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Abstract

Background: The laboratory diagnosis of Chagas disease is challenging because the usefulness of different diagnostic tests
will depend on the stage of the disease. Serology is the preferred method for patients in the chronic phase, whereas PCR
can be successfully used to diagnose acute and congenital cases. Here we present data using a combination of three
TaqMan PCR assays to detect T. cruzi DNA in clinical specimens.

Methods/Principal Findings: Included in the analysis were DNA extracted from 320 EDTA blood specimens, 18 heart tissue
specimens, 6 umbilical cord blood specimens, 2 skin tissue specimens and 3 CSF specimens. For the blood specimens both
whole blood and buffy coat fraction were analyzed. The specimens were from patients living in the USA, with suspected
exposure to T. cruzi through organ transplantation, contact with triatomine bugs or laboratory accidents, and from
immunosuppressed patients with suspected Chagas disease reactivation. Real-time PCR was successfully used to diagnose
acute and Chagas disease reactivation in 20 patients, including one case of organ-transmitted infection and one congenital
case. Analysis of buffy coat fractions of EDTA blood led to faster diagnosis in six of these patients compared to whole blood
analysis. The three real-time PCR assays produced identical results for 94% of the specimens. The major reason for
discrepant results was variable sensitivity among the assays, but two of the real-time PCR assays also produced four false
positive results.

Conclusions/Significance: These data strongly indicate that at least two PCR assays with different performances should be
combined to increase the accuracy. This evaluation also highlights the benefit of extracting DNA from the blood specimen’s
buffy coat to increase the sensitivity of PCR analysis.
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Introduction

Chagas disease is a vector-borne infectious disease caused by the

parasite Trypanosoma cruzi. It is endemic in several countries of

Central and South America. In endemic areas the disease is spread

by certain species of triatomine bugs that excrete the parasites in

their feces while feeding on human hosts. Humans get infected

when feces from infected triatomines contaminates wounds,

allowing the parasite to enter the bloodstream. Other routes of

infection include congenital transmission, blood transfusion, organ

transplantation, accidental inoculation of the parasite during

laboratory research and by consuming food and juice contami-

nated with the parasite. As efforts to control vector-borne and

blood transmission are successful, congenital and oral transmission

paths are becoming increasingly important [1].

After a short acute phase when the parasite can be found

circulating in the blood, the disease enters the chronic phase when

the amastigote stage develops and multiplies in organ tissues,

primarily in the heart. The chronic phase is characterized by two

forms; patients first develop the indeterminate form of chronic

infection which can last for decades and the patients are typically

asymptomatic during this time. An estimated 30–40% of patients

may develop clinical disease, with manifestations such as

cardiomyopathy or digestive megasyndromes [1]. Chronically

infected patients that become immunosuppressed may experience

a reactivation of the disease, a condition characterized by

increasing parasitemia and atypical presentations such as epider-

mic lesions and compromise of the central nervous system [2].

The options for laboratory diagnosis of Chagas disease depend

on the disease phase. Serology is the method of choice to diagnose

chronic infections. Acute infections can be diagnosed by detecting

motile organisms in fresh blood preparations, by culture or by

detection of parasite DNA by PCR [3]. The latter methods are

also recommended to detect increasing parasitemia in cases of
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reactivation following immunosuppression [4]. In cases of acute

infections or reactivation of chronic disease it is important to use

sensitive diagnostic methods since early detection and treatment

results in a more favorable outcome. PCR-based methods are

generally considered to be more sensitive than microscopy and

have lately been increasingly used to diagnose Chagas disease [4].

However, the use of PCR is also challenging as there is no ‘‘gold

standard’’ method for the diagnosis of Chagas disease [5,6] and

the diagnostic performance can vary widely depending on the type

of PCR assay. The most widely used PCR assays used for

diagnostic purposes target either the kinetoplast genome (kDNA),

also called the minicircle, or a nuclear mini-satellite region

designated TCZ [4,6,7,8,9,10,11,12,13,14,15,16]. Both of these

targets are present in multiple copies in the parasite genome,

which increases the sensitivity of detection [15,17]. However,

assays that target these regions have been reported to cross-amplify

non-T. cruzi DNA [10,16,18,19,20]. Assays that amplify other

genes may show better specificity but they are generally less

sensitive [4,9,16,21].

