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Abstract: High concentrations of γ-tocopherol (γTCP) tend to show antioxidant, anti-inflammatory,
and anticancer effects. In this study, we prepared polymer micelles under acidic conditions with a
controlled release ofγTCP due to the decomposition of pendant acetal bonds. First, a precursor diblock
copolymer composed of poly(ethylene glycol) (PEG) and acrylic acid (AA) was prepared. This was
followed by the synthesis of an amphiphilic diblock copolymer (PEG54-P(AA/VE6/γTCP29)140),
incorporated into hydrophobic γTCP pendant groups attached to the main chain through an acetal
bond. The prepared PEG54-P(AA/VE6/γTCP29)140 was further dispersed in water to form polymer
micelles composed of hydrophobic cores that were generated from a hydrophobic block containing
γTCPs and hydrophilic shells on the surface. Under acidic conditions, γTCP was then released from
the core of the polymer micelles due to the decomposition of the pendant acetal bonds. In addition,
polymer micelles swelled under acidic conditions due to hydration of the core.

Keywords: γ-tocopherol; acetal bond; amphiphilic diblock copolymer; polymer micelles

1. Introduction

Amphiphilic diblock copolymers in water form polymer micelles consisting of a hydrophobic core
and hydrophilic shell [1–3]. This serves as an effective route to encapsulate hydrophobic anticancer
drugs into the core, thereby improving the solubility of the reagents while limiting side effects [4].
As such, the passive targeting of drug-loaded polymer micelles of 10–100 nm average size can enhance
the permeability and retention (EPR) effect [5,6]. In general, polymer micelles with a size of several
hundred nanometers are unable to penetrate normal vascular walls, while polymer micelles around
tumor tissue can penetrate through defected vascular walls (enhanced permeability). This is due to
incomplete neovascularization around the tumor and gaps that form between vascular endothelial
cells. In addition, polymer micelles cannot be completely removed from the lymphatic tissue around
the tumor due to the immaturity of the lymphatic tissue. Therefore, the leaked polymer micelles
from tissue vesicular walls tend to accumulate around tumor tissue (enhanced retention). Such a
property generated by the accumulation of polymer micelles around tumor tissue is the EPR effect [7].
However, in the passive targeting mechanism, the amount of drugs for delivery to the affected area is
low, making the evaluation of the side effects of anticancer drugs non-negligible [8,9].

Recently, cancer-cell apoptosis has been reported using food-derived natural products [10,11].
γ-tocopherol (γTCP) is a type of vitamin E, contained in vegetable oils such as canola, soybean,
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and corn oils. This substance possesses antioxidative and anti-inflammatory effects, and demonstrates
the potential to improve cardiovascular disease and prostate cancer [12,13]. According to the literature,
an increase in γTCP concentrations in plasma may decrease the risk of prostate cancer [14]. However,
it is well established that the accumulation of excess amounts of vitamin E in the body by a normal
diet is impossible due to the low absorption rate of vitamin E that is in the range of 21%–29% [15].
Nevertheless, by local administration of more highly concentrated vitamin E, cancer-cell apoptosis can
be induced without the use of anticancer drugs.

