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Universality in volume-law entanglement of
scrambled pure quantum states
Yuya O. Nakagawa 1,2, Masataka Watanabe 2,3, Hiroyuki Fujita 1,2 & Sho Sugiura 1

A pure quantum state can fully describe thermal equilibrium as long as one focuses on local

observables. The thermodynamic entropy can also be recovered as the entanglement entropy

of small subsystems. When the size of the subsystem increases, however, quantum

correlations break the correspondence and mandate a correction to this simple volume law.

The elucidation of the size dependence of the entanglement entropy is thus essentially

important in linking quantum physics with thermodynamics. Here we derive an analytic

formula of the entanglement entropy for a class of pure states called cTPQ states

representing equilibrium. We numerically find that our formula applies universally to any

sufficiently scrambled pure state representing thermal equilibrium, i.e., energy eigenstates of

non-integrable models and states after quantum quenches. Our formula is exploited as

diagnostics for chaotic systems; it can distinguish integrable models from non-integrable

models and many-body localization phases from chaotic phases.
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As a measure of the quantum correlations in many-body
systems, the entanglement entropy (EE) has become an
indispensable tool in modern physics. The EE quantifies

the amount of non-local correlation between a subsystem and its
compliment. The ability of the EE to expose the non-local fea-
tures of a system offers a way to characterize topological orders1,2,
solve the black hole information paradox3, and quantify
information scrambling in a thermalization process under unitary
time evolution4–6.

Recently, the EE was measured in quantum many-body sys-
tems for the first time7,8. Specifically, the second Rényi EE
(2REE), one of the variants of the EE, of a pure quantum state was
measured in quantum quench experiments using ultra-cold
atoms. For such pure quantum states, it is believed that the EE
of any small subsystem increases in proportion to the size of the
subsystem just like the thermodynamic entropy9. This is called
the volume law of the EE. However, when the size of a subsystem
becomes comparable to that of its complement, it is observed
experimentally that the EE starts deviating from the volume law,
and eventually decreases (Fig. 1). The curved structure of the size
dependence of the EE, which first increases linearly and then
decreases, universally appears in various excited pure states, for
example, energy eigenstates10 and states after quantum quen-
ches11,12. We call this curved structure a Page curve, after D.
Page13, and it is of fundamental importance in explaining these
examples to reveal a universal behavior of the Page curve.

Despite their ubiquitous appearance, the theoretical under-
standing of the Page curves is limited to the case of a random
pure state13,14, which is a state at infinite temperature and can be
defined only in a finite-dimensional Hilbert space. By contrast,
the cold-atom experiments address finite temperature systems
and an infinite-dimensional Hilbert space; therefore, it is
important to develop a theory of the Page curve applicable to
these situations. Additionally, there are practical needs for the
estimation of the slope of the volume law. The slope is often
employed, for example, to calculate the corresponding thermo-
dynamic entropy8,10 and to detect a transition between the energy
eigenstate thermalization hypothesis (ETH) phase and the
many-body localized (MBL) phase15,16. However, since the
experimentally or numerically accessible sizes of the systems are
small, the estimation of the volume-law slope is deteriorated by
the curved structure of the Page curve.

In this work, we show that Page curves in broad classes of
excited pure states exhibit universal behaviors. We first derive the
function of the Page curve for canonical thermal pure quantum

(cTPQ) states, which are pure states representing thermal
equilibrium at a temperature β−117,18. In particular, the Page
curve of the 2REE is controlled only by two parameters, an
effective dimension ln a and an offset ln K, for any Hamiltonian
and at any temperature. We then conjecture and numerically
verify that this feature of the Page curve universally appears in
any sufficiently scrambled pure states representing equilibrium
states; that is, our function fits the 2REE of the energy eigenstates
of a non-integrable system and the states after quantum quenches
including the state realized in the above-mentioned experiment8.
By contrast, in the case of the energy eigenstates of an integrable
system, which are not scrambled at all, we find that their Page
curves deviate from our function. Since our function enables us to
estimate the slope of the volume law from small systems with
high accuracy and precision, our result is also numerically
effective in detecting the ETH-MBL transition15,16,19,20 and
improves the estimation of the critical exponent.

