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Cystitis is a urinary bladder disease with many causes and symptoms. The severity of cystitis ranges from mild lower abdominal
discomfort to life-threatening haemorrhagic cystitis. The course of disease is often chronic or recurrent. Although cystitis represents
huge economical and medical burden throughout the world and in many cases treatments are ineffective, the mechanisms
of its origin and development as well as measures for effective treatment are still poorly understood. However, many studies
have demonstrated that urothelial dysfunction plays a crucial role. In the present review we first discuss fundamental issues of
urothelial cell biology, which is the core for comprehension of cystitis. Then we focus on many forms of cystitis, its current
treatments, and advances in its research. Additionally we review haemorrhagic cystitis with one of the leading causative agents
being chemotherapeutic drug cyclophosphamide and summarise its management strategies. At the end we describe an excellent
and widely used animal model of cyclophosphamide induced cystitis, which gives researches the opportunity to get a better insight

into the mechanisms involved and possibility to develop new therapy approaches.

1. Introduction

Cystitis is inflammation of the urinary bladder with diverse
and often unknown etiology. Our understanding of cystitis
rests in the comprehension of currently insufficient but
rapidly growing knowledge about structure-function rela-
tionships within urinary bladder and its interaction with
other organ systems, especially with nervous system. Urinary
bladder wall is composed of three layers: (i) the mucosa, (ii)
the muscularis propria, and (iii) the adventitia/serosa. The
mucosa contains the urothelium, the epithelium which faces
the urine, basal lamina, which separates urothelium from
underlying connective tissue, and lamina propria. Lamina
propria is composed of an extracellular matrix contain-
ing several types of cells, including fibroblasts, myofibrob-
lasts/interstitial cells, immune cells, and afferent and efferent
neurons. In addition, lamina propria contains blood and
lymphatic vessels, elastic fibres, and smooth muscle fascicles
(muscularis mucosae). Muscularis mucosa is not very well
defined in the human bladder and sometimes seems to be
absent [1]. Muscularis propria is formed by the detrusor

muscle, which is organised into three layers of smooth
muscle fibres running in different directions. Urothelium
lines not only the inner surface of the urinary bladder, but
also the renal pelvis, ureters, and proximal urethra [2]. The
urothelium of the urinary bladder is composed of three
distinctive cell layers. Functionally, it forms a high-resistance
permeability barrier (blood-urine barrier) to molecules and
ions as well as pathogens in the urine and can accommodate
to large changes in urine volume during micturition cycles
[3]. Terminally differentiated superficial cells, called umbrella
cells, are responsible for maintaining the blood-urine barrier,
which depends on two structures: tight junctions with the
highest resistance in the mammalian body [4] and the
apical plasma membrane with unique specializations named
urothelial plaques [5]. Furthermore, these cells are resistant to
large mechanically deforming forces such as stretch (during
filling and storage) and sudden compression (during void-
ing), which is accomplished by their high foldability and
capacity to alter their apical surface area by exocytosis and
endocytosis [6]. Moreover, the urothelium acts as an integral
part of the urinary bladder sensory web, which receives,
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amplifies, and transmits information to the underlying tissues
including sensory nerve fibres, myofibroblasts, and smooth
muscle cells [7]. In this respect, urothelium releases various
mediators and neurotransmitters to reflect its degree of
physical distension, so that both sympathetic and parasym-
pathetic nerves can coordinate normal bladder function
during filling and voiding [8]. The permeability barrier and
sensory function of the urothelium are compromised in
various diseases that affect the urinary bladder. For example,
it is proposed that in patients with neurogenic detrusor
overactivity lower permeability barrier of the urothelium
might lead to enhanced signalling responsible for urinary
frequency and bladder pain [9]. Similar events are observed
in cystitis, where lower permeability barrier of the urothelium
could be directly correlated with defective differentiation of
urothelial cells [4].

