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Abstract
In adult mammals, axon regeneration after central nervous system injury is very poor, resulting in persistent functional loss. Enhancing 
the ability of axonal outgrowth may be a potential treatment strategy because mature neurons of the adult central nervous system may 
retain the intrinsic ability to regrow axons after injury. The protocadherin (Pcdh) clusters are thought to function in neuronal morpho-
genesis and in the assembly of neural circuitry in the brain. We cultured primary hippocampal neurons from E17.5 Pcdhα deletion (del-α) 
mouse embryos. After culture for 1 day, axon length was obviously shorter in del-α neurons compared with wild-type neurons. RNA se-
quencing of hippocampal E17.5 RNA showed that expression levels of BDNF, Fmod, Nrp2, OGN, and Sema3d, which are associated with 
axon extension, were significantly down-regulated in the absence of the Pcdhα gene cluster. Using transmission electron microscopy, the 
ratio of myelinated nerve fibers in the axons of del-α hippocampal neurons was significantly decreased; myelin sheaths of P21 Pcdhα-del 
mice showed lamellar disorder, discrete appearance, and vacuoles. These results indicate that the Pcdhα cluster can promote the growth 
and myelination of axons in the neurodevelopmental stage. 
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Graphical Abstract

The protocadherin alpha cluster functions in axon growth and functional repair after adult mammalian 
spinal cord injury

Introduction
During neuronal wiring, axons establish a framework that 
is dependent on a series of guidance events during neural 
development. Axon outgrowth is crucial for the assembly 
of neuronal circuitry to ensure proper synaptic connectivity 

(Dickson, 2002; Chilton, 2006; McAllister, 2007; Imai et al., 
2009; Cheng and Poo, 2012). Meanwhile, myelin is an im-
portant structure in the nervous system. Myelin alteration 
or myelination cell dysfunction affects the function of axons, 
including outgrowth of axons during development (Sánchez 
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et al., 1996). Axon regeneration after injury requires axonal 
outgrowth from the soma, similar to that during normal 
development. Injured axons in the adult mammalian spinal 
cord ordinarily fail to spontaneously regenerate and do not 
recover functionality. Axon demyelination further increases 
the difficulty of regeneration after injury (Xu et al., 2014; 
Kim et al., 2017). A number of factors are thought to be 
responsible for this phenomenon, including extracellular 
matrix inhibitors, myelin inhibition, cell death, insufficient 
growth factor support, and the lack of the intrinsic growth 
capacity of adult central nervous system neurons (Beattie et 
al., 2000; Neumann et al., 2002; Filbin, 2003; Fawcett, 2006; 
Liu et al., 2011; McKerracher and Rosen, 2015). 

Many researchers have tried to characterize the environ-
mental inhibitory molecules in the adult central nervous sys-
tem (Hu and Selzer, 2017; Nathan and Li, 2017). However, 
removing the inhibitory molecules genetically or pharmaco-
logically only results in limited sprouting and is insufficient 
for long-distance axon regeneration (Yiu and He, 2006; 
Filbin, 2008; Fitch and Silver, 2008; Yang et al., 2010). Many 
studies have attempted to explore the intrinsic regenerative 
ability of mature central nervous system neurons to promote 
axon regeneration (Kadoya et al., 2009; Sun and He, 2010; 
Yang and Yang, 2012). Intrinsic growth activity is gradually 
repressed in the transition process from embryonic to adult 
neurons (Abe and Cavalli, 2008; Lu et al., 2014). Thus, an 
important step in elucidating the mechanisms mediating 
this activity is to identify the critical genes that promote 
neurite outgrowth.