Results
Derivation of the Page curve in cTPQ states. Let us consider a
lattice Σ containing L ×M sites (Fig. 1), equipped with a
translation-invariant and local Hamiltonian H. We divide Σ into
two parts, A and B, each containing ‘ ´M and ðL� ‘Þ ´M sites.
The n-th Rényi EE of a pure quantum state |ψ〉 is defined as

Snð‘Þ¼ 1
1� n

ln trρnA
� �

; ð1Þ

where ρA≡ trB|ψ〉〈ψ|. We call Snð‘Þ as a function of ‘ the n-th
Rényi Page curve (nRPC). We note that we use the term
differently from how it is used in the context of quantum gravity,
where it denotes the temporal dependence of the entanglement
during the formation of a black hole. To simplify the calculation,
we assume ‘; L � 1.

To derive the behaviors of nRPCs for any Hamiltonian, we
utilize cTPQ states, which are proposed along with studies of
typicality in quantum statistical mechanics21–27.The cTPQ state
at the inverse temperature β is defined as

ψj i¼ 1ffiffiffiffiffiffi
Zψ

p X
j

zje
�βH=2 jj i; ð2Þ

where Zψ �Pi;j z
�
i zjhije�βH jji is a normalization constant, {|j〉}j

is an arbitrary complete orthonormal basis of the Hilbert space
HΣ, and the coefficients {zj} are random complex numbers
zj � ðxj þ iyjÞ=

ffiffiffi
2

p
, with xj and yj obeying the standard normal

distribution Nð0; 1Þ. For any local observable, the cTPQ states at
β reproduce their averages in thermal equilibrium at the same
inverse temperature18. As a starting point, we here derive the
following exact formula of the 2RPC at a temperature β−1 for any
Hamiltonian (see the Methods section for the calculations and
results for the nRPCs),

S2ð‘Þ¼ � ln
trAðtrBe�βHÞ2 þ trBðtrAe�βHÞ2

ðtre�βHÞ2
" #

: ð3Þ

We also give several simplifications of Eq. (3). The first step is
to decompose the Hamiltonian H as H=HA+HB+Hint, where
HA,B are the Hamiltonians of the corresponding subregion and
Hint describes the interactions between them. Since the range of
interaction Hint is much smaller than ‘ and L� ‘ due to the
locality of H, we obtain the simplified expression

S2ð‘Þ¼ � ln
ZAð2βÞ
ZAðβÞ2

þ ZBð2βÞ
ZBðβÞ2

 !
þlnRðβÞ; ð4Þ

S2

O L

In(2)

L 2⏐

BA

L –

Volume law

Fig. 1 A schematic picture of our setup. The second Rényi Page curve for
pure states, S2ð‘Þ, follows the volume law when ‘ is small, but gradually
deviates from it as ‘ grows. At the middle, ‘¼L=2, the maximal value is
obtained, where the deviation from the volume law is ln 2 (see the Results
section). Past the middle ‘¼L=2, it decreases toward ‘¼L and becomes
symmetric under ‘ $ L� ‘
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where R(β), coming from Hint, is an O(1) constant dependent
only on β and ZA;BðβÞ � trA;Bðe�βHA;BÞ.

Further simplification occurs through the extensiveness of the
free energy, −ln ZA,B/β, which is approximately valid when
‘; L� ‘ � 1. In the region in question, ln ZA,B is proportional to
the volume of the corresponding subregion, and thus, we
replace ZA(2β)/ZA(β)2 and ZB(2β)/ZB(β)2 with QðβÞaðβÞ�‘ and
QðβÞaðβÞ�ðL�‘Þ, respectively. Here, a(β) and Q(β) are O(1)
constants dependent only on β, and 1 < a(β) holds because of
the concavity and monotonicity of the free energy. Finally, we
reach a simple and universal expression for the 2RPC:

S2ð‘Þ¼‘lnaðβÞ � ln 1þ aðβÞ�Lþ2‘
� �

þlnKðβÞ; ð5Þ

where K≡ R/Q. This is our first main result. The same
simplifications can be applied to a general nRPC (see the
Methods section). For example, concerning the 3RPC, we have