2. Urothelial Differentiation and Formation of
Blood-Urine Permeability Barrier

The function of the urothelium as an effective blood-urine
barrier is accomplished by its normal differentiation process.
Differentiation runs from basal cell layer, facing the basal
lamina, across intermediate to the superficial cell layer, which
is in contact with urine. Basal cells are small and they can
divide mitotically. Some of the basal cells are urothelial stem
cells but their identification remains controversial because
of the lack of specific markers [10]. It has been proposed
that 9% of basal cells represent putative urothelial stem
cells in rat urothelium [11]. Above basal cell layer towards
the lumen of the urinary bladder there are intermediate
cells. The thickness of intermediate cell layer differs between
mammalian species; in rodents it is one cell layer thick,
while in human it is up to six cell layers thick. Intermediate
cells in rodents start to express urothelium-specific proteins,
uroplakins (UPs; Figure 1(a)) [12, 13]. However, UPs are
detected primarily in the superficial umbrella cells in human
urothelium [14]. UPs belong to a group of evolutionary con-
served integral membrane proteins that comprises four major
members, UPIa (27kDa), UPIb (28 kDa), UPII (15kDa),
and UPIIIa (47 kDa) [15, 16]. UPIa and UPIb belong to the
tetraspanin family, while UPII and UPIIla have a single
transmembrane domain. All four UPs have large extracellular
domains, which gives the urothelial membranes a thickened
(12nm) asymmetric appearance, readily seen with trans-
mission electron microscope [17]. UPs appear in dimers,
namely, UPIa/UPII and UPIb/UPIIIa heterodimers. These
heterodimers associate to form heterotetramers and such six
heterotetramers are assembled into a 16 nm intramembrane
particle [18]. Hexagonally packed 16 nm particles form two-
dimensional crystals known as urothelial plaques, which
are interconnected by thinner membranes known as hinges
[19]. In intermediate cells of rodents, UPs are present in the
membranes of cytoplasmic vesicles, called fusiform vesicles,
but not in the plasma membrane [20]. In superficial umbrella
cells, terminal urothelial differentiation is achieved. Umbrella
cells have high levels of UPs expression (Figure 1(a)), which
is reflected in the formation of large urothelial plaques
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in post-Golgi compartments [21]. Two urothelial plaques
form each fusiform vesicle, which is therefore flattened in
shape (Figure 1(b)). Usually 4-15 fusiform vesicles are joined
together into stacks [20]. Such shape and organisation of
fusiform vesicles make them a perfect storage compartment,
which can transport large amounts of urothelial plaques to
the apical plasma membrane of umbrella cells. It is believed
that fusiform vesicles fuse with the apical plasma membrane
during distension of the urinary bladder. This exocytotic
event is not completely understood in umbrella cells but it was
proposed that cytokeratins, Rab27b, and MAL protein play
important roles [22, 23]. Urothelial plaques cover 70-90%
of the urothelial apical surface, which can be demonstrated
by scanning electron microscopy (Figure 1(c)), and they
represent structural basis for blood-urine barrier.

The expression of UPs and the presence of urothelial
plaques are therefore two main characteristics for establishing
urothelial differentiation and also for predicting functional,
high-resistance permeability barrier [24, 25]. Moreover, UPs
are also suggested as useful markers for diagnosis, detection,
and prognostic prediction of urothelial carcinomas [26].

3. Cystitis and Advances in Its Research and
Patients Care

Cystitis can be clinically described as a syndrome of dysuria,
urgency, frequency, and lower abdominal pain. Although
cystitis is usually caused by bacterial infection, it can also
be caused by noninfectious conditions such as carcinoma
in situ, bladder cancer, and bladder stone or it can even
emerge from unknown origin as in interstitial cystitis [27].
Urologists usually distinguish cystitis of infectious origins
and of noninfectious origins. The category of infectious
cystitis can further be classified into uncomplicated cystitis
and complicated cystitis (Table 1). Uncomplicated cystitis can
be described as an infection in women with a structurally
and functionally normal urinary bladder. However, compli-
cated cystitis is associated with structurally or functionally
abnormal urinary bladder where the host is compromised
and pathogens develop antimicrobial resistance. After careful
differential diagnosis, appropriate treatment must be used,
which results in successful management in most cystitis
instances [28, 29].