Protocadherins (Pcdhs) are a large group of calcium-bind-
ing transmembrane cell-adhesion and signaling proteins, 
belong to the cadherin superfamily, and are subgrouped into 
“clustered” and “non-clustered” Pcdhs based on their respec-
tive genomic structures (Yagi and Takeichi, 2000; Morishita 
and Yagi, 2007; Kim et al., 2011; Hayashi and Takeichi, 2015). 
In mammals, more than 50 clustered Pcdh genes are organized 
into three sequentially-linked clusters known as Pcdhα, Pcdhβ, 
and Pcdhγ (Wu and Maniatis, 1999; Wu et al., 2001). The clus-
tered Pcdh genes are expanded in species with rich behavior 
repertoires such as zebrafish and octopus but not in Drosoph-
ila (Wu et al., 2001; Albertin et al., 2015). Some non-clustered 
protocadherins, such as Pcdh-17, Pcdh18b, and NF-Pcdh, 
participate in axon extension and arborization (Biswas et al., 
2014; Hayashi et al., 2014; Leung et al., 2015). Recent studies 
have indicated that mice with complete deletion of the Pcdhα 
cluster or its constant region are viable and fertile, although 
they exhibit abnormal axonal projections from olfactory sen-
sory neurons, defects in dendritic branching, and altered spine 
morphogenesis and oligodendrocyte development (Hasegawa 
et al., 2008; Hasegawa et al., 2012; Suo et al., 2012; Yu et al., 
2012). Furthermore, Pcdhα may function in the establishment 
and maintenance of appropriate synaptic connections (Zi-
pursky and Sanes, 2010; Chen and Maniatis, 2013). We pre-
dicted that the Pcdhα cluster may be key in the outgrowth of 
axons because of these characteristics.

This study investigated the molecular functions of the Pc-
dhα cluster, focusing on its relationship with axon growth 

and myelination. The aim of this study was to investigate the 
axon growth defects and myelin sheath deficiency in hippo-
campal neurons of Pcdhα knockout mice. 

Materials and Methods
Animals
Pcdhα knockout (Pcdhα-del) mice were prepared previously 
(Wu et al., 2007, 2008) and housed in the Experimental Ani-
mal Center of Shanghai Jiao Tong University of China. Mice 
were able to reproduce. Male and female mice aged approx-
imately 3 months were used (Animal use license No. SYXK 
(Hu) 2013-0052). Animals were maintained at 23.8°C under 
a 12-hour light/dark cycle (lights on from 07:00–19:00). All 
experiments complied with the guidelines of the Institution-
al Animal Care and Use Committee of Shanghai Jiao Tong 
University (approval No. 1602029). 

Mice genotyping
DNA extraction from tail biopsies and genotyping was per-
formed according to a previous study (Truett et al., 2000). 
Primers used were as follows: ConF1: 5′-AGG CTG AAT 
AAC GTG CAC AGC TAA G-3′; GFPmutF: 5′-CCC CCT 
GAA CCT GAA ACA TAA AAT G-3′; ConR1: 5′-GCA 
GAT TGG TTC AAT GGA GTC TTT-3′. 

Hippocampal neuron culture
Heterozygous Pcdhα-del female mice were crossed with 
heterozygous Pcdhα-del male mice. Embryonic day 17.5 
(E17.5) embryos were collected from a pregnant dam and 
genotyped. Wild-type and Pcdhα-del embryos were prepared 
for neuronal culture. Hippocampi were collected in Hanks’ 
Balanced Salt Solution containing 10 mM Hepes (Gibco, 
Grand Island, NY, USA), 0.5% glucose and 100 μg/mL peni-
cillin/streptomycin. Tissues were digested with 0.25% tryp-
sin for 15 minutes at 37°C. After terminating the reaction 
with trypsin inhibitor (0.5 mg/mL) for 3 minutes at room 
temperature, tissues were gently triturated in the plating 
medium, containing minimum essential medium (Gibco, 
Grand island, NY, USA), 10% fetal bovine serum (Gibco), 1 
mM glutamine (Sigma, St. Louis, MO, USA), 10 mM Hepes 
(Gibco), and 50 μg/mL penicillin/streptomycin (Gibco). The 
number of viable cells was counted using 0.4% trypan blue 
in a hemocytometer (QIUJING, Shanghai, China). Cells 
were plated at a density of 1,000 cells/mm2 on poly-L-lysine/
Laminin coated coverslips (Becton, Dickinson, and Com-
pany BD Corning, Corning, NY, USA) in 24-well culture 
dishes (Thermo, Waltham, MA, USA). Cells were incubated 
in an atmosphere of 5% CO2 at 37°C. After 3–4 hours, the 
plating medium was replaced with a serum-free culture me-
dium, supplemented with neurobasal medium (Gibco), 2% 
B27, 0.5 mM glutamine, 50 mg/mL penicillin/streptomycin, 
and 25 mM glutamate (Sigma).