One important use of PCR as a diagnostic tool is to provide a

sensitive method to detect reactivation in chronically infected

patients with immunosuppression. Patients with chronic Chagas

heart disease often require a heart transplant [22]. Current

recommendations state that these patients should be monitored at

regular intervals after the transplant for signs of increasing

parasitemia [3]. Another category of patients for whom PCR

testing is beneficial is patients who receive organs from chronically

infected donors. Since only a fraction of organ recipients will

develop an acute T. cruzi infection, preventive drug treatment is

not recommended. In such cases the use of PCR can allow for

early detection of those cases where transmission has occurred.

Recently, an international collaborative study focusing on

standardization and validation of PCR for diagnostic detection

of T. cruzi DNA was conducted [13]. The study relied on the use of

DNA specimens from genetically distinct cultured T. cruzi strains

plus blood specimens from chronically infected patients. The

specimens were coded at a coordinating laboratory and shipped

to 26 participating laboratories that performed PCR testing

according to their own standard operating procedures. Results

were then sent back to the coordinating laboratory and

performance characteristics were calculated for each PCR assay.

The study found a high degree of variability in accuracy and

performance among the included PCR tests and identified and

further evaluated two DNA extraction methods and four PCR

assays that performed better than the others. Two of the best-

performing assays were real-time PCR assays.

To continue these efforts we here present results from a

diagnostic testing algorithm involving three of the real-time PCR

assays included in the international validation study mentioned

above. Real-time PCR has several advantages over conventional

PCR, e.g. shorter turnaround times and less risk of amplicon

carry-over contamination [23], both of which can be advanta-

geous in diagnostic laboratories. One of the real-time PCR assays

included in this study was ranked among the four best-performing

assays in the international validation study; a real-time PCR assay

targeting the mini-satellite TCZ region. The second real-time

PCR assay was selected because it was the best-performing real-

time PCR assay targeting the kDNA included in the international

validation study. The third real-time PCR assay was included in

this study because it targets the small subunit ribosomal RNA

(18 S rRNA) gene, which is generally suitable for diagnostic assays

because it is highly conserved.

In contrast to the international validation study we mainly used

specimens from patients with suspected acute or reactivating

Chagas disease since PCR testing is more relevant for early

diagnosis or monitoring in this patient group than in chronic

patients, whose diagnosis relies on serological methods. The

majority of the specimens tested were EDTA blood samples; we

performed real-time PCR on DNA extracted from buffy coat

preparations in addition to whole blood to determine the effect of

buffy coat concentration on the sensitivity of the PCR analysis.

Methods

Clinical specimens
All the specimens used in this study were submitted to CDC for

confirmatory diagnosis of Chagas disease during years 2008–2010

from state public health laboratories, hospitals and private clinics

in the United States. The tests were performed on 349 laboratory

specimens from 119 patients, who lived in the United States at the

time of specimen collection. A breakdown of the specimen types

and the conditions that prompted the diagnostic requests are

presented in Table 1. Samples analyzed in this study were

anonymized by removing identifiers after diagnostic results were

reported, in accordance with the CDC IRB, protocol number

3580, entitled ‘‘Use of Human Specimens for Laboratory Methods

Research’’. All of the patients included in this study were evaluated

for serology status using the Chagatest recombinante v. 3.0

(Wiener Laboratorios, Rosario, Argentina) and a CDC in-house

IIF test.