Most cases of cystitis occur in women. In addition, each
year approximately 10% of all women report a urinary tract
infection and more than 50% of all women have at least
one such urinary bladder infection in their lifetime [27,
30]. The symptoms of cystitis are very variable but usually
painful urination, urgency, frequency, lower abdominal pain,
and haematuria can develop (Table 1). Presence of clinical
symptoms or signs is sufficient to diagnose uncomplicated
cystitis in addition to simple urine analysis with microscopic
findings and gram staining. Urine culture in every patient
with the infection is usually recommended [27, 31]. Some
of the patients may experience recurrent cystitis [32]. The
definition of recurrent cystitis is two or more symptomatic
cystitis episodes over a 6-month period or three or more
cystitis episodes within a one-year period (Table 1) [27,
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FIGURE 1: Normal mouse urinary bladder with terminally differentiated umbrella cells in the superficial layer of the urothelium. (a)
Immunolabelling on paraffin section shows strong expression of uroplakins in umbrella cells (dark brown), weaker expression in intermediate
cells (light brown), and negative basal cells that lie on the basal lamina (arrows). (b) Immunolabelling on ultrathin section demonstrates
uroplakins (12 nm colloidal gold particles, black) in the membranes of fusiform vesicles (asterisks) and in the apical plasma membrane facing
bladder lumen (L). (c) Scanning electron microscopy of the umbrella cell shows that its apical plasma membrane is covered with urothelial
plaques (grey) interconnected by hinges (white). One such plaque and hinge region is encircled. Scale bars (a) = 50 ym, (b) =1um, and (c) =

10 pm.

TaBLE 1: Classification and clinical features of cystitis.
Category Clinical features
Cystitis Dysuria, urgency, frequency, lower abdominal pain, and haematuria

Uncomplicated cystitis

Isolated or sporadic

Reinfection : N
infection in past 6 months

Complicated cystitis

Cystitis in men or compromised host;
cystitis with a structurally and functionally abnormal bladder

Cystitis in women with a structurally and functionally normal bladder
No cystitis symptoms in 4 weeks before this episode
At least 3 episodes of uncomplicated infection in past 12 months or at least 2 episodes of uncomplicated

33]. Reinfection and bacterial persistence are two typical
phenotypes in recurrent cystitis. In healthy women recurrent
cystitis is usually caused by reinfection with new pathogens
or different pathogens from outside the urinary tract and
is classified as the category of uncomplicated cystitis [34].
Nevertheless, recurrent cystitis in compromised men is
caused by the same pathogens from the same site within the
urinary bladder due to bacterial persistence. This kind of
recurrent cystitis is classified as chronic infection and usually
occurs in structurally or functionally abnormal urinary
bladder and can therefore be classified into the category
of complicated cystitis [27, 34]. It is commonly caused by

various pathogens with antimicrobial resistance [27] and the
patients with chronic cystitis usually have various additional
complicating factors, which contribute to the infection [29].
Uncomplicated cystitis usually occurs at variable intervals by
different species, while chronic infection is due to the same
organism at very close time intervals.

The most common pathogen in uncomplicated and
complicated cystitis is uropathogenic E. coli (UPEC) strain,
followed by Staphylococcus saprophyticus, enterococci, coag-
ulase-negative staphylococci, and other species of Enterobac-
teriaceae [27, 35]. The pathogenesis of UPEC in host cells
has been relatively well documented [35, 36]. UPEC strains



