
1Du H, et al. BMJ Open Gastro 2021;8:e000761. doi:10.1136/bmjgast-2021-000761

Prediction of in- hospital mortality of 
Clostriodiodes difficile infection using 
critical care database: a big data- driven, 
machine learning approach

Hao Du    ,1 Kewin Tien Ho Siah    ,2,3 Valencia Zhang Ru- Yan,3 Readon Teh    ,3 
Christopher Yu En Tan,2 Wesley Yeung,3,4 Christina Scaduto,5 Sarah Bolongaita,5 
Maria Teresa Kasunuran Cruz,3 Mengru Liu,6 Xiaohao Lin,7 Yan Yuan Tan,8 
Mengling Feng1,9

To cite: Du H, Siah KTH, 
Ru- Yan VZ, et al. Prediction 
of in- hospital mortality 
of Clostriodiodes difficile 
infection using critical 
care database: a big data- 
driven, machine learning 
approach. BMJ Open Gastro 
2021;8:e000761. doi:10.1136/
bmjgast-2021-000761

HD and KTHS contributed 
equally.

Received 5 August 2021
Accepted 5 October 2021

For numbered affiliations see 
end of article.

Correspondence to
Dr Kewin Tien Ho Siah;  
 kewin_ siah@ nuhs. edu. sg

Gastrointestinal infection

© Author(s) (or their 
employer(s)) 2021. Re- use 
permitted under CC BY- NC. No 
commercial re- use. See rights 
and permissions. Published 
by BMJ.

ABSTRACT
Research objectives Clostriodiodes difficile infection 
(CDI) is a major cause of healthcare- associated diarrhoea 
with high mortality. There is a lack of validated predictors 
for severe outcomes in CDI. The aim of this study is to 
derive and validate a clinical prediction tool for CDI in- 
hospital mortality using a large critical care database.
Methodology The demographics, clinical parameters, 
laboratory results and mortality of CDI were extracted 
from the Medical Information Mart for Intensive Care- 
III (MIMIC- III) database. We subsequently trained three 
machine learning models: logistic regression (LR), random 
forest (RF) and gradient boosting machine (GBM) to 
predict in- hospital mortality. The individual performances 
of the models were compared against current severity 
scores (Clostridiodes difficile Associated Risk of Death 
Score (CARDS) and ATLAS (Age, Treatment with systemic 
antibiotics, leukocyte count, Albumin and Serum creatinine 
as a measure of renal function) by calculating area under 
receiver operating curve (AUROC). We identified factors 
associated with higher mortality risk in each model.
Summary of results From 61 532 intensive care unit 
stays in the MIMIC- III database, there were 1315 CDI 
cases. The mortality rate for CDI in the study cohort was 
18.33%. AUROC was 0.69 (95% CI, 0.60 to 0.76) for 
LR, 0.71 (95% CI, 0.62 to 0.77) for RF and 0.72 (95% 
CI, 0.64 to 0.78) for GBM, while previously AUROC was 
0.57 (95% CI, 0.51 to 0.65) for CARDS and 0.63 (95% CI, 
0.54 to 0.70) for ATLAS. Albumin, lactate and bicarbonate 
were significant mortality factors for all the models. Free 
calcium, potassium, white blood cell, urea, platelet and 
mean blood pressure were present in at least two of the 
three models.
Conclusion Our machine learning derived CDI in- hospital 
mortality prediction model identified pertinent factors that 
can assist critical care clinicians in identifying patients at 
high risk of dying from CDI.

INTRODUCTION
Clostridiodes difficile infection (CDI) has been 
recognised as a major cause of healthcare- 
associated diarrhoea in adult patients.1 

As one of the rising healthcare- associated 
infections worldwide, it causes a significant 
burden on hospital resources. The reason for 
the rise in CDI is largely due to the increasing 
use of antibiotics in current clinical prac-
tice, as well as an ageing patient population 
in the hospitals.2 Consequently, the disease 
burden of CDI has been rising, with more 
elderly patients facing longer hospitalisa-
tions, higher healthcare costs, as well as more 
severe morbidity and mortality.3

C. difficile is transmitted by contact with 
infected faecal material or spores which 
can survive in the environment for several 

Summary box

What is already known about this subject?
 ► Clostriodiodes difficile infection (CDI) is one of the 
most common hospital- acquired infections with 
high mortality rates.