DNA extraction
DNA extraction was performed from all specimens within

24 hours of arrival at the laboratory. DNA was extracted from

whole blood specimens using the QIAamp blood mini DNA kit

(QIAGEN, Valencia, Calif.). The volume of whole blood used was

0.2 ml and if the remaining volume exceeded 1 ml, the buffy coat

fraction was separated as follows: up to 2 ml of whole blood was

centrifuged at 2,5006g for 10 minutes. The plasma was removed

and the buffy coat layer plus some of the erythrocyte pellet were

transferred to a clean tube. DNA was then extracted from that

material in parallel with the whole blood aliquot using the same

Author Summary

Chagas disease is endemic in several Latin American
countries and affects approximately 8 to 11 million people.
The protozoan parasite, Trypanosoma cruzi, is the agent of
Chagas disease, a zoonotic disease that can be transmitted
to humans by blood-sucking triatomine bugs. Other routes
of infection include congenital transmission, blood trans-
fusion, organ transplantation, accidental inoculation of the
parasite during laboratory research and by consuming
food and juice contaminated with the parasite. This study
focused on the evaluation of three quantitative PCR
(QPCR) assays for the diagnosis of Chagas disease. The
evaluation was based on the analysis of 349 specimens
submitted for confirmatory diagnosis of Chagas disease to
the Centers for Disease Control and Prevention from 2008
to 2010. By using such assays we were able to diagnose
acute and Chagas disease reactivation in 20 patients,
including one case of organ-transmitted infection and one
congenital case. The paper also highlights the benefit of
extracting DNA from the blood specimen’s buffy coat to
increase the sensitivity of diagnostic PCR analysis. The
results obtained in this study strongly indicate that at least
two QPCR assays with different performance characteris-
tics should be combined to increase diagnostic accuracy.
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method mentioned above. Three EDTA blood specimens had

enough volume left after initial DNA extraction to allow for one or

more additional buffy coat preparations. Two-ml aliquots of these

specimens were stored at 4uC for one, two or four weeks and then

processed as described above. DNA from tissue specimens was

extracted with the DNeasy blood and tissue DNA kit (QIAGEN).

For cerebrospinal fluids (CSF), approximately half of the total

volume received (0.5–1 ml) was centrifuged for 5 minutes at

60006g. Most of the supernatant was carefully removed until

0.2 ml remained and DNA was extracted from this remaining

volume (plus any pellet) with the DNeasy blood and tissue DNA kit

(QIAGEN). All the DNA extraction procedures were performed

following manufacturer’s instructions for the different types of

samples. Previous experiences with these methods in our

laboratory had ensured that they efficiently removed potential

PCR inhibitors from the specimen types included in this study

(data not shown). One negative extraction control was included in

each batch of DNA extractions to monitor for potential cross-

contamination among samples and contamination of kit reagents.

PCR protocols
All three real-time PCR assays were included in the interna-

tional validation study [13]. Table 2 summarizes validation data

for the PCR assays as presented in that study, plus specificity data

for two other Trypanosoma spp. obtained in our laboratory. The

real-time PCR assays were performed and analyzed in an

Mx3000P QPCR system (Agilent Technologies, Calif.). Each

DNA sample was added to the PCR mix in two different

concentrations (corresponding to 5 ml and 1 ml of undiluted DNA).

All PCR runs included two or more negative amplification

controls (adding water instead of template DNA) plus two positive

amplification controls (DNA extracted from a culture of the Y

strain in two different dilutions). The risk of false positive results

due to contamination was minimized by the following procedures:

using separate rooms for DNA extraction, pre-and post-amplifi-

cation processes; having a uni-directional workflow; and using

enzymatic removal of contaminating amplicons before real-time

PCR amplification.

TCZ TaqMan real-time PCR (designated as method LbF1 in

the international validation study [13]): This TaqMan assay was

performed as described in Piron 2007 [11], except that the

Platinum qPCR supermix was used instead of the Universal

mastermix from Applied Biosystems.

kDNA TaqMan real-time PCR (designated as method LbG/3

in the international validation study [13]): The reaction mix

consisted of 16 Platinum qPCR supermix, 0.4 mM of each PCR

primer 32F, 59-TTT GGG AGG GGC GTT CA-39, and 148R,

59-ATA TTA CAC CAA CCC CAA TCG AA-39, plus 0.1 mM of

the LNA TaqMan probe 71P, 59-CA TCTC AC CCG TACA

TT-39, where the LNA nucleotides [24] are underlined. Total

reaction volume was 20 ml. Thermocycling structure was as

follows: 2 minute incubation at 50uC to activate UDG degrada-

tion, 2 minute incubation at 95uC to activate the hot-start DNA

polymerase, and 40 cycles of 95uC for 15 seconds and 58uC for

60 seconds.