According to previous studies, the pH of cancer and healthy cells was determined as 5 and
7.4, respectively [16]. Acetal bonds under acidic conditions can also be readily cleaved into
suitably functional moieties [17]. pH-responsive nanoparticles containing acetal linkage within
the chemical structure for the controlled release of drugs under acidic conditions have been
developed in the last two decades [18–21]. Simo et al. [22] reported that acetal linkage-containing
hydrophilic N-(2-(tetrahydoro-2H-pyna-2-yl)oxy)ethyl acrylamide (HEAmTHP) was polymerized via
reversible addition-fragmentation chain transfer (RAFT) radical polymerization using a hydrophobic
poly(2-hydroxyethyl acrylate) (PHEA) macro-chain transfer agent (CTA) to prepare an amphiphilic
diblock copolymer (PHEA-PHEAmTHP). In a subsequent study [23], the encapsulation of a hydrophobic
antibiotic substance in the hydrophobic domain of formed PHEA-PHEAmTHP micelles in water was
performed. Another study by Gold et al. investigated the effects of attached Amphotericin B to the
the cell membrane of micro-organisms, which showed antibiotic property by breaking membrane
structures [24]. Under acidic conditions, Amphotericin B was released from the polymer-micelle duet
that cleaved the acetal linkages. Feng et al. [25] prepared hyperbranched polyesters (S-hbPE) containing
multiple acetal linkages via condensation of 2,2′-(propane-2,2-diylbis(oxy)) diethanol, phosphoryl
chloride, and poly(ethylene glycol) monomethyl ether (m-PEG45-OH). Chlorin e6 a photosensitizer
for photodynamic therapy (PDT) was encapsulated into S-hbPE to prepare nanoparticles. Chlorin e6
was then released under acidic conditions around tumor tissue attributed to the decomposition of the
acetal linkages. As expected, the release of chlorin e6 under acidic conditions around tumor tissue
showed the high efficiency of PDT with reduced side effects. Thus, nanocarriers containing acid labile
acetal linkages for delivery systems via endosome/lysosome possess advantages such as solubilization
of hydrophobic guest molecules, and controlled release in the acidic conditions around tumor tissue.

In this study, we first prepared a precursor diblock copolymer (PEG54-PAA140) composed of
biocompatible poly(ethylene glycol) (PEG) and poly(acrylic acid) (PAA) blocks. This was followed
by the preparation of a diblock copolymer (PEG54-P(AA/VE35)140) via incorporation of vinyl ether
(VE) groups to the pendant carboxylic acid groups of the PAA block through esterification. Finally,
a diblock copolymer (PEG54-P(AA/VE6/γTCP29)140) was prepared via introduction of hydrophobic
γTCP groups onto the pendant VE groups by acetal linkage (Figure 1). The plane and subscript
numbers express the content (mol%) and degree of polymerization (DP), respectively. In addition,
aqueous solutions of PEG54-P(AA/VE6/γTCP29)140 were formulated to produce polymer micelles via
hydrophobic interactions of pendant γTCP (Figure 2). Under acidic conditions, partial release of γTCP
occurred due to the decomposition of the pendant acetal linkages. This was also attributed to the slight
swelling of the polymer micelles since hydrophobicity of the micelles decreased with the release of
hydrophobic γTCP. This suggests that the release of highly concentrated γTCP by the polymer micelles
under acidic conditions may lead to cancer-cell apoptosis without the use of anticancer drugs.
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Figure 2. (a) Micelle formation and release of γTCP in acidic aqueous solution; (b) chemical structure
of PEG54-P(AA/VE6/γTCP29)140.

2. Materials and Methods

2.1. Materials

Poly(ethylene glycol) methylether (4-cyano-4-pentanoate dodecyltrithiocarbonate) (PEG54,
Mn = 2.40 × 103 g/mol) and γ-tocopherol (γTCP, 96%) were purchased from Sigma Aldrich
(St. Louis, MO, USA); 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC, 98%) and
N,N-dimethyl-4-aminopyridine (DMAP, 99%) were procured from Fujifilm Wako Pure Chemicals
(Osaka, Japan). Ethylene glycol mono-vinyl ether (EGVE, 98%) and p-toluenesulfonic acid (p-TSA, 98%)
were supplied by Tokyo Chemical Industry (Tokyo, Japan). All reagents above were used as received
without further purification. We used 2,2′-azobisisobutyronitrile (AIBN, 98%) from Sigma Aldrich
(St. Louis, MO, USA) after recrystallization using methanol. Acrylic acid (AA, 98%), 1,4-dioxane
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(99%), and N,N-dimethylformamide (DMF, 99%) from Fujifilm Wako Pure Chemicals (Osaka, Japan)
were used after vacuum distillation. Water was purified with an ion-exchange column system. Other
reagents were used as received.