originate from host’s large intestine. However, in contrast
to intestinal E. coli strains, UPEC strains have a number of
virulence factors that enable them to invade into urothelium
and survive against host defences [35, 37]. UPEC strains from
intestine can adhere to and colonize the perineum and vagina
and subsequently migrate to the urinary tract where they
cause an inflammatory response in the urothelium [38, 39].
In addition, the increased epithelial receptivity for E. coli on
the genitourinary organs can be associated with recurrent
cystitis [40]. Almost all of UPEC strains express type 1
fimbriae and its adhesin, FimH, enables them to attach to
urothelial surface receptor and invade into urothelium of the
urinary bladder [37, 41]. Furthermore, UPEC strains typically
express an array of toxins such as siderophores for iron
acquisition systems and hemolysin and cytotoxic necrotizing
factors for exploiting host nutrients and facilitating bacterial
dissemination [35, 37]. UPEC strains gain a foothold in the
urinary tract by binding FimH to uroplakin UPIa [36, 38].
Seeking intracellular refuge within urothelial cells is the only
way that UPEC can avoid elimination by the voiding of urine
from the urinary bladder or by the host’s innate immunity
[36, 38, 42]. Upon ligation of the UPEC to UPIa, widespread
conformational changes within the apical plasma membrane
of umbrella cells are induced, followed by engulfment of the
UPEC into sanctuary [6, 38]. This bacterial invasion is medi-
ated by localized host actin rearrangement and phagocytosis
of the bound UPEC by zippering of the membrane around
the microorganism [6, 43, 44].

Blocking the binding between UPIa of umbrella cells and
FimH of bacteria is an ideal target for infectious cystitis
treatment. Specific targeting of the FimH adhesion could be
achieved by using the soluble receptor analogues or manno-
sides that act as antiadhesives. These molecules bind FimH
and prevent it from interacting with host receptors [45].
Moreover, it has been reported that surfactant protein D (SP-
D) inhibits bacterium-induced cytotoxicity by preventing
adherence of UPEC to the umbrella cells and dampen UPEC-
induced inflammation in mice [46]. However, we must point
out a concern regarding the systemic administration of either
mannosides or pilicides that are potentially adversely affect-
ing commensal E. coli and other members of the intestinal
microbiota, many of which also express type 1 pili [47].

Invasion into the umbrella cells allows UPEC to establish
a new niche in an effort to protect itself from the host
innate immune response [39, 43]. The intracellular UPEC
can multiply within umbrella cells intracellular compartment
to form the so-called intracellular bacterial communities,
some of which can then switch into a quiescent phase to
persist in the cells indefinitely. Intracellular quiescent nature
of these bacteria provides their resistance to antibiotics and
protects them from host neutrophils and other host surveil-
lance systems [39, 43, 48, 49]. Intracellular signals, such as
the reorganization of the actin filaments, can trigger the
resurgent growth of UPEC, prompting the development and
dispersal of intracellular bacterial communities leading to the
recurrence of clinical symptoms [32, 50]. Recently, it has been
proposed that the resurrection of these quiescent forms of
UPEC is coincident with recurrent cystitis or bacterial per-
sistence [51]. The urothelial cells must therefore prevent the
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UPEC attacks to survive. Upon contact with UPEC or their
products, the host immune surveillance molecules evoke a
variety of immune responses aimed at the early elimination
of the invading uropathogens. There are many evidences
that toll-like receptors (TLRs) are the major contributing
factors to the immunogenic resistance of the urinary tract
to this microbial attack. Mutant mice with inactive TLR4 are
defective in their ability to clear urinary tract infections [52,
53]. This defect is attributed to the inability of urothelial cells
to evoke an appropriate cytokine response to uropathogens,
which results in limited recruitment of neutrophils to sites of
infection in the urinary tract [53].