Immunofluorescent staining 
Cultured primary hippocampal neurons were washed once 
with 1× PBS, and then fixed in 4% paraformaldehyde for 
20 minutes at room temperature. Neurons were permeabi-
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lized and blocked with 0.3% Triton X-100 and 5% bovine 
serum albumin for 10 minutes, followed by incubation with 
mouse anti-Tau-1 primary antibody (monoclonal, 1:5,000; 
Millipore, Billerica, MA, USA) at 4°C overnight and then 
with a secondary antibody, donkey anti-mouse IgG (1:5,000; 
Jackson ImmunoResearch, West Grove, PA, USA). F-actin 
was stained with rhodamine phalloidin (Thermo) at 4°C 
overnight. Cell nuclei were visualized with 4′,6-diamidi-
no-2-phenylindole (DAPI). Images were collected with a 
Nikon confocal microscope (Tokyo, Japan) (A1Si) under 
a 20× objective for axon analysis. For each mouse embryo, 
nine fields of vision were randomly selected and pictures 
taken. The neuronal culture and immunofluorescent stain-
ing were performed at least three times.

RNA sequencing of hippocampal tissues 
Hippocampal tissue was collected from E17.5 embryos ac-
cording to the above-mentioned method. Three wild-type 
embryos and three Pcdhα-del embryos were prepared for 
RNA sequencing. Total RNA was prepared from embryonic 
hippocampal tissue using TRIzol Reagent (Ambion, Austin, 
TX, USA) according to the manufacturer’s protocol. The 
quality and yield of the isolated RNA were assessed using a 
microplate reader and 1% agarose gel electrophoresis. Prior 
to synthesizing cDNA, 2 μg RNA was purified using oligo 
(dT) magnetic beads. ProtoScript II reverse transcriptase and 
random primers (Promega, Madison, WI, USA) were used 
for reverse transcription, and second-strand cDNA synthesis 
was then performed. The polymerase chain reaction (PCR) 
product was purified using AMPure XP beads. Total cDNA 
was used to prepare the sequencing library according to the 
method outlined in the NEBNext Ultra RNA Library Prep 
Kit for Illumina (NEB E7530, Beverly, MA, USA). The cDNA 
libraries were sequenced on an Illumina instrument with 50-
base pair single reads. The read was aligned to the mouse 
genome (National Center for Biotechnology Information) 
using TopHat and Bowtie, followed by Cufflinks for assem-
bly of the reads into transcripts. Relative abundance of tran-
scripts was measured by Fragments Per Kilobase of exon per 
Million mapped fragments. The mapping of sequence data to 
the genome and transcriptome was visualized in Integrative 
Genomics Viewer, and genes with a maximum P-value of 
0.05 and a minimum fold change of ±2 were selected as dif-
ferentially expressed genes. GO terms were assigned to genes 
with significant differences in expression according to Gene 
Ontology. 

Real-time quantitative polymerase chain reaction 
(RT-qPCR)
Hippocampi from E17.5 embryos were collected according 
to the above-mentioned method. Tissues were homogenized 
and lysed in TRIzol reagent according to the manufacturer’s 
protocol (Life Technology). RNA yields were measured using 
a NanoDrop 2000 (Thermo, Waltham, MA, USA). A reverse 
transcription system (Promega) was used to obtain cDNA. 
Real-time PCR was performed on an Applied Biosystems re-
al-time system according to the detailed instructions provid-

ed by FastStart Universal SYBR Green Master (Roche, Basel, 
Switzerland). For normalization of gene expression, glyceral-
dehyde-3-phosphate dehydrogenase (GAPDH) was used as 
an internal standard. Primers used are listed in Table 1.