2.2. PEG54-PAA140 Synthesis

PEG54 (2.00 g, 0.833 mmol), AA (9.00 g, 124 mmol), and AIBN (30.5 mg, 0.186 mmol) were
dissolved in 1, 4-dioxane (50 mL). The solution was deoxygenated by purging argon gas for 30 min.
Polymerization was carried out at 60 ◦C for 16 h. The conversion of AA estimated from 1H NMR
was 98.2%. The polymerization mixture was dialyzed against pure water for 2 days. The polymer
(PEG54-PAA140) was recovered by a freeze-drying method (8.70 g, 79.1%). DP for PAA block and
number-average molecular weight (Mn) for PEG54-PAA140 were estimated using 1H NMR as 140 and
1.26 × 104 g/mol, respectively. While, Mn and molecular-weight distribution (Mw/Mn) were calculated
as 1.25 × 104 g/mol and 1.36, respectively, using gel-permeation chromatography (GPC).

2.3. Synthesis of PEG54-P(AA/VE35)140

We have used the conventional esterification method using EDC [26]. PEG54-PAA140 (134 mg,
1.50 mmol of COOH unit), DMAP (91.8 mg, 0.751 mmol), and EDC (860 mg, 4.49 mmol) were dissolved
in DMF (20 mL). The solution was stirred at 30 ◦C for 10 h under an argon atmosphere, and then EGVE
(0.667 mL, 7.55 mmol) was added to the solution. The solution was stirred at 30 ◦C for 24 h. Once the
reaction was complete, the solution was dialyzed against pure water for three days. The prepared
polymer (PEG54-P(AA/VE35)140) was recovered by a freeze-drying method (0.15 g, 56.6%). The Mn of
PEG54-P(AA/VE35)140 estimated from 1H NMR was determined as 1.67 × 104 g/mol. Mn and Mw/Mn

estimated using GPC were determined as 7.02 × 103 g/mol and 1.38, respectively. The exchange ratio
from the pendant carboxylic acid in the PAA block to the VE group was 35.0% estimated from 1H NMR.

2.4. PEG54-P(AA/VE6/γTCP29)140 Synthesis

Conjugation of γTCP onto PEG54-P(AA/VE35)140 via an acid-labile acetal bond was prepared
according to a previously reported method [17]. PEG54-P(AA/VE35)140 (62.5 mg, 180 µmol of VE unit),
γTCP (25.0 mg, 60.0 µmol), and p-TSA (0.56 mg, 2.94 µmol) were dissolved in DMF (10 mL). Molecular
sieves 4A (1.00 g) was added to the solution. The reaction was carried out at 50 ◦C for 4 days under an
argon atmosphere. Molecular sieves were removed by filtration, and the solution was dialyzed against
pure water for 2 days. The polymer (PEG54-P(AA/VE6/γTCP29)140) was recovered by a freeze-drying
method (80.9 mg, 92.5%). Mn for PEG54-P(AA/VE6/γTCP29)140 using 1H NMR was estimated as
1.96 × 104 g/mol. Mn and Mw/Mn estimated using GPC were determined as 1.02 × 104 g/mol and 1.47,
respectively. The exchange ratio from the VE to γTCP was calculated as 82.9% from 1H NMR.

2.5. Measurements

1H NMR spectra were measured with a Bruker DRX-500 (Billerica, AM, USA) at room
temperature. The block copolymer sample solutions for the 1H NMR measurements were prepared in
dimethylsulfoxide-d6 (DMSO-d6). GPC measurements were performed using Shodex (Tokyo, Japan)
Asahipak GF-1G guard column and GF-7M HQ column at 40 ◦C with a refractive index detector and
yielded a phosphate buffer solution (PBS) of pH 9 containing 10% v/v of acetonitrile at 0.6 mL/min in
the developing solvent. Determination of Mn and Mw/Mn according to GPC were calibrated using
standard sodium poly(styrene sulfonate)s. Hydrodynamic radius (Rh) and scattered light intensity (LSI)
were estimated using a Malvern (Malvern, UK) Zetasizer Nano ZS-ZEN3600 equipped with a He–Ne
laser source (4 mW at 632.8 nm) at 25 ◦C. The sample solutions for light-scattering measurements were
filtered through a filter with pore-size diameter of 0.8 µm. Static light scattering (SLS) measurements
were carried out with Otsuka Electronics (Osaka, Japan) DLS 7000 at 25 ◦C. The He–Ne laser (10 mW
at 632.8 nm) was used as a light source. Weight average molecular weight (Mw) and radius of gyration
(Rg) were calculated from a Debye plot at 1 polymer concentration. The Rayleigh ratio of toluene was
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used in instrument calibration. Refractive index increment against the polymer concentration (dn/dCp)
at 633 nm was determined using Otsuka Electronics DRM-3000 differential refraction meter at 25 ◦C.
TEM observations were performed with a JEOL (Tokyo, Japan) JEM-2100 at an accelerating voltage of
160 kV. Prior to TEM analysis, the sample was prepared by placing 1 drop of the aqueous solution on a
copper grid coated with Formvar. Excess water was blotted using filter paper. Samples were stained
by sodium phosphotungstate and dried under vacuum for a period of 1 day.