Even though the natural course of uncomplicated cystitis
is usually self-limited and is spontaneously healed, the oral
antibiotic agents are the first choice for its treatment [27,
32]. Empirical antibiotics that reveal less than 20% drug
resistance among E. coli strains are usually recommended.
Trimethoprim or trimethoprim and sulfamethoxazole have
been widely used as effective and inexpensive agents for
empirical therapy in the most areas of the world [27]. In some
areas where high resistance to trimethoprim or trimethoprim
and sulfamethoxazole has been observed, fluoroquinolone
antibiotics are recommended as an alternative drug. Women
with recurrent cystitis usually require careful consideration
of medical history for the risk factors of reinfection and
must consider long-term medical suppressive management
[33, 54]. Spermicide use for birth control or for prevention
of sexually transmitted infections can be associated with an
increased risk of cystitis and vaginal colonization with E.
coli [55]. Because spermicides with nonoxynol-9 may lead to
reduction of vaginal lactobacilli, the preventive mechanisms
against bacterial interference can become weak and therefore
enhancement of the adherence of E. coli strains to vaginal
epithelial cells occurs [55, 56]. In addition, the lack of
estrogen in menopause women also causes marked changes
in the vaginal microflora, including a loss of lactobacilli and
increased bacterial colonization [57]. Sexual intercourse in
women is also one of the risk factors for cystitis. Women with
recurrent cystitis usually require low dose of continuous pro-
phylaxis, self-start intermittent therapy, or postintercourse
prophylaxis [27, 54, 55].

Complicated cystitis is the one that occurs in a patient
with a compromised urinary tract or that is caused by a very
resistant pathogen [29]. These infections are usually caused
by an atypical and broad range of bacteria with resistance to
multiple antibiotics. Urine cultures, therefore, are mandatory
to identify the bacteria and decide for appropriated antimi-
crobial agents. Patients with chronic cystitis can usually
be cured of the recurrent infections by identification and
surgical removal or correction of the focus of infection [27].
In addition, functional or structural abnormalities should be
corrected, and urinary tract function must be restored by
medical, pharmacologic, or surgical management.

4. Haemorrhagic Cystitis and Its Treatment

Haemorrhagic cystitis (HC) is defined by urinary bladder
irritation signs and haematuria. The disease can be triggered
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by many circumstances including going through chemother-
apy, receiving radiation therapy, and experiencing various
bacterial and viral infections [59, 60]. The severity of HC
has been reported to range from asymptomatic microscopic
haematuria to life-threatening haematuria [61]. The clinical
courses of HC are variable depending on the causes. The
HC induced by infection is usually self-limited and resolves
spontaneously or with appropriate antibiotic therapy. In some
patients, however, the removal of the urinary bladder is
necessary to save their lives, since life-threatening haematuria
from anticancer agents sometimes cannot be controlled by
conventional medical methods [62]. Additionally, physicians
do not prescribe full therapeutic doses of anticancer agents in
the treatment of cancers because severe urologic side effects
of these agents have frequently been reported [63].
Cyclophosphamide  (2-[bis(2-chloroethyl)amino]tetra-
hydro-2H-1,2,3-oxazaphosphorine 2-oxide) was first intro-
duced as an antineoplastic agent in 1958 [64] and since
then numerous reports have been published concerning
haemorrhagic cystitis, a side effect not observed with
other alkylating agents. Currently cyclophosphamide is
still widely used in chemotherapy of B cell malignant
diseases and some solid tumours, conditioning before bone
marrow transplantation, and in the treatment of certain
immunoinflammatory conditions, for example, Wegener’s
granulomatosis, rheumatoid arthritis, and systemic lupus
erythematosus [65, 66]. Cyclophosphamide side effects
depend on the dosage of cyclophosphamide used and can
affect up to 75% of the patients receiving a high intravenous
dose. The frequent side effects of cyclophosphamide in the
urinary bladder range from irritative voiding symptoms,
urinary frequency, dysuria, urgency, suprapubic discomfort,
and strangury, with microhematuria, to the potentially life-
threatening complication of haemorrhagic cystitis [63, 67].
Cyclophosphamide is metabolized in the liver and possibly
in the kidney to 4-hydroxy metabolites (e.g., phosphoramide
mustard, PAM, and acrolein) which are renally excreted
and stored in the urinary bladder until voiding [68, 69].
PAM is the primary chemotherapeutic metabolite but it
has minimal effects on the bladder, while acrolein was
recognised as the causative agent in cyclophosphamide
induced haemorrhagic cystitis [70]. Acrolein is a highly
reactive aldehyde and the mechanism by which acrolein
reaches the bladder is unclear, although it is suggested that
it might be formed in the lumen of the bladder. Effects of
acrolein on the bladder wall are contributed to its contact
with umbrella cells and include necrosis, desquamation,
oedema, ulceration, neovascularization, and haemorrhage
[71]. The therapeutic targets in cyclophosphamide induced
haemorrhagic cystitis are dysuria or micturition symptoms
and massive haematuria. Dysuria, frequent voiding, and
urgency may be controlled with medications, but massive
haematuria is a life-threatening symptom and should be
immediately controlled. Hyperhydration, bladder irrigation,
and agents that can detoxify cyclophosphamide such as
Mesna (2-mercaptoethane sodium sulphonate) have been
the most frequently used prophylactic measures to prevent
treatment-related cystitis but are not always effective [72].
In the search for new prevention and treatment approaches

