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Characterizing SpINs and their neuroplastic 
potential

Spinal neurons comprise a vastly heterogeneous population of 
neurons that have both their cell body and their projections 
within the spinal cord. Developmental neurobiology has pro-
vided a wealth of information on transcription factor expres-
sion that enables the classification of SpINs into “cardinal” 
classes (dorsal interneurons 1-6 (dI1-6) and ventral interneu-
rons 0-3 (V0-3)1). The expression of the transcription factors 
also changes as the cells mature,2 and can change based on neu-
roanatomical location (eg, Chx10 expression of V2a interneu-
rons differs between cervical and lumbar spinal levels).3 Indeed, 
it has become clear that even within each cardinal class there 
are many subtypes of cells, for example, the V1 population can 
be divided into approximately 50 subtypes that settle at discrete 
locations in the spinal cord.4,5 Genomic screening has revealed 
that in the V2a class, which is identified by the developmental 
expression of Chx10 (VSX2 in humans), expression of other 
genes varies depending on location (eg, cervical vs lumbar), but 
may also vary based on the network in which they reside.

Behavioral studies in knockout transgenic mice have eluci-
dated potential functions of the cardinal classes of SpINs, and 
electrophysiology experiments in cell culture and spinal tissue 
slice preparations indicate functional diversity within those 
classes. Notably, however, characterization based on function 
may not always align with cardinal classification. In addition, 
although most research has focused on SpINs within locomo-
tor networks (and for the most part at the lumbar levels), the 
cells also act within several other motor, sensory, and auto-
nomic networks. Insights from technologies such as single-cell 
and nuclei RNA sequencing have challenged the cardinal clas-
sification, and have raised an important question: How 

granular should we get in trying to understand these cells, 
especially if the interest is in how they function in a circuit 
rather than in isolation?

Perhaps one of the most fascinating questions for which 
there is still no clear answer is how do these cells change after 
a traumatic event like spinal cord injury (SCI). SCI may cause 
SpINs to lose their original connections, resulting in the for-
mation of new synapses and a novel anatomical network, and 
their neuronal activity and gene expression may also change. 
With such fluctuations, should the cellular phenotypes be 
“recharacterized”? The concept of phenotypic switching has 
been proposed previously, especially during development,6 but 
how this occurs and what that might mean for the new anat-
omy of the injured spinal cord remains unknown. Does trau-
matic injury re-open a window for plasticity among SpINs and 
allow for a type of phenotypic switching, as has been seen in 
non-neuronal cells (eg, glia, immune cells, etc.)? If one thing is 
for certain, it is that SpINs are highly adaptable, many of their 
“defining” characteristics change post-SCI, and we should not 
underestimate their neuroplastic potential. In the words of 
Heraclitus, “All is flux, nothing is stationary.”

Developing treatments to harness SpIN therapeutic 
potential

With the recognition that neural networks within the central 
nervous system are not hardwired has come an appreciation for 
the remarkable neuroplastic potential of the neural substrate 
that is spared in the context of injury. Even after losing all input 
from the brain and brainstem, spinal networks retain the ability 
to function. While denervated spinal networks typically fall 
silent post-SCI, activity can be elicited by stimulation (eg, pri-
mary afferent activation via peripheral movement or 
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stimulation, or direct exogenous stimulation via neural-device 
interfacing such as intraspinal, epidural, transcutaneous, or 
transmagnetic devices). Activity-based therapies (eg, locomo-
tor rehabilitation, respiratory training, and other physical ther-
apy interventions) and neural interfacing enhance activity in 
spinal neurons and pathways spared by injury.7 Continued 
stimulation promotes plasticity, contributing to additional 
alterations in anatomical connectivity, which can support con-
tinued functional change. Several pre-clinical studies have 
investigated how this plasticity may recruit SpINs into novel 
neural networks that lead to lasting improvements in recovery 
and functional outcomes post-SCI.