3. Results and Discussion

3.1. PEG54-P(AA/VE6/γTCP29)140 Preparation

The conversion of AA by RAFT polymerization using PEG54 macro-CTA was determined as 98.2%
estimated from the decrease of 1H NMR integral area intensity ratio of the vinyl group in AA after
polymerization. The DP of the PAA block was calculated to be 140 from the area integral intensity
ratio of peaks attributed to ethylene oxide protons in PEG54 at 3.7 ppm and the main chain protons in
PAA at 2.3 ppm (Figure 3a). The introduction of the pendant vinyl groups in PEG54-P(AA/VE35)140

were confirmed by the observed 1H NMR signal at 6.5 ppm attributed to VE (Figure 3b). The reaction
rate from the pendant carboxylic acid to the vinyl groups, calculated as 34.8%, was estimated from the
integral intensity ratios of the attributed peaks to the main chain protons of PAA140 at 2.3 ppm and
the vinyl protons in EGVE at 6.5 ppm. This result indicated that about 49 pendant vinyl groups were
introduced into one polymer chain of PEG54-P(AA/VE35)140. The protons attributed to the terminal
methyl at 0.8 ppm, benzyl at 2.0 ppm, and phenyl protons at 6.3 ppm in the pendant γTCP could
be observed from a PEG54-P(AA/VE6/γTCP29)140

1H NMR spectrum (Figure 3c). The introduction
rate of γTCP in PEG54-P(AA/VE6/γTCP29)140 was calculated as 83.3% estimated from the integral
intensity ratio of the unreacted pendant vinyl protons in PEG54-P(AA/VE35)140 at 6.5 ppm and phenyl
protons in γTCP at 6.3 ppm [27]. This result indicated that about 41 pendant γTCPs were introduced
into a single polymer chain of PEG54-P(AA/VE6/γTCP29)140. The theoretical Mn of each polymer was
calculated using the following equation:

Mn(theo) =
[M]0

[CTA]0
×

p
100
×Mm + MCTA, (1)

where [M]0 and [CTA]0 are the initial molar concentrations of monomer and CTA, respectively, p is
the conversion of the monomer, and Mm and MCTA are the molecular weights of the monomer and
CTA, respectively.

The GPC-determined Mn values of PEG54-PAA140, PEG54-P(AA/VE35)140, and PEG54-P(AA/

VE6/γTCP29)140 were 1.25 × 104, 7.02 × 103, and 1.02 × 104 g/mol, respectively (Figure 4).
Due to the unexpected interactions between polymers within the GPC column, and the difference
between structures of the measured polymer and the standard polymer, accurate molecular weight
could not be estimated [28,29]. The Mw/Mn values of PEG54-PAA140, PEG54-P(AA/VE35)140,
and PEG54-P(AA/VE6/γTCP29)140 were relatively narrow, obtained as 1.36, 1.38, and 1.47, respectively.
Table 1 summarizes the molecular weight and Mw/Mn of each polymer.
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Table 1. Number-average molecular weight (Mn) and Mn distribution (Mw/Mn).