Transmission electron microscopy 
Twenty-one days after birth is the peak time for myelin basic 
protein expression in the myelin sheath of the central ner-
vous system, i.e., the critical period of myelination. There-
fore, myelin was observed at this time using electron mi-
croscopy (Sánchez et al., 1996). Three postnatal 21-day male 
wild-type mice and three postnatal 21-day male Pcdhα-del 
mice were prepared for transmission electron microscopy. 
Hippocampi were fixed overnight with 2.5% glutaraldehyde 
in 0.1 M sodium phosphate buffer, pH 7.4. Tissues were 
then washed with 0.1 M sodium phosphate buffer and post-
fixed in 1% osmium tetroxide. Tissues were dehydrated in 
a graded series of ethanol and then embedded in resin. Sev-
eral semi-thin sections were cut for anatomical orientation 
under light microscopy before ultrathin sectioning. The 
samples were ultrathin sectioned and then examined using a 
transmission electron microscope (Philips CM-120, Amster-
dam, The Netherlands).

Data analysis
Statistical analysis was performed using GraphPad Prism5 
software (Version X; La Jolla, CA, USA). The axon of each 
neuron was traced using ImageJ software (NIH, Bethesda, 
MD, USA). The resulting trace was used to calculate the 
length. The calculation was carried out in a double-blind 
fashion with respect to homozygous Pcdhα-del and wild-type 
littermates. For RT-qPCR, each sample was tested in triplicate 
and relative gene expression was calculated using the formula 
2–ΔΔCt. Percentages of myelinated axons were checked manu-
ally. The results were taken in double-blind fashion with re-
spect to homozygous Pcdhα-del and wild-type genotypes. All 
data were analyzed by two-tailed Student’s t-test to assess the 
significance of difference from controls. 

Table 1 Sequences of primers used in real-time quantitative 
polymerase chain reactions

Primer Sequence (5'–3')

Nrp2 F: GAC TTC ATT GAG ATT CGG GAT GG
R: AAC TTG ATG TAT AAC ACG GAG CC

Sema3d F: GGA AAA GCG ACA AGA GTT GC
R: TGA AAA TTT TGT TTT TCA AAC ACT G

BDNF F: CAG GTG AGA AGA GTG ATG ACC
R: ATT CAC GCT CTC CAG AGT CCC

FMOD F: TGA AGG GTT GTT ACG CAA ATG G
R: GCA TAA GGC GGA CTG CAT AGT G

OGN F: TGC TTT GTG GTC ACA TGG AT
R: GAA GCT GCA CAC AGC ACA AT

GAPDH F: GGT GAA GGT CGG TGT GAA CG
R: CTC GCT CCT GGA AGA TGG TG

GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; F: forward; R: 
reverse.
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Figure 1 Genotyping of mice with deletion of the entire Pcdhα gene cluster. 
(A) Schematic representation of del-α mice. (B) Genotyping of the Pcdh cluster knockout by polymerase chain reaction. In wild-type mice, conF1 
and conR1 primers can produce a 219-bp fragment. Forward primer GFPmutF is not involved in PCR at this time. There is a long distance from 
reverse primer conR1. In gene knockout mice, GFPmutF and conR1 primers can produce a 383-bp fragment. At this time, the site to which the 
forward primer ConF1 binds has been knocked out and is not involved in PCR. Ctr: Control; del-α: Pcdhα deletion.