18 S rRNA TaqMan real-time PCR (designated as method

LbS/4 in the international validation study [13]): The reaction

mix consisted of 16 Platinum qPCR supermix, 0.2 mM of each

PCR primer TcF1042, 39-GCA CTC GTC GCC TTT GTG-39,

and TcR1144, 59-AGT TGA GGG AAG GCA TGA CA-39 plus

0.05 mM of the TaqMan probe TCP1104, 59-AA GAC CGA

AGT CTG CCA ACA ACA C-39. Total reaction volume was

20 ml. Thermocycling structure was as follows: 2 minute incuba-

tion at 50uC to activate UDG degradation, 2 minute incubation at

95uC to activate the hot-start DNA polymerase, and 40 cycles of

95uC for 15 seconds and 60uC for 60 seconds.

Results

This study focused on diagnostic specimens tested from 2008 to

2010. Fifty of the 349 samples produced positive results in at least

one of the real-time PCR assays. The three real-time PCR assays

produced identical results for 329 samples (94%), of which 30 were

PCR positive, while the remaining 20 samples had discrepant

results in the three assays.

Of the 50 samples with at least one positive PCR result, 37

samples were collected from 13 chronically infected patients with

reactivation disease, six samples from three transplant recipients of

organs from chronically infected donors, four samples from a

patient with acute Chagas disease acquired during travel in an

endemic region, one sample from a congenitally transmitted

Table 1. Specimens included in this study.

reason for testing number of patients Number of specimens

EDTA blood cord blood heart tissue skin tissue CSF total

reactivation due to heart transplant 18 63 0 15 1 0 79

reactivation due to AIDS 5 6 0 0 0 2 8

reactivation due to other condition 2 5 0 0 0 0 5

symptoms of cardiomyopathy 13 10 0 3 0 0 13

symptoms of acute Chagas disease 18 26 0 0 1 1 28

bites from triatomines but symptom-free 13 13 0 0 0 0 13

congenital transmission 20 16 6 0 0 0 22

recipients of organs from Chagas positive donors 14 139 0 0 0 0 139

laboratory accidents 9 35 0 0 0 0 35

serologically positive but symptom-free* 7 7 0 0 0 0 7

total 119 320 6 18 2 3 349

* = these included three mothers in investigations of possible congenital transmission and four organ donors with chronic Chagas disease. PCR-testing was performed
on these chronically infected persons to aid in the evaluation of disease transmission risk.
doi:10.1371/journal.pntd.0001689.t001
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infection and two samples from two patients under evaluation for

severe cardiomyopathy. Tables 3, 4, and 5 list the detailed real-

time PCR results from specimens collected from a selection of

these patients, as outlined below.

Detecting reactivation disease in immunosuppressed
patients using real-time PCR

Specimens from 25 patients with chronic Chagas disease (as

determined by positive serology) were received for evaluation of

reactivation disease during the study period. Eighteen of the

patients had received a heart transplant, five were HIV infected

and two had undergone a bone marrow transplant. Sixteen

patients had one or more PCR-positive samples, including

sporadic PCR-positive results in seven patients who had received

a heart transplant prior to 2008. Table 3 lists a selection of the

samples analyzed from the remaining nine patients with at least

one PCR-positive test result during this study. Seven patients were

tested for reactivation following transplants; four of these were

monitored on a regular basis by PCR. Two of the five HIV-

positive patients were diagnosed with re-activated Chagas disease

(patients 8 and 9); one of them had cerebral Chagas, confirmed by

the presence of T. cruzi DNA in CSF.

Using real-time PCR to detect T. cruzi transmission via
organ transplants

Real-time PCR was used to test blood specimens from 14

previously non-infected transplant patients who received organs

from a donor with suspected or confirmed chronic Chagas disease.