 ► Several attempts have been made to develop mod-
els to predict CDI severity or mortality. However, 
they are less than ideal due to a lack of routinely 
recordable variables, low level of discrimination and 
limited subgroup applicability.

What are the new findings?
 ► Machine learning models are developed to predict 
in- hospital mortality of patients with CDI.

 ► The proposed machine learning models outper-
formed existing severity scores in predicting mor-
tality outcomes.

How might it impact on clinical practice in the 
foreseeable future?

 ► The proposed machine learning models could incor-
porate variability in laboratory data and comorbidi-
ties into prediction.

 ► The proposed models can facilitate early recogni-
tion of CDI severity and enable timely intervention 
to patients in need.
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months.4 C. difficile is easily passed on via the hands of 
healthcare workers.5 Antibiotic use is a major risk factor 
for CDI, causing alterations in gut microbiota that 
protect against gut infection, resulting in proliferation 
of C. difficile.6 The primary mediators of inflammation in 
CDI are large clostridial toxins, toxin A (TcdA) and toxin 
B (TcdB), which bind to and enter the colonic epithe-
lium. This results in a sequence of host cellular responses 
to cause diarrhoea, inflammation and tissue necrosis.7 
This manifests clinically as asymptomatic colonisation, 
mild diarrheal illness or more severe disease, including 
pseudomembranous colitis, toxic megacolon, sepsis and 
in severe cases, death.8

Treatment recommendations for CDI vary according to 
disease severity, ranging from oral antibiotics to surgical 
intervention.9 Metronidazole and vancomycin remain 
the cornerstone of CDI treatment, while fidaxomicin, 
a newly approved drug, is a new alternative. In patients 
with severe CDI, early surgical consultation is recom-
mended by the World Society of Emergency Surgery and 
the Infectious Diseases Society of America—Society for 
Healthcare Epidemiology of America.10 Prompt subtotal 
or total colectomy can reduce mortality11 in patients 
with megacolon, colonic perforation or for patients with 
septic shock and associated organ failure.12

Despite the increasing prevalence of CDI in the devel-
oped world, validated methods to predict severe disease 
have not been established.13 We recently published a 
systematic review of severe CDI predictors, but found that 
present risk scoring systems have been limited by small 
sample size and heterogeneity in definition of severe 
CDI.14 Proposed severity scores such as Clostridiodes 
difficile Associated Risk of Death Score (CARDS)15 and 
ATLAS Score16 17 (combination of age, treatment with 
systemic antibiotics, leucocyte count, serum albumin 
and serum creatinine) have not been widely adopted in 
current clinical practice.

The aim of this study is to derive and validate a clin-
ical prediction tool for severe outcomes in CDI. We stan-
dardised our measured outcome in this study as mortality 
to create a straightforward model that predicts for in- hos-
pital CDI mortality. We sought to address limitations of 
existing severity scores by developing our risk prediction 
model from a large database, the Medical Information 
Mart for Intensive Care- III (MIMIC- III)—an open- source, 
reputable and repeatable electronic- intensive care unit 
database.

METHODS
Data source and extraction
This was a retrospective study, and all patients were 
de- identified. Thus, informed consent was waived by 
the ethics committee of Beth Israel Deaconess Medical 
Center. Data were extracted from MIMIC- III using struc-
ture query language (SQL) with PostgreSQL 11.5 (Post-
greSQL Global Development Group).18 The MIMIC- III 
database contains health- related data associated with 

over 40 000 patients between 2001 and 2012, and it is 
publicly available.