Rehabilitation and neural interfacing have great promise in 
treating people living with SCI, and no matter what treat-
ments are developed in the future, they will likely be most 
effective if used in combination with one or more of these 
strategies. However, used alone these treatments have a limit 
to their potential because they are reliant on the activation of 
neural substrates spared by injury, and do nothing to account 
for the very significant loss of tissue, often accompanied by 
large cystic cavitation at the injury site. Accordingly, treat-
ments capable of either limiting tissue loss (neuroprotection) 
or restoring tissue integrity and connectivity (neural repair/
regeneration) are necessary to increase the potential for neuro-
plastic change. One approach that has received a great deal of 
attention both pre-clinically and clinically is the transplanta-
tion of cells to promote tissue repair. Transplantation of neural 
(neuronal and glial) progenitor cells (NPCs) is particularly 
interesting as the approach not only provides injured tissue 
with the building blocks to construct new anatomy, but the 
donor cells are typically rich with interneurons. Pioneering 
work in this field obtained NPCs for transplantation from 
developing spinal cord tissue, in which the spinal motor neu-
rons usually did not survive, leaving behind a vast range of 
developing SpINs. Regardless of whether these tissues were: 
(i) mechanically dissociated and transplanted into the injured 
spinal cord8,9; (ii) mechanically and chemically dissociated and 
transplanted10-12; or (iii) dissociated and cultured to yield neu-
ronal and glial lineage-restricted precursors,13,14 the donor 
cells used were consistently rich with SpIN progenitors. 
Transplanting tissue that has been only mechanically dissoci-
ated is likely the least disruptive to the full complement of 
SpIN progenitors, whereas culturing these tissues is a selec-
tive process that alters the resulting donor cell phenotypes.15 
Compared to gene expression in the normal developing spinal 
cord, cells cultured for 2 days exhibit a significant downregu-
lation of transcription factors associated with V2a and V0 
SpINs, with some retention of Engrailed 1 expression, which 
is associated with V1 SpINs. This apparent selection for 
inhibitory V1 interneurons, and potential loss of V2a and V0 
SpINs, may have a great impact on the potential of these 
donor cells to repair the injured spinal cord.15 This finding 
further supports the need for enhanced control over the prep-
aration and engineering of donor cells for transplantation.

Regardless of the method used, however, obtaining donor 
NPCs from developing spinal tissues is suboptimal from a 
translational perspective. Therefore, the pioneering work of 
Shinya Yamanaka in developing human induced pluripotent 
stem cells (iPSCs) from readily available cell sources (eg, skin 
fibroblasts)16 represents a significant advance in cellular engi-
neering that may change the way injured neural tissues can be 
repaired. By culturing iPSCs or embryonic stem cells with a 
series of morphogens, researchers can differentiate them into 
distinct populations for transplantation to restore function fol-
lowing SCI.17,18 Notably, engineering neuronal precursors from 
stem cells likely also results in a heterogeneous mixture of SpIN 
progenitors for transplantation, which may be quite different 
from donor cells obtained from developing spinal tissue.

In the pre-clinical animal studies that have been conducted 
so far, transplanted human PSC-derived neurons have been 
shown to extend axons and promote recovery following SCI 
through functional integration into the host spinal cord cir-
cuitry.19,20 These promising results have even led to the 
advancement of early PSC-derived products to clinical trials 
for SCI in Japan.21 However, the specific identity and function 
of the PSC-derived neurons responsible for reconnecting dis-
rupted spinal cord circuits remains unknown. This may limit 
the therapeutic potential of the approach, and the development 
of a more specific cell therapy for SCI is necessary to improve 
safety and efficacy. Key questions remain: What donor cell popula-
tions are needed to repair specif ic networks that were compromised 
by SCI, and how pure do they need to be? Might a cocktail of cells be 
more optimal to promote repair and recovery?