It is recommended to closely monitor these patients with PCR or

other sensitive technique in order to detect potential transmission

as soon as possible. Three organ recipients had one or more PCR

positive results (see Table 4). However, only patient 12, a heart

recipient, was actually infected with T. cruzi. The PCR positive

results for the other two patients (patients 10 and 11) were

reported as equivocal and were most likely false positive results

because of the following circumstances. Patient 10 received a

kidney from a donor with borderline positive serology results with

the Ortho T. cruzi ELISA test (Ortho-Clinical Diagnostics,

Raritan, New Jersey). Since this could have been interpreted as

indicative of infection in the donor, regular PCR testing was

started on patient 10. However, subsequent serology testing of the

donor associated with this case could not confirm the preliminary

results; i.e., the T. cruzi RIPA was indeterminate and both the

Wiener and the IIF test were negative on repeated serum samples.

It was therefore concluded that the donor was not infected with T.

cruzi and additional PCR follow up of patient 10 was unnecessary.

However, before the final donor serology status had been

determined, weak positive signals in the kDNA and TCZ TaqMan

assays were verified in blood samples from patient 10. Unexpect-

edly, each subsequent specimen obtained from this patient showed

a signal that was weaker than the signal obtained for the previous

sample; i.e. the opposite of what was expected from an acute T.

cruzi infection in an immunocompromised patient. At six weeks

post-transplant patient 10 was no longer positive in any of the real-

time PCR assays. Patient 11 received a kidney from a donor that

was confirmed to be serologically positive for T. cruzi. The blood

sample from patient 11 collected on the 3rd week post-transplant

tested weakly positive in the kDNA and TCZ TaqMan assays,

with only the whole blood aliquot being positive and not the buffy

coat fraction. The blood collected a week later was PCR negative

in both whole blood and buffy coat. Neither patient 10 nor 11 had

any clinical signs of T. cruzi infection. Their blood smears were

constantly negative for parasites and they did not receive anti-

trypanosomal drugs.

Using real-time PCR to diagnose acute infections
We received 48 blood samples from 13 healthy patients who

had been bitten or in close contact with triatomine bugs plus 9

laboratory workers that had been accidentally exposed to T. cruzi

via needle stick accidents or animal bites during research activities.

None of these were PCR positive. We tested 22 specimens from 20

children (aged newborn to 8 years) with sero-positive mothers for

possible congenital transmission and detected T. cruzi DNA in the

blood of a 19-days-old infant (patient 14 in Table 5). Twenty-eight

specimens were received from 18 adult patients with symptoms of

acute T. cruzi infection (fever and malaise after traveling to

endemic region and/or having close contact with triatomine bug;

three had a swollen eye that could be chagoma). Only one of these

patients tested positive for T. cruzi by PCR and was treated for

acute Chagas disease (patient 13 in Table 5). Follow-up specimens

from this patient again tested positive in PCR after completed

drug treatment but unfortunately the patient was lost to follow-up.

Effect of buffy coat examination on the sensitivity of PCR-
based detection

Thirty-five of the PCR-positive blood specimens (from 16

patients) had enough volume to allow for DNA extraction from

both whole blood aliquots and buffy coat fraction. Of these, 26

specimens (from 10 patients) had PCR-detectable levels of T. cruzi

DNA in both whole blood and buffy coat, with a relatively higher

concentration in the buffy coat based on the quantitative output

(the Cq value) from the real-time PCR assays. The remaining 9

specimens (from 6 patients) were positive only in the buffy coat

fraction. Thus, 26% of the PCR-positive specimens would have

been reported as being negative for T. cruzi if no buffy coat analysis

had been performed. For three patients the analysis of buffy coat

was crucial: Chagas disease reactivation in two patients was

detected two weeks earlier by testing the buffy coat sample as

Table 2. Validation data for the real-time PCR assays.

kDNA TaqMan TCZ TaqMan 18 S rRNA TaqMan reference

diagnostic sensitivity (using serology as comparison method) 78% 63% 6% [13]

diagnostic specificity (using serology as comparison method) 40% 100% 100% [13]

analytical sensitivity (detection limit) for DTU I 0.1 fg/ml 0.1 fg/ml 10 fg/ml [13]

analytical sensitivity (detection limit) for DTU IV 1 fg/ml 1 fg/ml 10 fg/ml [13]

DNA from T. rangeli cultures (n = 2) positive negative negative this study

DNA from T. theileri-infected tissue (n = 3) negative negative negative this study

doi:10.1371/journal.pntd.0001689.t002
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Table 3. Detailed PCR findings from patients with reactivation disease.