It comprises health data of over 40 000 patients who 
stayed in intensive care units (ICUs) of the Beth Israel 
Deaconess Medical Center, Boston, Massachusetts, USA 
between 2001 and 2012. The database is comprehensive 
in nature and includes patient vital sign measurements 
at 1- hour intervals, demographics, laboratory test results, 
procedures and caregiver notes. Vincent et al19 and Gehr-
mann et al20 are notable studies that have leveraged on 
the MIMIC- III database for large- scale retrospective anal-
yses. Our data- driven approach allows us to develop a 
CDI severity prediction tool based on clinical outcomes 
rather than existing literature, eliminating the risk of bias 
and welcoming new possibilities of CDI severity predic-
tors. Additionally, patients from MIMIC- III are managed 
in the ICU and thus have comprehensive clinical and 
biochemical data available, allowing for novel variables 
to be taken into account when searching for CDI severity 
predictors.

Inclusion criteria and definition
The patients were extracted based on The International 
Classification of Diseases, ninth Revision, Clinical Modi-
fication code of ‘008.45’, indicating the diagnosis of 
‘intestinal infection due to Clostridium difficile’ at hospital 
discharge. We also extracted data for the first ICU stay 
of patients aged between 16 and 90 years old. Other 
extracted information were patients’ demographics (age, 
gender, comorbidities of diabetes mellitus, chronic kidney 
disease and chronic ischaemic heart disease), laboratory 
test results (anion gap, albumin, bicarbonate, bilirubin, 
creatinine, chloride, glucose, haematocrit, haemoglobin, 
lactate, platelet, potassium, partial thromboplastin time, 
international normalised ratio, prothrombin time, 
sodium, blood urea nitrogen (BUN), white blood cell 
(WBC) count, calcium, free calcium) and vital signs (heart 
rate, respiratory rate, SpO2, body temperature, systolic 
blood pressure, diastolic blood pressure, mean arterial 
pressure). For patients with multiple measurements of 
laboratory tests and vital signs, we only kept the results 
of the first measurement, where the measurement time 
is closest to the patients’ ICU admission time. Patients’ 
missing information for laboratory tests and vital signs 
were imputed with the mean value for each variable in the 
cohort. Imputation of missing values is crucial for model-
ling. Removing records with missing values and some 
other filtering methods have been shown to introduce 
bias, which affects the performance of models in many 
ways, thereby limiting their generalisation.21 Imputation 
with mean values is commonly adopted as it maintains the 
distribution of predictors.22–24 We also implemented the 
RidgeRegression model for data imputation with refer-
ence to Cosgriff et al25 and similar results were obtained. 
The endpoint of this study is in- hospital mortality.

Statistical analysis
We trained three machine learning (ML) models: 
logistic regression (LR),26 random forest (RF)27 and 
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gradient boosting machine (GBM)28 to predict in- hos-
pital mortality based on the clinical features that were 
commonly measured on patients’ ICU admissions.

LR is commonly used in clinical research to model 
disease presence (diagnosis) or disease outcomes (prog-
nosis). In our study, we used LR to predict the chance 
of the outcome based on the characteristics of the risk 
factors (predictors). A linear combination of predic-
tors is used to fit a ‘logit’ transformation of the proba-
bility of the outcome. In the LR model, we reported the 
results using OR and the corresponding 95% CIs for all 
covariates.

RF uses random bootstrap samples of raw data samples 
to construct a series of decision trees and use them for 
medical prediction and classification tasks. It is a non- 
parametric classifier that constructs a hierarchical deci-
sion tree by splitting the data between the categories of 
outcome variables at a given step (node) according to 
the ‘if- then’ rule of a given set of risk factors. The model 
repeats it into two subnodes, which come from the root 
node that contains the entire sample (for a detailed 
description of RF, please refer to Breiman27). This 
‘ensemble learning’ classification method could reduce 
prediction variance and prevent overfitting to training 
sets.