Sample Theoretical Mn × 104

(g/mol)

1H NMR Mn × 104

(g/mol)
GPC Mn × 104

(g/mol)
Mw/Mn

PEG54-PAA140 1.30 1.26 1.25 1.36
PEG54-P(AA/VE35)140 1.54 1.67 0.702 1.38
PEG54-P(AA/VE6/γTCP29)140 1.83 1.96 1.02 1.47

3.2. PEG54-P(AA/VE6/γTCP29)140 Micelle Formation

The Rh and LSI of the polymers were measured at Cp = 0.10 g/L in a PBS buffer of
pH 7.4 at 25 ◦C to confirm aggregation-state changes for PEG54-PAA140, PEG54-P(AA/VE35)140,
and PEG54-P(AA/VE6/γTCP29)140 (Figure 5). The Rh values of PEG54-PAA140 and
PEG54-P(AA/VE35)140 were 4.4 and 5.8 nm, respectively. The LSI values of PEG54-PAA140 and
PEG54-P(AA/VE35)140 were estimated as 40.4 and 83.0 Kcps, respectively. These polymers may dissolve
in PBS to form unimers due to their small Rh and LSI values. On the other hand, the Rh and LSI
of PEG54-P(AA/VE6/γTCP29)140 increased to 84.1 nm and 709 Kcps, suggesting the formation of
polymer micelles. These polymer micelles were formed due to the hydrophobic interaction between
pendant γTCP groups, which were composed of a hydrophobic P(AA/VE6/γTCP29)140 core and
hydrophilic PEG54 shells. The end-to-end distance of the PEG54-P(AA/VE6/γTCP29)140 polymer chain
was estimated as 53.4 nm, assuming that the lengths of the vinyl monomer unit and the PEG chain
were 0.25 and 18.4 nm, respectively [30–32]. The Rh value of the polymer micelle was calculated as
84.1 nm, which was larger than the end-to-end distance of PEG54-P(AA/VE6/γTCP29)140 (=53.4 nm).
Therefore, polymers could not form simple spherical core–shell structures. The polymers may form
intermicellar aggregates or large compound micelles.
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To characterize the polymer micelles formed from PEG54-P(AA/VE6/γTCP29)140 in the PBS buffer,
SLS measurements were performed (Figure 6). Using SLS, the apparent Mw and Rg were estimated
from the Debye plot (Table 2). The measured dn/dCp (=1.70 mL/g) of the polymer micelles were then
used to estimate the apparent Mw. The aggregation number (Nagg), which is the number of polymer
chains to form one micelle, was estimated using the following equation:

Nagg =
Mw(SLS)

Mw/Mn ×Mn(NMR)
(2)

Nagg was estimated as 248 using Mw (=7.15 × 106 g/mol), Mw/Mn (=1.47), and Mn(NMR)
(=1.96 × 106 g/mol) determined by SLS. Theoretically, Rg/Rh depends on the shape and polydispersity
of the micelles, for instance, hard sphere as 0.775, monodisperse sphere as 1.0, and rodlike shape as
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more than 2.0 [33–35]. The Rg/Rh of the polymer micelles formed from PEG54-P(AA/VE6/γTCP29)140

was calculated as 1.32, which is close to 1.0. Therefore, the polymers formed spherical micelles.Polymers 2019, 11, x FOR PEER REVIEW 8 of 12 
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Table 2. Dynamic and static light-scattering data of PEG54-P(AA/VE6/γTCP29)140 in PBS.

Sample SLS Mw × 106

(g/mol)
Nagg Rg (nm) Rh (nm) Rg/Rh dn/dCp (mL/g)