hyperbaric oxygen therapy, flavonoids or polyphenols,
and melatonin are suggested as supportive treatment, but
further studies are required for their translation into clinic
[59, 73, 74]. Another promising clinical prophylactic agent
is the epinephrine, which is a very important medicine
for controlling vascular bleeding and the function of the
sympathetic action. Interestingly, epinephrine also decreases
the incidence and severity of cyclophosphamide induced
cystitis in rats and has even a greater protective effect than
Mesna [75]. The research team of Lee has recently reported
that intravesical application of epinephrine has an attenuating
effect on uroplakin expression, submucosal edema, and
hemorrhage in cyclophosphamide induced rat cystitis
[58, 76] (Figure 2). Concurrently, intravesical epinephrine
preserved both subtypes of alphalA- and alphalB-adrenergic
receptor expressions in urinary bladder [58]. Before the
clinical application of intravesical epinephrine therapy
for cyclophosphamide induced haemorrhagic cystitis, one
must consider some hypothetical weak points. First, since
a-adrenergic stimulation produces relaxation in the bladder
body and contraction in bladder neck or prostatic urethra
[77], delayed voiding or acute urinary retention can occur.
Second, to expect optimal therapeutic effects through
intravesical instillation therapy, it is very important to hold
the intravesically injected epinephrine within the bladder
for maximal absorption. However, exposure to prolonged
stagnant urine also poses a risk of longer contact with
toxic metabolites of cyclophosphamide. Third, vigorous
diuresis or continuous urinary bladder irrigation and
frequent urination cannot sustain the therapeutic dosage of
intravesically instilled epinephrine and can therefore weaken
the effect of the treatment [58].

The first experimental study of cyclophosphamide
induced bladder toxicity was that of Philips et al. [78].
In this study it was concluded that urotoxicity is due to
contact between the urothelium and cyclophosphamide
metabolites in the urine. In rats approximately 70% of
the metabolites of the drug are excreted in the urine
within 4h after administration of a single intraperitoneal
dose [69]. Although single intraperitoneal injection of
cyclophosphamide causes reversible urothelial hyperplasia
with gradual restoration of normal three-layered urothelium
[69, 79, 80], repeated doses can lead to premalignant and
ultimately to malignant transformation [81, 82]. Moreover, it
is known that patients treated with cyclophosphamide have
up to a ninefold increased risk of developing bladder cancer
(83, 84].