Similar to RF, GBM model is also a decision tree 
based approach. Boosting is a group of methods which 
combine weak learners into strong learners. In decision 
tree boosting, each decision tree is trained on a subset 
of original dataset. For example, the first decision tree 
assigns equal weights to each observation and fits on the 
equally weighed dataset. After the first decision tree is 
evaluated, the boosting model re- weights each observa-
tion. The weights of difficult cases are increased and the 
weights of easy cases are decreased. The following deci-
sion tree is fitted on this re- weighted data. In this way, the 
performance of the overall model is improved based on 
the predictions of the first decision tree. The boosting 
model is now an ensemble of the first and second deci-
sion tree. Next, we evaluate the classification error of the 
boosting ensemble model and fit the third decision tree 
to predict the revised residuals. The process is repeated 
for a defined number of iterations. The new decision 
trees improve the ensemble model by fitting on the 
observations that are incorrectly predicted by previous 
decision trees. The final ensemble model is predicted 
by the weighted sum of the predicted values of all fitting 
decision trees. In GBM, particularly, the model uses a loss 
function to identify weak learners and gradients to mini-
mise the loss.

All three models used the same set of training and 
testing data. We split the original dataset into 80% 
train- set and 20% test- set, in which we ensure the propor-
tion of the positive outcomes was the same in both sets 
by stratifying the dataset based on hospital mortality. 
An RF- based feature selection method29 was used to 
detect key features for mortality prediction. The selected 
features were adjusted as covariates in the three models.

Model performance metrics
In our study, all the models predict the probability of 
in- hospital mortality for each patient’s ICU stay. We 
then use this probability as a risk score for clinicians to 
better understand the overall risk of death for individual 
patients at admission. If the risk score exceeds a specific 
threshold, the patient would be classified to a high risk 
group and receive attention from clinicians in advance.

We plotted receiver operating curve (ROC) according 
to different selected thresholds and calculated the mean 
area under ROC (AUROC) to evaluate the performance 
for each model. To ensure the robustness of our finding, 
we calculated the 95% CIs of the AUROC with 100 boot-
straps of the train- test split. The way of calculating the 
bootstrapped CIs is inspired by Oh et al,30 where the 
authors selected the 95th percentile of the predicted 
probability as the decision threshold for prediction of CDI 
diagnosis. We computed the AUROC of other proposed 
severity scores, CARDS and ATLAS, to compare with our 
model performance. We also computed and compared 
the selected threshold with accuracy, sensitivity, speci-
ficity, positive predictive value (PPV) and negative predic-
tive value (NPV) for all the three models.

In addition, calibration is an important measure of 
predictive models. Calibration measures the model’s 
ability to produce predictions that are averagely close to 
the average observed result. For example, a model is said 
to be well- calibrated, if for 100 patients with a predicted 
risk of x%, close to x patients have developed the 
outcome. We used fivefold cross validation to calibrate 
each model: for each fold, we used the train set to fit the 
model and calibrate the trained model on the test set. 
The probabilities for each of the folds are then averaged 
for prediction.

Besides, we further investigated features’ importance 
in each model. For the LR model, we identified statisti-
cally significant features with p value <0.05. We ranked 
the features by the absolute value of their coefficients and 
obtained the top significant features for LR. For both RF 
and GBM models, feature importance was determined by 
counting the times (normalised) when the feature was 
chosen by the model to split the nodes in the decision 
trees. The top features are those with more counts. The 
statistical analyses were performed in Python 3.6. The 
codes are publicly available.31