PEG54-P(AA/VE6/γTCP29)140 7.15 248 111 84.1 1.32 1.70

3.3. Micelle Decomposition in Acidic Condition

To evaluate the time dependence on micelle size and density formed from
PEG54-P(AA/VE6/γTCP29)140 in acetate buffer of pH 5.2 (0.01 M), Rh and LSI changes were monitored
at 25 ◦C (Figure 7). At constant particle size, density depended on the LSI. As a reference experiment,
the time dependence on Rh and LSI of the polymer micelles in a PBS buffer of pH 7.4 (0.01 M) were also
monitored. Rh increased with increasing time at pH 5.2. Rh values just after preparation and after 60 h
at pH 5.2 were determined as 81.0 and 107.0 nm, respectively. LSI values of just after preparation and
after 60 h at pH 5.2 were estimated as 693 and 321 Kcps, respectively. The LSI were observed to decrease
with increasing time. At pH 5.2, the pendant acetal bonds decomposed to release the hydrophobic
γTCP from the polymer micelles. As a result, hydroxyl groups were generated at the pendant groups.
However, not all pendant acetal bonds were decomposed at pH 5.2. However, an increase in Rh and
decrease of the LSI was due to decreasing densities observed at pH 5.2, attributed to the hydration
and then swelling of the core of the polymer micelles. Oho et al. [36] reported that γTCP is relatively
stable against acidic conditions. The released γTCP from the polymer in a buffer at pH = 5.2 may not
be decomposed.

At pH 7.4, the Rh values of the micelles just after preparation and after 60 h were calculated as 81.5
and 83.8 nm, respectively. The LSI of the micelles slightly decreased with increasing time. The values of
LSI just after preparation and after 60 h were obtained as 695 and 492 Kcps. These observations suggest
that the pendant acetal groups slightly decomposed at pH 7.4. Compared to the time dependence of
Rh and LSI at pH 5.2 and 7.4, γTCP was effectively released due to the decomposition of the pendant
acetal bonds.

The micelles of PEG54-P(AA/VE6/γTCP29)140 in PBS of pH 7.4 were observed with Transmission
electron microscopy (TEM, Figure S1). The radius (RTEM) estimated from the TEM image was
72.1± 12 nm. RTEM was calculated from a randomly selected 50 particles (N = 50). RTEM was smaller than
the Rh values determined by light-scattering measurements because the aggregates shrank during the
drying process in preparation for TEM measurements. The micelles of PEG54-P(AA/VE6/γTCP29)140
in the acetate buffer of pH 5.2 just after preparation and after 60 h were observed using TEM to confirm
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the shape changes of the micelles (Figure 8 and Figure S1). Both samples were close to spherical shapes.
The RTEM values for just after preparation and after 60 h were estimated as 77.9 ± 18 and 113 ± 32 nm,
respectively. This result suggests that the swollen micelles were due to increasing core hydrophilicity
at pH 5.2 after 60 h. The particle-size range of the polymer aggregates after 60 h was larger than that
just after preparation. This observation suggests that decomposition of the pendant acetal linkage was
not uniform.Polymers 2019, 11, x FOR PEER REVIEW 9 of 12 
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4. Conclusions

The amphiphilic block copolymers of PEG54-P(AA/VE6/γTCP29)140 bearing hydrophobicγTCP via
acetal bond linkage were prepared using RAFT radical polymerization. PEG54-P(AA/VE6/γTCP29)140

were demonstrated to dissolve in water, forming polymer micelles composed of hydrophobic
P(AA/VE6/γTCP29)140 block cores and hydrophilic PEG45 shells. At pH 5.2, a gradual increase
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in micelle size was observed with the gradual increase in time, attributed to the hydration and swelling
of the core, which leads to the breakage of pendant acetal bonds. The breaking of acetal bonds
generated γTCP and pendant hydrophilic hydroxyl groups, which were hydrated and swollen to
increase micelle size. At pH 7.4, the LSI of the polymer aqueous solutions decreased slightly with
increasing time. This observation suggested that acetal bond was slightly degraded, even at pH 7.4.
By applying PEG54-P(AA/VE6/γTCP29)140 as a suitable polymer for cancer treatment, a slow release of
γTCP could be achieved. However, low concentrations of γTCP show nontoxicity, as well as no side
effects for healthy tissue; when γTCP is released in large amounts around cancer tissue, pendant acetal
linkages are effectively broken due to low pH values. Moreover, the high released concentrations of
γTCP from the polymer micelle present an alternative route in the treatment of cancer tissue in the
absence of anticancer-drug usage, especially prostate cancer, with reduced side effects.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/1/36/s1:
Figure S1. (a) TEM images of PEG54-P(AA/VE6/γTCP29)140 at Cp = 0.10 g/L in PBS buffer of pH 7.4, in acetate
buffer of pH 5.2 (b) just after preparation and (c) after 60 h.
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