Patient
ID patient description time of specimen specimen type results individual assays

Reported
results

kDNA TaqManTCZ TaqMan
18 S rRNA
TaqMan

1 chronic patient with heart transplant time of heart transplant explanted heart
tissue

positive positive positive positive

time of heart transplant heart biopsy negative negative negative negative

1 month post-transplant heart biopsy positive positive positive positive{

2 chronic patient with heart transplant 2.5 months post-transplant EDTA blood positive positive negative positive

3 months post-transplant EDTA blood positive positive negative positive{

3 chronic patient with heart transplant time of heart transplant EDTA blood negative negative negative negative

3 weeks post-transplant EDTA blood negative negative negative negative

5 weeks post-transplant EDTA blood BC positive BC positive negative positive

6 weeks post-transplant EDTA blood BC positive negative negative equivocal

7 weeks post-transplant EDTA blood positive positive positive positive

9 weeks post-transplant EDTA blood positive positive positive positive

3 months post-transplant EDTA blood negative negative negative negative{

7 months post-transplant EDTA blood negative negative negative negative

4 chronic patient with heart transplant time of heart transplant EDTA blood positive positive positive positive

3 months post-transplant EDTA blood negative negative negative negative

5 chronic patient with heart transplant 1 week post-transplant EDTA blood positive positive negative positive

2.5 weeks post-transplant EDTA blood positive positive negative positive

3.5 weeks post-transplant EDTA blood positive positive positive positive

1 month post-transplant EDTA blood positive positive positive positive

1.5 months post-transplant EDTA blood negative negative negative negative{

5 months post-transplant EDTA blood negative negative negative negative

6 chronic patient with heart transplant time of heart transplant explanted
heart tissue

positive positive negative positive

1 week post-transplant EDTA blood negative negative negative negative

2 weeks post-transplant heart biopsy negative negative negative negative

3 weeks post-transplant heart biopsy negative BC positive negative equivocal

4 weeks post-transplant EDTA blood BC positive BC positive negative positive

5 weeks post-transplant EDTA blood positive positive positive positive

3 months post-transplant EDTA blood negative negative negative negative{

6 months post-transplant EDTA blood negative negative negative negative

7 chronic patient with organ transplant 1 week post-transplant EDTA blood negative negative negative negative

2 weeks post-transplant EDTA blood positive negative negative equivocal

3 weeks post-transplant EDTA blood positive positive positive positive

4 weeks post-transplant EDTA blood positive positive positive positive

2.5 months post-transplant EDTA blood negative negative negative negative{

3.5 months post-transplant EDTA blood negative negative negative negative{

7 months post-transplant EDTA blood negative negative negative negative

8 reactivation due to AIDS first sample EDTA blood positive positive positive positive

sample 1 month later EDTA blood positive positive positive positive{

sample 1 month later CSF positive positive positive positive{

9 reactivation due to AIDS N/A EDTA blood positive positive positive positive

All of the patients in Table 3 tested positive in serology for Chagas disease and no decrease in antibody titer was detected during the monitoring period.
BC = buffy coat; only the buffy coat fraction was PCR positive for these samples.
{indicate specimens that were collected during drug treatment (benznidazole or nifurtimox). Drug treatment information is missing for patients #4 and #9.
doi:10.1371/journal.pntd.0001689.t003
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compared to whole blood (patients 3 and 6 in Table 3) and the

patient who acquired Chagas disease through transplantation

(patient 12 in Table 3) was identified as positive one week earlier

by testing buffy coat as compared to whole blood.

Three of the PCR-positive blood samples had enough volume to

allow for analysis of more than one buffy coat preparation.