Growing knowledge of the cues that drive cell development 
and phenotypic fate has also provided new opportunities to 
direct NPC fate toward specific subpopulations of SpINs.17 
The careful characterization of SpINs (1) that contribute to 
function within intact motor, sensory or autonomic networks, 
or perhaps (2) that can effectively contribute to plasticity and 
functional recovery after SCI, may enable engineering of these 
populations for transplantation. One such cell type is the excit-
atory pre-motor V2a SpIN, which has been shown to be ana-
tomically connected with the locomotor22 and respiratory 
networks.23,24 Following high cervical SCI, the number of V2a 
SpINs that are connected to the phrenic motor network sig-
nificantly increases.24 Preliminary assessments also suggest that 
the number of V2a SpINs connected to the injured phrenic 
network correlates with the extent of functional plasticity and 
degree of recovered diaphragm function. More recently, tran-
scriptomic analysis of injured spinal cords from animals treated 
with rehabilitation and/or epidural stimulation found that V2a 
SpINs are key components of the therapeutically driven loco-
motor recovery in rodents.25 Accordingly, these cells represent 
an excellent candidate for targeted cell transplantation strate-
gies, from commonly used cell sources summarized in Figure 1. 
In fact, enriching donor NPCs with V2a neurons significantly 
improved phrenic motor recovery following cervical SCI.15 
Building off our growing knowledge of SpINs and plasticity 
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post-SCI, we propose that donor NPC preparations can be tai-
lored for transplantation of specific SpIN subtypes, or even 
cocktails of SpIN sub-populations that are known to contrib-
ute to restoration of function.

Closing Remarks
There’s little doubt that SpINs, like most neural cells, are 
highly plastic. Major questions for the field moving forward are 
how we should characterize SpINs, and how crucial is it to 
understand their phenotypes—and in what detail—in order to 
develop effective, timely treatments. What defines a cell type? 
For instance, is it sufficient for a cell to express a specific com-
bination of transcription factors (eg, ISL1, LHX3, HB9) for it 
to be classified as a spinal motor neuron? Or does it also need 
to project an axon from the spinal cord into the periphery to 
innervate its target organ? If it loses any of these characteristics, 
it is no longer a motor neuron? With that in mind, what fea-
tures must SpINs possess to be harnessed therapeutically for 
spinal cord repair? If we transplant a single type or cocktail of 
SpINs into the injured spinal cord, is it problematic that they 
do not maintain their “defining” characteristics? Perhaps the 
“identity” of the cell is defined by the experimental approach at 
the time of the measurement, and cells, can in fact be multiple 
“identities” at the same time, and even equally efficacious. A 
useful metaphor is the dual nature of light, which has the 
“identity” of a wave as well as the “identity” of a discrete quan-
tity of energy (eg, photon), both of which are differentially 

described depending on the tools used to study light at the 
time of the measurement.

The future of stem cell engineering and neural cell therapy 
is filled with promise for all those living with neural injury and 
disease. With the first stem cell clinical trial being used to treat 
individuals living with spinal cord injury it will be especially 
exciting to see advances for those individuals with now more 
refined and tailored treatment approaches. Ongoing preclinical 
studies in parallel will be crucial to better understand the opti-
mal application of engineered cell therapies (timing, dose, and 
phenotypic cocktail to be used). Consideration for the pheno-
type of non-neuronal cells in transplant preparations, such as 
glia, and endothelial cells, will also become important and these 
elements may need to be engineered to optimize repair inter-
ventions. Similarly, we will need to better understand how the 
injured cellular and molecular environment changes following 
transplantation, either working in concert with donor cells to 
facilitate repair, or inadvertently resulting in changes to the 
donor phenotypes. Finally, whether the phenotype of trans-
planted neurons will be retained long term after being trans-
planted into the injured spinal cord needs to be further explored. 
Given the demonstrated plasticity in SpIN populations, can 
the phenotype of donor cells change? Ongoing research is 
beginning to address these important questions to comprehen-
sively understand the therapeutic potential of these cells and 
the promise of cellular engineering and transplantation for 
neural repair.

Figure 1.  This schematic diagram highlights 3 commonly used cell sources (A-C) for obtaining neural progenitor cells (NPCs, (D)) inherently rich in 

interneuronal populations. The process of isolation and preparation of cells for transplantation (eg, expansion, selection and cell banking of specific 

phenotypes, (E)), allows for cellular engineering of specific subtypes of spinal interneurons. Multiple phenotypes of neuronal and non-neuronal precursor 

cells can be recombined (F) and transplanted (G) into the injured spinal cord.
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