S3ð‘Þ¼‘
lnb
2

� 1
2
ln 1þK ′

1
b‘

aL
þb�Lþ2‘

� �
þlnK ′

2; ð6Þ

where b, K ′
1 and K ′

2 are O(1) constants that depend only on β.
The significance of Eq. (5) is apparent: it tells us that the 2RPC

is determined by only two parameters: a(β) and K(β). The first
term represents the volume law of entanglement for ‘ � L=2, and
thus, its slope, ln a(β), is a density of the 2REE in the
thermodynamic limit L → ∞. The third term, ln K, represents
an offset of the volume law. The second term gives the deviation
from the volume law, which stems from the highly non-local
quantum correlation between subsystems A and B. Here, we see
that the way that quantum correlations appear in cTPQ states is
completely characterized by the volume-law slope, a(β). As ‘
approaches L/2, the quantum correction to the volume law
becomes stronger and eventually becomes exactly ln 2 at ‘¼L=2,
independent of the inverse temperature β and the Hamiltonian.
This is a unique feature of the 2RPC, as we do not observe such
universal behaviors in the nRPCs for n ≥ 3. With regard to the
third term, a similar offset term appears at zero temperature. It
comes from the degeneracy of a quantum state at zero
temperature, and is referred as the topological EE for topological
states1. Similarly, ln K contains the degeneracy term, but it also
contains other terms, e.g., ln Q. It is an interesting future
direction to decode the topological EE from ln K.

In addition, by using Eq. (5), the mutual information is
straightforwardly obtained. Suppose that the state is the cTPQ
state (Eq. (2)) and the system is divided into three parts, A, B, and
C. The (second Rényi) mutual information between A and B is
defined as I2 � SA2 þ SB2 � SA∪B

2 . It becomes and calculated as

I2¼ln
a�‘ þ a�Lþ‘

ða�‘=2 þ a�Lþ‘=2Þ2
 !

þ qlnK; ð7Þ

where SX2 is the 2REE in X, q= 1 when A∪B is connected and
q= 0 when A∪B is disconnected, ‘ is the sum of the length of A
and B, and, for simplicity, we take the both lengths to be ‘=2. Eq.
(7) explains the observed size dependence of the mutual
information in ref. 8. I2 grows exponentially with ‘ for ‘<L=2,
and shows a linear growth for L=2<‘. See Supplementary Note 1
for the detailed explanations.

Finally, to confirm the validity of the approximations and
clarify the advantages of our formula (5), we present numerical
simulations of the 2RPC of cTPQ states for the S= 1/2 XY chain

under a periodic boundary condition,

H¼
XL
i¼1

Sxi S
x
iþ1 þ Syi S

y
iþ1

� �
: ð8Þ

This system is mapped to the free fermion system by the
Jordan-Wigner transformation28, and the quantities
trAðtrBe�βHÞ2 and trBðtrAe�βHÞ2 can be efficiently calculated in
a large system (L ~ 100) by the correlation functions of the
system29. We numerically calculate the 2RPC of the cTPQ states
at the inverse temperature β= 4 by evaluating Eq. (3). As Fig. 2
shows, the numerical data of the 2RPC are well-fitted by our
formula (5) for all system sizes L and subsystem sizes ‘ (details of
the fitting is described in the Methods section). In addition, we
compare several estimates of the density of the 2REE from
numerical data in the inset: ln a from the fits by our formula,
the density of the 2REE for half of the system, S2(L/2)/(L/2),
and the average slope of the curve between ‘¼1 and
‘ ¼ 5; ðS2ð5Þ � S2ð1ÞÞ=4. It is clear that ln a does not contain
any systematic error compared with the other two estimates,
which represents one of the advantages of our formula (5). We
also numerically check the validity of the approximations in
deriving the formula (5) in Supplementary Figure 1.

General conjecture for scrambled states. So far, we have focused
on the cTPQ states, but they are merely a canonical example of
pure states locally reproducing the Gibbs ensemble. Here, we pose
a conjecture for other scrambled pure states: Eq. (5) works as a
fitting function for generic scrambled pure states.