RESULTS
From 61 532 ICU stays in the MIMIC- III database, we 
identified 1315 unique ICU stays with diagnosis of CDI. 
Demographics and clinical characteristics of the study 
population are provided (table 1). The mortality rate in 
the study cohort was 18.33% (241 over 1315 ICU stays). 
For each bootstrap iteration, train and test set included 
1052 and 263 unique ICU stays, respectively. On the test 
set, CARDS achieved AUROC of 0.57 (95% CI, 0.51 to 
0.65) and ATLAS Score achieved 0.63 (95% CI, 0.54 to 
0.70). For our proposed models, the LR model achieved 
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a mean AUROC of 0.69 (95% CI, 0.60 to 0.76). RF model 
achieved AUROC of 0.710 (95% CI, 0.620 to 0.770) and 
GBM model achieved AUROC of 0.720 (95% CI, 0.64 to 
0.78) (figure 1). The calibration was evaluated for each 
model. In one bootstrapping test set, for example, all of 
three models demonstrated good calibrations. The Brier 
scores for LR, RF and GBM models were 0.139, 0.131 and 
0.132, respectively.

The decision threshold of the high risk group was 
selected based on the 95th percentile of predicted risk 
scores. LR achieved accuracy of 79.85%, sensitivity of 
10.20%, specificity of 95.79% and PPV of 35.71%. RF 
model achieved accuracy of 84.41%, sensitivity of 22.45%, 
specificity of 98.60% and PPV of 78.57%. GBM model 
obtained accuracy of 82.13%, sensitivity of 16.33%, speci-
ficity of 97.20% and PPV of 57.14% (figure 2).

We observed similarities across the models in terms of 
the top 10 significant features (table 2). Albumin, lactate 
and bicarbonate were significant for all the models. Free 

calcium, potassium, WBC, BUN, platelet and mean blood 
pressure were also important features, which were agreed 
by two of the three models. Gender and some lab tests 
results (haemoglobin, hematocrit, anion gap, creatinine) 
were considered important in the LR model but not in 
the other two models. Other variables, including heart 
rate, age, respiratory rate and sodium appeared only 
once in the list of either RF or GBM but not in LR model.

DISCUSSION
In this cohort study, we sought to employ ML in developing 
a big data- based prediction model to predict in- hospital 
mortality of patients with CDI admitted to the ICU. All 
three of our advanced ML algorithms accurately predict 
the probability of in- hospital mortality for each patient’s 
ICU stay. All ML models had adequate discrimination 
(ie, AUROC between 0.69 and 0.72) in predicting patient 
mortality. Our AUROC was comparable to that of the 

Table 1 The basic characteristics of the study cohort

Patient demographics and clinical features
Number of missing values 
(proportion (%))

Median (IQR) or number of non- 
null values (proportion (%))

Age 0 (0) 70.00 (58.14–79.48)

Gender (male) 0 (0) 649 (49.35)

Comorbidities (diagnosed with diabetes mellitus, chronic ischaemic heart disease 
or chronic kidney disease)

0 (0) 482 (36.65)

Anion gap 2 (0.15) 15.00 (13.00–18.00)

Albumin 305 (23.2) 2.70 (2.30–3.20)

Bicarbonate 2 (0.15) 23.00 (20.00–27.00)

Bilirubin 256 (19.47) 0.50 (0.30–0.95)

Creatinine 2 (0.15) 1.30 (0.80–2.40)

Chloride 2 (0.15) 103.00 (99.00–107.00)

Glucose 2 (0.15) 128.00 (101.00–165.00)

Haematocrit 2 (0.15) 32.00 (28.40–36.00)

Haemoglobin 2 (0.15) 10.50 (9.30–11.90)

Lactate 217 (16.50) 1.80 (1.30–2.80)

Platelet 2 (0.15) 243.00 (164.00–365.00)

Potassium 2 (0.15) 4.20 (3.70–4.70)

Partial thromboplastin time (PTT) 39 (2.97) 31.40 (27.00–38.20)

International normalised ratio (INR) 35 (2.66) 1.30 (1.20–1.70)

Prothrombin time (PT) 35 (2.66) 14.70 (13.40–17.90)

Sodium 2 (0.15) 138.00 (135.00–141.00)

Blood urea nitrogen (BUN) 2 (0.15) 27.00 (17.00–46.00)

White blood cells (WBCs) 2 (0.15) 12.90 (8.60–19.60)