Results
Axon growth defects in cultured Pcdhα-del neurons
To compare axonal growth changes between Pcdhα-del and 
wild-type mouse neurons, we observed cultured hippocam-
pal neurons in a 24-hour period by confocal microscopy 
through immunofluorescence staining. Mice were genotyped 
by PCR before hippocampi were collected (Figure 1). Cells 
were seeded on coverslips coated with poly-L-lysine/laminin 
and cultured. The morphology of neurons was diverse and 
neurite outgrowth was remarkable after 24 hours. Cells were 
stained with DAPI (Figure 2A, E). There was no difference in 
nuclei morphology. Tau is a microtubule binding protein that 
stabilizes microtubules in growing axons. An anti-Tau-1 anti-
body was used to stain the axon, cell bodies, and dendrites of 
growing hippocampal neurons. The morphology of neurons 
was identified via Tau-1 staining. A neuron had one axon 
and multiple dendrites. The axon was always thin and funic-
ular. We found that axon length was significantly decreased 
in Pcdhα mutants compared with controls (Figure 2B, F). 
This indicates that the Pcdhα cluster may function in axon 
outgrowth in cultured hippocampal neurons. Microfilaments 
consisting of actin, are widely distributed in neuronal soma 
and neurites, and can adapt to the physiological activities of 
neurons with morphological changes. Rhodamine phalloidin 
was used to stain F-actin, to show the integrity of the neurons 
(Figure 2C, G). These in vitro data suggest a potential role of 

the Pcdhα cluster in axon development in vivo. 

Loss of Pcdhα resulted in axon length shortening in 
cultured hippocampal neurons 
To further determine the role of clustered Pcdhs in axonal 
outgrowth, ImageJ software was used to analyze the length 
of axons. The axon length of wild-type neurons was 13.75 ± 
0.95 μm after in vitro culture for one day. In contrast axon 
length in Pcdhα-del neurons was 10.85 ± 0.50 μm (P < 0.05, 
vs. control group; Figure 3). These data confirmed that the 
Pcdhα genes play an important role in axonal development. 

Pcdhα mutants affected transcriptional levels of genes 
related to multiple axonal activities
To determine changes in transcription of genes related to 
axon growth and extension in Pcdhα-del mice, we compared 
hippocampal transcriptome profiles between wild-type and 
Pcdhα-del mice using next-generation RNA sequencing. Ac-
cording to a cutoff threshold of > 2 fold change and P value 
< 0.05, 1,341 RNA transcripts were identified, of which1,125 
were downregulated and 216 upregulated (Figure 4A) in 
Pcdhα-del mice. According to GO analysis, these differen-
tially expressed transcripts are enriched for several cellular 
components that are crucial in several biological processes, 
including axon extension, axon guidance and spinal cord 
development (Figure 4B and Table 2). A group of prom-

Figure 2 The Pcdhα gene cluster is required 
for axonal growth in cultured hippocampal 
neurons.
All neurons were visualized by staining 
with DAPI (blue) (A, E), and anti-Tau-1 
(green) (B, F). Tau-1 was used as a marker 
for axons whose immunofluorescence is 
distributed in somas and axons. Actin was 
detected with rhodamine phalloidin (red) (C, 
G) and merged images are shown in D and 
H. Representative images of hippocampal 
neurons from control (A–D) and del-α (E–
H) mice cultured for 1 day in vitro. Axons 
are represented in the dotted box in D and H. 
The neuronal culture and immunofluores-
cent staining were performed at least three 
times. Scale bar: 10 μm. DAPI: 4′,6-Diamid-
ino-2-phenylindole; Ctrl: control; del-α: 
Pcdhα deletion.
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inent neuronal activity-regulated genes, including BDNF, 
Fmod, Nrp2, OGN, and Sema3d, was down-regulated in the 
hippocampus in the absence of Pcdhα (Figure 4C).  

RT-qPCR verification of the transcriptome sequencing results 
To validate the reliability of the deep sequencing data, we 
confirmed the alteration of expression using RT-qPCR. Six 

significantly differentially expressed genes in the GO term 
axon extension were selected. As shown in Figure 5, the 
expression pattern of these five genes was in concordance 
with the deep sequencing results. Among the six genes, the 
expression of Slit3 was up-regulated, while the other genes, 
including BDNF, Fmod, Nrp2, OGN, and Sema3d, were 
down-regulated. 