In the following two subsections, we numerically check this
conjecture. We calculate the 2RPCs of various pure states,
namely, the excited energy eigenstates of (non-)integrable models,
and the states after a quantum quench. We show that the
conjecture holds for the eigenstates of the non-integrable model
but not for those of the integrable model. We also numerically
reveal that Eq. (5) well fits the 2RPC averaged over the time
evolution after a quantum quench.

Numerical results for energy eigenstates. As the ETH claims, in
a wide class of models, the energy eigenstates look thermal—the
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Fig. 2 Second Rényi Page curve in cTPQ states. The dots represent the
second Rényi Page curves in the cTPQ states of the spin system (9) at an
inverse temperature β= 4 calculated by Eq. (3) for various system sizes L.
The lines are the fits by Eq. (5) for the numerical data. The inset shows the
fitted values of ln a, S2(L/2)/(L/2), and the average slope of the curve
between ‘¼1 and ‘¼5. The dotted lines are the extrapolations to L → ∞ by
1/L scaling for ln a and S2(L/2)/(L/2) and by 1/L2 scaling for the average
slope
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expectation values of the local observables reproduce those of the
Gibbs ensemble30–32. From the viewpoint of ETH, its extension to
non-local quantities is interesting10,33. We test whether the for-
mula (5) applies to the 2RPC, which is highly non-local at
‘¼OðLÞ, in particular ‘ ’ L=2.

As an example, we take the S= 1/2 XXZ spin chain with/
without next-nearest neighbor interactions under the periodic
boundary condition,

H¼
XL
i¼1

Sxi S
x
iþ1 þ Syi S

y
iþ1 þ ΔSzi S

z
iþ1 þ J2Si � Siþ2

� �
; ð9Þ

where we set Δ= 2 and J2= 4 for non-integrable cases and J2= 0
for integrable cases34.

Figure 3a, b show the 2RPC of the eigenstates of this model
with various energies, which are obtained by exact diagonaliza-
tion. We see that the fit by the formula (5) works quite well for
the non-integrable cases, although not for the integrable cases.
Moreover, as Fig. 3c, d clearly indicate, the residuals of the fits per
site for all eigenstates decrease with respect to L for the non-
integrable cases but increase for the integrable cases. We therefore
numerically conclude that our formula (5) is applicable to non-
integrable models but not to integrable models. We provide a
discussion of the physics behind this result in Supplementary
Note 2.

We comment on our results of the energy eigenstates from the
viewpoint of ETH. First, the success of our formula in
the non-integrable case is important for the following reasons:
the corresponding thermal “ensemble” is not the usual

microcanonical ensemble (mixed state) but is rather a thermal
pure state. Although the Page curve necessarily deviates from the
volume-law slope in a pure state, the way how it deviates always
exhibits a universal behavior. Furthermore, S2ð‘Þ is a highly non-
local and complicated observable. We thus expect that our results
will bring the studies of ETH to the next step, i.e., its non-local
extension. Second, with regard to the extension of ETH to non-
local quantities, there are new proposals in which the effect of the
energy fluctuation is incorporated10,35. This is called subsystem
ETH35. In the subsystem ETH, the authors suggest that the
volume-law slopes of the higher-order REE for the energy
eigenstates may be different from those of the Gibbs ensembles or
the cTPQ state. We provide a discussion on this deviation in
Supplementary Note 2. In our numerical calculations on the
energy eigenstates, however, we do not see the deviation of the
2RPC from (5), which is derived for the cTPQ states. This might
be because of the limitation of the system sizes, and it would be
interesting to see the deviation indeed occurs in larger systems.
Indeed, this extension was recently analyzed in ref. 36. The EE of
energy eigenstates in a non-integrable model was studied there by
substituting ρdiag in Supplementary Eq. (11) by the microcano-
nical density matrix (ensemble), and the result supports our
generalized formula (Supplementary Eq. (11)). Third, the failure
of our formula in the integrable cases is surprising because ETH
for local observables was proved to hold for almost all eigenstates,
even in integrable systems37. By contrast, our results in Fig. 3c, d
clearly show that almost all eigenstates indeed violate formula (5),
or non-local ETH. A similar observation was made in ref. 38,
where the EE of eigenstates in a different integrable model from
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Fig. 3 Second Rényi Page curve for general energy eigenstates. a 2RPCs of several energy eigenstates of the non-integrable Hamiltonian, Eq. (9) with Δ= 2
and J2= 4 (dots), and the fits by our formula (5) (lines). The inset shows the energy spectrum of the Hamiltonian, and the arrows indicate the eigenstates
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PL
‘¼0ðS2ð‘Þi;data � S2ð‘Þi;fitÞ2,

