/cm2. In addition, a current density of 238 mA/cm2 at 0.6 V was obtained for this membrane.
Membranes 2020, x, x FOR PEER REVIEW 12 of 17 

 

 

 

Figure 8. (a) H2/O2 single cell performance data of the m-p-MP-50 membrane in 95% RH at 60 °C and 
(b) maximum power density values of recently reported rigid polymer-based AEMs, compared with 
the m-p-MP-50 membrane. 

3.8. Alkaline Stability 

Aside from the physical stabilities such as mechanical and thermal stability of the AEMs, 
chemical stability in an alkaline condition (or alkaline stability) where AEMFCs operate is also very 
important to determine the duration of fuel cells. The chemical stability of the m-p-MP-50 membrane 
in an alkaline condition was, therefore, examined by measuring its hydroxide conductivity in a 1M 
KOH solution at 80 °C for 500 h at a certain time interval in terms of its decrease over time (Figure 9). 
After a certain period, this membrane was taken out of the KOH solution and carefully washed with 
deionized water. The hydroxide ion conductivity was then measured at 20 °C. The increment of 
hydroxide conductivity was observed up to 48 h, and it was attributed to the complete conversion of 
the conducting head group, that is piperidinium, from the halide form to the hydroxide anion form 

Figure 8. (a) H2/O2 single cell performance data of the m-p-MP-50 membrane in 95% RH at 60 ◦C and
(b) maximum power density values of recently reported rigid polymer-based AEMs, compared with
the m-p-MP-50 membrane.
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Compared to the AEMs based on rigid polymers with aryl ether free backbone, as reported in
recent papers [26,27,36,37,39,48,50], the AEM based on m-p-MP-50 exhibited moderate to good cell
performance (Figure 8b). This cell performance was attributable to the well-separated morphology that
resulted from controlling the conformational structure by balancing between the linear para-terphenyl
and kink-structured meta-terphenyl units.

3.8. Alkaline Stability

Aside from the physical stabilities such as mechanical and thermal stability of the AEMs, chemical
stability in an alkaline condition (or alkaline stability) where AEMFCs operate is also very important to
determine the duration of fuel cells. The chemical stability of the m-p-MP-50 membrane in an alkaline
condition was, therefore, examined by measuring its hydroxide conductivity in a 1M KOH solution at
80 ◦C for 500 h at a certain time interval in terms of its decrease over time (Figure 9). After a certain
period, this membrane was taken out of the KOH solution and carefully washed with deionized water.
The hydroxide ion conductivity was then measured at 20 ◦C. The increment of hydroxide conductivity
was observed up to 48 h, and it was attributed to the complete conversion of the conducting head group,
that is piperidinium, from the halide form to the hydroxide anion form [8,26]. After this point, this
membrane showed conductivity loss less than 4% up to 500 h, indicating long-term chemical stability.
The membrane also maintained its original flexibility even after the alkaline test. The combination of
non-aryl ether (C–O) linkages and balanced conformational structure between linear para-phenyl and
kink-structured meta-phenyl units in the polymer backbone, together with the piperidium conducting
head groups, are the reasons for the excellent chemical stability of the m-p-MP-50 membrane.
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4. Conclusions

In the present study, anion exchange membranes (AEMs) based on poly(meta/para-terphenylene-
methyl piperidinium) copolymers with different meta-terphenyl units were developed. The various
characteristics of these AEMs were observed and examined with respect to the composition of the
meta-terphenyl unit in the copolymers. The meta-connectivity in terphenyl units is expected to allow the
polymer chains to fold back to maximize interactions between the hydrocarbon backbones, promoting
the peripheral formation of ion aggregates, due to the free volume generated by the kink structure.

The m-p-MP-50, having 50 mol% of the meta-terphenyl unit, exhibited the highest conductivity
while experiencing the least swelling together with the highest mechanical stability among three
m-p-MP-ys with different compositions. This is due to the well-defined morphology resulting from the
controlled free volume, which in turn originates from the balanced conformational structure between
the linear para-terphenyl and kink-structured meta-terphenyl units. The m-p-MP-50, with an IEC of 2.49
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meq/g, presented a high conductivity of 130.39 mS/cm at 80 ◦C. Moreover, good mechanical properties
and high thermal and alkaline stability (it maintained 96.4% of the initial conductivity even after
immersion in 1 M KOH at 80 ◦C for 500 h) were obtained for this membrane. The m-p-MP-50 also
showed a peak power density of 172 mW/cm2 at a current density of 407 mA/cm2 at 60 ◦C, and these
results are either comparable to or better than those for other AEMs based on the rigid polymer
backbones reported.

The major findings of the present study show that with the introduction of a kink-structured rigid
molecule capable of generating free volume can not only improve the performance of the fundamental
properties of AEMs but also their cell performance, which is essential for AEMs to be used in working
fuel cells.
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