Figure 4 Transcriptional program in the hippocampus of E17.5 mice in the Ctrl (+/+) and del-α (−/−) groups. 
(A) Genes differentially expressed in the hippocampus of controls and Pcdhα-del mice. (B) GO terms of neural development and axonal extension. 
(C) The expression of GO term ‘axon extension’ genes; red for high expression and green for low expression. Ctrl: Control; del-α: Pcdhα deletion.
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Pcdhα mutants possessed fewer myelinated axons
To assess the central nervous system myelination phenotype 
in Pcdhα knockout mice, hippocampal nerves of P21 Pc-
dhα-del and wild-type mice were examined using transmis-
sion electron microscopy. Strikingly, significantly fewer my-
elinated axons were observed in Pcdhα-del mice compared 
with the controls at a low magnification (Figure 6A, B). At 
high magnification, myelin sheaths around axons displayed 
alternately dark and bright lamellae, concentric configuration 
and consistent structural integrity in P21 wild-type mice. By 
contrast, myelin sheaths showed lamellar disorder, discrete 
appearance, and vacuoles in P21 Pcdhα-del mice (Figure 
6C, D). Quantification revealed a significant decrease in the 
percentage of axonal myelination in mutants compared with 
wild-type mice (Figure 6E). These data demonstrated that 
Pcdhα is required for proper myelination at P21. 

Discussion
An axon’s main function is to transmit nerve impulses from 
the soma to other neurons or effector cells. During nervous 
system development, axons extend to a specific location to 
establish proper neural wiring with target cells (Ferreira 
and Paganoni, 2002; Scheiffele, 2003; Gibson and Ma, 2011; 
Chia et al., 2014). One theory to explain why adult central 
nervous system axons cannot regenerate after spinal cord 
injury is because of a nonpermissive environment in the 
extracellular matrix (Huang and Sheng, 2012; Li et al., 2016). 
A previous strategy indicated that axonal growth could be 
promoted by removing this extracellular inhibitory activity; 
however, recent studies revealed that this is insufficient. In-
creasing the intrinsic regenerative ability of adult neurons 
has emerged as a promising strategy after spinal cord injury 
(Hannila and Filbin, 2008; Smith et al., 2009). However, 
these findings only provide limited help and do not enable 
axons to achieve long-distance growth. 

This study found that Pcdhα proteins may influence axon 
growth in vivo and that Pcdhα-del cultured hippocampal 
neurons exhibit a significant decrease in axonal length. In 
addition, Pcdhα-del mice exhibited a significant decrease 
in the degree of axon myelination in vivo. This is consistent 
with human genetic studies of a 5q31.3 microdeletion syn-
drome that causes delayed myelination in the human infant 
central nervous system (Shimojima et al., 2011). Our results 
show that the Pcdhα cluster is important for the growth and 
maturation of axons. Moreover, axonal expression of Pcdhα 
proteins is gradually repressed in mature mouse neurons 
(Morishita et al., 2004), indicating that the Pcdhα cluster 

may play a crucial role in axon development. RNA-Seq ex-
periments demonstrated that genes related to axon extension 
and axon guidance, such as BDNF, Fmod, Nrp2, OGN, and 
Sema3d are down-regulated in the absence of Pcdhα. Many 
studies have shown that these genes participate in the growth 
of axons (Liu et al., 2004; Winckler, 2007; McIntyre et al., 
2010; Steinhart et al., 2014; Taku et al., 2016; Guo et al., 2017).

In summary, the Pcdhα cluster functions in axon outgrowth 
and myelination. Neuron-intrinsic factors regulate axonal 
development in complex ways. Reactivating the expression of 
this gene can help repair adult mammalian spinal cord injury. 
This study focuses on morphological observations and does 
not clarify the mechanism by which the Pcdhα cluster influ-
ences axon outgrowth and myelination. Furthermore, the 
mechanism by which expression of the Pcdhα cluster is acti-
vated remains unclear, highlighting the need for additional 
strategies to reactivate intrinsic axonal growth after injury. 
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