where S2ð‘Þi;data is the 2REE of the i-th eigenstate and S2ð‘Þi;fit is a fitted value of it, for all eigenstates of the non-integrable Hamiltonian (10) with Δ= 2 and
J2= 4 (we consider only the sector of a vanishing total momentum and magnetization). The eigenstates are sorted in descending order in terms of the
residuals, and the horizontal axis represents their percentiles. The fits become better as the size of the system increases. d Same as figure c for the
integrable Hamiltonian (Δ= 2, J2= 0). The fits become worse as the size of the system increases
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ours was explicitly calculated. They found that the subsystem size
dependence of the EE is completely different from the result by
Page, where the EE is close to its maximum value13. Their result is
consistent with our finding that the 2REE of an integrable model
is qualitatively different from that of a non-integrable model.

Numerical results for quenched states. Next, as a second
example of thermal quantum states where our formula (5)
applies, we consider pure states after quantum quenches in closed
quantum systems, where some parameters of their Hamiltonians
are abruptly changed11,39,40. When such states become stationary
after a long time, they are considered to represent a thermal
equilibrium corresponding to the Gibbs ensemble in non-
integrable systems, while they do not in integrable systems
because infinitely many conserved quantities block thermal
behaviors41,42.

Here, we numerically simulate the dynamics of the 2RPC after
a quantum quench from pure states and find that our formula (5)
explains well the 2RPC of the stationary states. We note that
experimental measurement of the dynamics of the 2RPC was
already realized in ref. 8. Indeed, our results explains the
experimental data well: Fig. 4a in ref. 8 is well-fitted by our
formula (5), and the parameters are estimated to be ln(a)= 0.974
and ln K= 0.162 (Supplementary Figure 2).

We consider the Hamiltonian (10) with Δ= 1, i.e., the
Heisenberg model. Again, we consider both integrable (J2= 0)
and non-integrable (J2= 0.5) cases. An initial state of a quantum
quench (t= 0) is taken as the Néel state |Néel〉≡|↑↓↑↓↑↓…〉, and
the dynamics after the quench, |ψ(t)〉= e−iHt|Néel〉, is numeri-
cally calculated by exact diagonalization. We take a time step of
the evolution as dt= 0.1 and calculate the dynamics of 2RPC
S2ð‘; tÞ up to t ≤ T= 300.

In Fig. 4, we show the numerical results of the 2RPC S2ð‘; tÞ
after the quench (see also Supplementary Movies 1 and 2). At
first, the 2REE increases linearly with time until it satu-
rates11,40,43–45. After it saturates, temporal oscillations of the
2RPC are observed for a long time as long as t= T= 300 (see the
inset). We consider these oscillations as being due to the
finite-size effect (L= 16), and thus, we also present the time
average of the Page curve, S2ð‘Þ : ¼ 1

T

R T
0 dtS2ð‘; tÞ, as an

estimation of the long-time limit, limt!1 S2ð‘; tÞ. As clearly seen
in Fig. 4, the time average of S2ð‘Þ is well-fitted by our formula (5)
(dotted line) for both non-integrable and integrable cases. This
illustrates the validity of our formula for pure states after a
quantum quench.

Although our formula (5) is derived from a thermal state, it
somehow works in the integrable cases where the states never
thermalize. This success is achieved because the pure quantum
states are scrambled and partially thermalized, which usually
leads the states to the generalized Gibbs ensemble (GGE)41.
Hence, the slope ln a quantifies the number of states in the GGE.
We give a (non-rigorous) proof of the validity of the formula for
the time-averaged 2RPC in Supplementary Note 2. We also note
several differences between the integrable cases and the non-
integrable cases. First, for the integrable cases, other physical
observables, such as staggered magnetization, are not explained
by the cTPQ states or thermal equilibrium states46. Second, the
properties of the temporal fluctuations are different between the
two cases. A fluctuation is larger in integrable cases than in non-
integrable cases, as one can see in the inset of Fig. 4, where the
dynamics of the 2RPC at the center of the system, S2(L/2), is
plotted. We observe that the fluctuation decays algebraically with
the system size L for the integrable cases, whereas it decays
exponentially in the non-integrable cases47. These differences
probably reflect the existence of infinitely many conserved
quantities in integrable systems.