Aliquots of these three samples were stored at 4uC for up to four

weeks and then processed as described. Figure 1 depicts the

quantitative real-time PCR results obtained from these samples

over time. The results suggested that storage of EDTA blood for a

limited time had minor effect on the quality of T. cruzi DNA

obtained from buffy coat preparations, at least for the kDNA and

TCZ genetic regions. Although these are only preliminary data

that need confirmation with a larger set of samples, it removes

some of the uncertainty whether to accept EDTA-blood samples

that for various reasons are delayed in transport to the diagnostic

laboratory.

Discussion

The laboratory diagnosis of Chagas disease relies mainly on

serology, microscopic identification of trypomastigotes in blood or

buffy coat, hemoculture and PCR [3]. Several PCR assays with

variable diagnostic sensitivity and specificity have been developed

and used as diagnostic tests [4,7,8,9,10,11,15,16,21]. A compli-

cating factor for PCR assays is the high genetic variability of T.

cruzi strains; there are currently six genotype groups or discrete

typing units (DTU) described that differ significantly in genetic

content and gene copy numbers [25,26]. Since some DTUs are

more common than others in various endemic regions, the same

PCR assay can perform differently depending on the geographic

origin of the specimen [16,25,27,28,29]. One way to circumvent

these accuracy problems is to combine two or more PCR assays

that target different genes.

The reference diagnostic laboratory at CDC employs a multi-

target PCR testing algorithm consisting of three real-time PCR

assays that are performed in parallel on all specimens. The three

assays target different genomic regions in T. cruzi and have

therefore variable sensitivity and specificity. The rationale for

including all three assays in the testing algorithm is to ensure the

highest accuracy possible by combining assays that complement

each other. The kDNA TaqMan assay seems to be the most

sensitive assay but it can amplify non-T. cruzi DNA, e.g. T. rangeli,

and thus lead to false positives. The TCZ TaqMan assay has better

specificity but as shown in this study can produce false positive

PCR results as well. The kDNA and TCZ TaqMan assays are

both much more sensitive than the 18 S rRNA TaqMan but the

main advantage of including the 18 S rRNA assay in the testing

algorithm is that it seems to be 100% specific. According to the

CDC protocol, if a specimen tests positive in all three real-time

PCR assays it will be reported as positive for T. cruzi, but any

specimen that is only positive in the kDNA and/or TCZ TaqMan

Table 4. Detailed PCR-findings for recipients of organs from donors with suspected/confirmed chronic Chagas disease.

Patient ID Patient description time of specimen Specimen type results individual assays Reported result

kDNA TaqMan TCZ TaqMan 18 S rRNA TaqMan

10 kidney recipient 2 weeks post-transplant EDTA blood negative negative negative negative

3 weeks post-transplant EDTA blood positive positive negative equivocal

4 weeks post-transplant EDTA blood positive positive negative equivocal

5 weeks post-transplant EDTA blood positive negative negative equivocal

6 weeks post-transplant EDTA blood negative negative negative negative

7 weeks post-transplant EDTA blood negative negative negative negative

9 weeks post-transplant EDTA blood negative negative negative negative

11 weeks post-transplant EDTA blood negative negative negative negative

11 kidney recipient 1 week post-transplant EDTA blood negative negative negative negative

3 weeks post-transplant EDTA blood positive positive negative equivocal

4 weeks post-transplant EDTA blood negative negative negative negative

5 weeks post-transplant EDTA blood negative negative negative negative

3 months post-transplant EDTA blood negative negative negative negative

6 months post-transplant EDTA blood negative negative negative negative

12 Heart recipient 2 weeks post-transplant EDTA blood negative negative negative negative

3 weeks post-transplant EDTA blood negative negative negative negative

4 weeks post-transplant EDTA blood BC positive BC positive negative positive

5 weeks post-transplant EDTA blood positive positive negative positive

6 weeks post-transplant EDTA blood negative negative negative negative{

7 weeks post-transplant EDTA blood negative negative negative negative{

3 months post-transplant EDTA blood negative negative negative negative

5 months post-transplant EDTA blood negative negative negative negative

8 months post-transplant EDTA blood negative negative negative negative

All of the patients in Table 4 were serologically negative at time of transplant and none sero-converted during the time they were monitored at CDC.
BC = buffy coat; only the buffy coat fraction was PCR positive for these samples.
{indicate specimens that were collected during drug treatment (benznidazole or nifurtimox). Drug treatment information is missing for patients #4 and #9.
doi:10.1371/journal.pntd.0001689.t004
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assays and negative in the 18 S rRNA TaqMan assay require