5. Experimental Models of
Haemorrhagic Cystitis

An animal model of cyclophosphamide induced haemor-
rhagic cystitis is one of the best described and method-
ically developed models. With minor modifications it is
currently widely used experimental tool for investigation
of pathogenesis, prevention, and treatment of haemorrhagic
cystitis as well as urothelial injury, bladder inflammation,



BioMed Research International

FIGURE 2: Epinephrine treatment preserves UPII expression in rat urinary bladder 24 hours after cyclophosphamide injection. UPII expression
(brown) is a well-established transitional urothelial marker that is strongly expressed along the mucosal area in dilated ureter (red circle).
(a) Cyclophosphamide injected rats showed a decrease or loss of UPII expression. (b) Urethral obstructed and null-treated rats at 24 hours
after cyclophosphamide injection revealed a significant decrease or loss of UPII expression. (c) Intravesical epinephrine treated rats after
cyclophosphamide injection showed much better expression pattern of UPII along the bladder mucosa. L: lumen of the urinary bladder or
of the ureter. Scale bars (a-c) = 1000 ym and (a'-c’) = 200 um. Reprinted from Kyung et al., 2012 [58], with permission of Springer-Verlag.

bladder-related pain, and acute and chronic overactive
bladder [58, 59, 76, 81, 85, 86]. An immediate effect of
cyclophosphamide metabolites is seen as widespread destruc-
tion of the urothelium, which is accompanied not only by
necrosis but also by apoptosis of urothelial cells, with only
a few surviving cells remaining after 24 hours (Figure 3)
[78, 87]. The surviving cells retain their ability to proliferate
and reepithelialize denuded areas [78, 79, 86]. It seems that
EGF initiates cell proliferation by binding to EGFR and
rapid proliferation of remaining urothelial cells leads to
hyperplastic urothelium formation [80]. It should be noted
that the normal bladder urothelium is unresponsive to EGF
from urine because of the absence of epidermal growth factor
receptors (EGFRs) from the superficial layer. Cyclophos-
phamide exposes partially differentiated urothelial cells that
express EGFR in their plasma membranes, which enables uri-
nary EGF to stimulate proliferation. Reversible hyperplasia
develops already by days 2 and 3 after cyclophosphamide
injection (Figure 3), while gradual restoration of a normal
three-layered urothelium is achieved within 2 to 3 weeks [69,
79, 80]. Hyperplastic urothelium enables fast resealing of the
injury and represents the key mechanism for the maintenance
of functional permeability barrier of the urothelium lacking
umbrella cells [88]. The main mechanisms for restoration

of a normal three-layer urothelium and its regeneration are
reduced proliferation and increased apoptosis of urothelial
cells, which is accompanied by de novo differentiation of
umbrella cells [25, 80, 89], which restore efficient blood-urine
barrier [69, 79].

6. Conclusion

Our understanding of basic urothelial cell biology is essential
for comprehension not only of normal urinary bladder
functioning but also, and more importantly, of mechanisms
underlying different urinary bladder disorders, including cys-
titis. Unique differentiation of urothelial cells with expression
of specific proteins’ uroplakins and their organisation into
urothelial plaques ensures proper functioning of the uri-
nary bladder as urine-blood permeability barrier in healthy
individuals. In cystitis, the barrier is disrupted leading to
different symptoms. Treatment of cystitis is usually restricted
to symptom management, but unfortunately it is often inef-
fective or insufficient. New experimental tools and promising
therapeutic targets represent challenging options for future
research. In this respect, cyclophosphamide induced cystitis
has been proven as an excellent research model. Currently,
fundamental research of urothelial biology, cystitis origin,
and development as well as its prevention and treatment is
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FIGURE 3: Cyclophosphamide induced changes of the rat urothelium. (a) Normal three-layered urothelium. (b) Urothelium on day 1 after
cyclophosphamide injection with some remaining urothelial cells and with denuded areas. Haemorrhage is evident. (c) Urothelium on day 5
after cyclophosphamide injection is hyperplastic, with enlarged intercellular spaces and marked haemorrhage. (d) Urothelium on day 10 after
cyclophosphamide injection is hyperplastic and no haemorrhage is seen. L: lumen of the urinary bladder. Scale bars = 50 ym.

a rapidly expanding research field with exciting possibilities
and, hopefully, considerable progress in clinical applications
will soon be achieved.
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