Calcium 35 (2.66) 8.30 (7.70–8.90)

Free calcium 734 (55.82) 1.10 (1.02–1.17)

Heart rate 13 (0.99) 95.00 (81.00–110.00)

Respiratory rate 13 (0.99) 20.00 (16.00–24.00)

Oxygen saturation (SpO2) 14 (1.06) 98.00 (95.00–100.00)

Temperature (°C) 16 (1.22) 36.67 (36.06–37.33)

Systolic blood pressure 13 (0.99) 118.00 (103.00–138.00)

Diastolic blood pressure 13 (0.99) 60.00 (51.00–72.00)

Mean arterial pressure 13 (0.99) 77.00 (66.08–89.58)
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CARDS proposed by Kassam et al15, which was 0.77. Though 
the PPV was low for our ML models, the specificity of the 
three models was high, ranging from 95.79% to 98.60%.

By using RF model and 95% percentile threshold, the 
cohort can be stratified into high- risk and low- risk groups. 
In the high- risk group, 100% of the patients had albumin 
values beyond normal range (3.4 to 5.4 g/dL); 78.57% of 
the patients had lactate values beyond normal range (0.5 to 
2.2 mmol/L); 100% of the patients had bicarbonate values 
beyond normal range (23 to 30 mEq/L). In the low- risk 
group, 78.31% of the patients had albumin value beyond 
normal range; 52.61% of the patients had lactate values out 
of normal range; 64.66% of the patients had bicarbonate 

Figure 1 Discriminative performance of the models on 
the test set. The receiver operating characteristics curves 
illustrate the trade- off in performance between the false- 
positive rate (1−specificity) and the true- positive rate 
(sensitivity). Three models achieved good discriminative 
performance as measured by the area under the ROC 
curve (AUROC): logistic regression at 0.69, random forest 
at 0.71, GBM at 0.72. AUC, Area Under the Curve; ATLAS, 
Age, Treatment with systemic antibiotics, Leucocyte count, 
Albumin and Serum creatinine as a measure of renal 
function; CARDS, Clostridiodes difficile Associated Risk 
of Death Score; GBM, gradient boosting machine; ROC, 
receiver operating curve.

Figure 2 Confusion matrices of logistic regression (left), random forest (middle) and GBM (right) on test set. Selecting a 
decision threshold based on the 95th percentile results in classifiers that achieved good specificity of above 95%. GBM, 
gradient boosting machine; NPV, negative predictive value; PPV, positive predictive value.

Table 2 The top 10 risk/protective factors across three 
models, ranked from most important to least important

Logistic 
regression Random forest GBM

Free calcium White blood cell White blood cell

Gender Blood urea 
nitrogen

Bicarbonate

Haemoglobin Platelet Mean blood pressure

Albumin Albumin Blood urea nitrogen

Potassium Mean blood 
pressure

Albumin

Haematocrit Lactate Lactate

Lactate Bicarbonate Platelet

Bicarbonate Heart rate Respiratory rate

Anion gap Age Sodium

Creatinine Free calcium Potassium

GBM, gradient boosting machine.
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values out of normal range. The mortality of high- risk 
group is 57.14% while the mortality rate of low- risk group 
is 18.87%.

We also found several variables which were not typically 
incorporated into risk scores such as platelet, in addition 
to more established predictors such as albumin level, BUN 
level and WBC count. Our ML models could incorporate 
variability in laboratory data and many comorbidities into 
prediction, which other standard prognostic tools are 
unable to perform.

One advantage of ML classifiers, such as random- forest 
approaches, over purely regression- based classifiers, is that 
ML can take into account unexpected predictor variables 
and possible connections.32 There can be many potential 
predictors, especially with increasing use of electronic 
health records, which may be overlooked with a predefined 
hypothesis.33 34 An advanced ML approach allows for evalu-
ation of far more clinical variables than would be present in 
traditional modelling approaches. Hence ML algorithms 
can promote identification of clinically important variables 
in patients with C. difficile which may not be recognised with 
a more conventional approach.