additional confirmation by other tests or clinical data in order to

be reported as positive for T. cruzi. If confirmatory data is absent or

does not support a diagnosis of T. cruzi infection, the PCR results

are reported as equivocal and a new specimen is requested to

repeat the molecular analysis.

Diagnostic sensitivity can be enhanced by maximizing the

amount of target DNA in the aliquot used for DNA extraction.

For multi-copy PCR targets this can be obtained by mixing blood

specimens with guanidine HCl-EDTA solution that lyses the

parasites and releases their genetic content, thus making it possible

to detect as little as one parasite in a large volume of blood [30,31].

It has also been reported that sensitivity could be enhanced if blood

clot was used as starting material [32]. An alternative method is to

concentrate the parasites in the buffy coat fraction [33] prior to

DNA extraction; this has been reported to increase the sensitivity

compared to analysis of frozen EDTA-blood and guanidine HCl-

EDTA treated blood [32,34]. During this study, we compared the

PCR results obtained from buffy coat concentration with results

from fresh EDTA- blood and found that analysis of buffy coat

allowed earlier detection of increasing levels of circulating parasite

genome in three cases: two reactivation cases and one organ-

transmitted acute infection. Thus, appropriate drug treatment for

these patients could be initiated 1–2 weeks sooner.

Analyzing both the buffy coat fraction and a whole blood

aliquot in parallel can also give helpful information to ensure test

validity and to troubleshoot suspicious false positive PCR results.

DNA extraction from the buffy coat fraction of a blood sample

containing T. cruzi trypomastigotes should produce more T. cruzi

DNA than the corresponding volume of whole blood. If that is not

the case, there could be a problem with the quality of the blood

specimen, the DNA extraction process or the PCR accuracy. One

of the false positive PCR results obtained in this study was

immediately flagged as suspicious because only the whole blood

fraction was positive while buffy coat was negative. Nevertheless,

more data must be accumulated during a longer period of time for

a more robust assessment about the advantages of analyzing both

whole blood and buffy coat.

In conclusion, we propose that in reference laboratories with the

adequate infrastructure, the use of two or more real-time PCR

Table 5. Detailed PCR findings for patients with acute Chagas disease.

Patient ID patient description time of specimen specimen type results individual assays Reported results

kDNA TaqMan TCZ TaqMan 18 S rRNA TaqMan

13 acute infection after triatomine
contact in endemic region1

sample 1 EDTA blood positive positive positive positive

1 week later blood clot positive positive positive positive{

3 weeks later EDTA blood positive positive positive positive{

2 months later EDTA blood negative negative negative negative{

3 months later EDTA blood negative negative negative negative

4 months later EDTA blood positive positive negative positive

4.5 months later EDTA blood positive negative negative equivocal

14 congenital transmission2 19 days old EDTA blood positive positive positive positive

2 months old EDTA blood negative negative negative negative{

1Patient was serologically positive for Chagas disease by the time she was tested at CDC.
2Patient was serologically positive when 19 days old due to maternal antibodies. Another sample collected at 10 months of age tested negative in serology.
{indicate specimens that were collected during drug treatment (benznidazole or nifurtimox).
doi:10.1371/journal.pntd.0001689.t005

Figure 1. Effect of storage of EDTA blood specimens on real-time PCR results. The lower the Cq (quantitative cycle) value, the better
recovery was obtained from the DNA extraction process.
doi:10.1371/journal.pntd.0001689.g001
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tests with different performance characteristics combined with the

analysis of buffy coat and whole blood can strengthen the use of

PCR for accurate diagnosis of Chagas disease.
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