In our study, we found that albumin, lactate and bicar-
bonate were significant across all models. The finding of 
serum albumin being a predictor of mortality is concordant 
with our previous systematic review, which showed that at 
least five of the 31 articles identified prior comorbidities, age, 
white blood cell count, serum albumin, serum creatinine and 
ICU admission as predictors of severity.14 Interestingly, none 
of the 31 studies on C. difficile severity predictors included 
lactate and bicarbonate levels. Furthermore, all international 
clinical guidelines on severe CDI, such as American College 
of Gastroenterology and European Society of Clinical Micro-
biology and Infectious Diseases, do not include lactate and 
bicarbonate levels. Elevated lactate levels are known to be 
significantly associated with in- hospital mortality and are 
featured in the surviving sepsis bundle.35 Likewise, low 
bicarbonate and anion gap, which is observed in metabolic 
acidosis, has been used in assessing in- hospital mortality for 
patients admitted to the ICU36 for patients with acute pancre-
atitis37 or cardiogenic shock.38 These biomarkers, when 
taken together and weighted according to their importance 
in our prediction models, can tell us more about the condi-
tion of a patient than just one biomarker alone. Similarly, 
factors which predicted mortality in CDI in two out of three 
of our models, namely free calcium, potassium and lactate, 
were not mentioned by any of the 31 studies. This could be 
due to the lack of availability of such data in the wards.

Our study is unique as it assesses the patient’s parameters 
at the point of admission to the ICU instead of the point 
of diagnosis of C. difficile, as proposed by other studies. 
Analysing patients’ data at ICU admission would be repre-
sentative of the patient population whose management can 
best benefit from our study, as data analysed are reflective 
of patients with severe CDI requiring ICU management. 
The ultimate aim of our proposed ML model is to prognos-
ticate patients with CDI and to catch those whose condi-
tions are likely to worsen early on.

We recognise the limitations faced by our study. Data were 
retrospectively extracted from the MIMIC- III database, 
an electronic health record of a single academic medical 
centre in the USA, which may result in concerns regarding 
the generalisability of conclusions. We attempted to alle-
viate this limitation by evaluating our models with 100 boot-
strapping iterations and obtaining CIs for each model. The 
data and codes are publicly available to researchers to repli-
cate the study and evaluate the generality of the proposed 
models. Inherent to the retrospective nature of the study, 
we face selection bias as the majority of the population are 
Caucasian with few African Americans and Asians. The 
future plan of our study is to conduct prospective research 
to understand the real- time performance of proposed 
models. In addition, as data were collected over the dura-
tion of 2001–2012, treatment and practices may vary from 
the current standard. However, as the pathophysiology 
of progression in CDI is likely to remain unchanged, the 
clinical progression and laboratory values of these patients 
remain applicable. Another limitation is that the deci-
sion threshold of prediction was selected based on 95th 
percentile of the predicted probability.30 In future studies, 
cross- validation methods can be used to select the optimal 
percentile and decision threshold in a data- driven manner. 
Imputation of missing values can be another limitation of 
this study. The imputation of mean values may not provide 
utility in the clinical settings. Regression- based imputation 
method such as ridge regression could be used as an alter-
native method. In our experiments, we obtained similar 
results when the missing values were imputed by ridge 
regression model. Furthermore, external validation of the 
model was not performed. External validation in a sepa-
rate, independent dataset is considered important in fully 
evaluating the performance of prognostic models, and will 
be the direction of our future research.

In conclusion, by learning from the shortcomings of 
previous severity models, we have employed a robust and 
objective ML approach, while capitalising on one of the 
most extensive ICU databases to develop a CDI severity 
prediction model. This can potentially transform hospital 
care of patients by alerting clinicians of deteriorations and 
making timely intervention available to patients. Further 
exploration in clinical studies would be necessary to verify 
and refine our CDI predictor.
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