We also comment on the implication of our results for recent
studies on chaos in quantum many-body systems. In refs. 5,6, the
time dependence of S2(t) is related to the out-of-time-ordered
correlation, which captures the essence of quantum chaos48. As
we discuss in Supplementary Note 2, the convergence of S2ð‘; tÞ
in time and the applicability of formula (5) thereof mean that the
quantum states become scrambled in whole-spatial regions.
Therefore, we expect that the time until the convergence of the
2RPC after the quench is a good diagnostic for the scrambling
time49, and it would be interesting to relate those two time scales
directly in future work.

Application to many-body localization transition. Thus far, we
have shown that broad classes of thermal quantum states obey
our analytical formula (5). Finally, we demonstrate its practical
applications and advantages. The example we take here is a
problem of the phase transition between an ETH phase and a
MBL16,20 phase, where the volume law of entanglement provides
an important diagnostic to distinguish between the two
phases15,50.

MBL is defined as a disorder-induced localization in interacting
systems and has recently been an active field of research because
of the nontrivial interplay between the interactions and the
disorder. Meanwhile, the ETH phase is the phase where ETH
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2REE at the center of the system, S2(L/2). b Same as figure a for the integrable Hamiltonian (Δ= 1,J2= 0). Eq. (5) fits the time average well in both a and b
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holds, and it appears when the strength of the disorder in a
system is sufficiently weak (or absent). There is considered to be a
continuous phase transition between the ETH phase and the MBL
phase when the strength of disorder varies at a fixed energy
density (temperature) of the system.

Since MBL essentially involves interactions, it is difficult to
study them analytically, and one often resorts to numerical
approaches. One of the simple diagnostics for ETH and MBL
employed in such numerical studies is the n-th Rényi EE per site
sn, which will exhibit a transition from being non-zero
(ETH phase) to being zero (MBL phase) in the thermodynamic
limit. Most previous studies have utilized sn,center= Sn(L/2)/(L/2)
15,50–52, the EE per site at the center of the system, as an estimate
of sn. As we see in the inset of Fig. 2, however, the sn,center includes
a systematic error of O(1/L) from the correct value of sn in the
thermodynamic limit because of the deviation of the nRPC from
the volume law at the center of the system. This error harms
analyses of the ETH–MBL transition since the system size L
accessible by numerical methods is not very large, L ~ 22.

Here, our formula (5) comes in, and extracts the 2REE per site
in the thermodynamic limit in relatively small systems, as we
illustrated in Fig. 2 (we give a brief justification of the validity of
our formula in disordered systems in Supplementary Note 3). To
substantiate the advantage of our formula (5), we study the
ETH–MBL transition in the prototypical S= 1/2 spin chain for
MBL20,50,53,

H¼
XL
i¼1

Si � Siþ1 þ hzi S
z
i

� �
; ð10Þ

where a random magnetic field fhzi gi is drawn from a uniform
distribution [−h, h] and a periodic boundary condition is
imposed.

This model exhibits the ETH–MBL phase transition at the
critical disorder strength hc. Using the von Neumann EE (Sn!1),
the authors of ref. 50 estimated hc= 3.62 ± 0.2 and the critical
exponent of the transition ν= 0.80 ± 0.4 at the center of the
energy spectrum. However, the estimated ν violates the Harris
bound ν ≥ 254. This violation can probably be understood as a
finite-size effect, and we will show that the usage of formula (5)
improves the situation. We note that the Harris bound for S2 is
the same as that of Sn!1

54.
In Fig. 5a, we perform a finite-size scaling of the 2REE per site,

s2, for the first time. Those data are extracted from the fitting of
the 2RPC S2ð‘Þ of the eigenstates of the system, namely, s2= ln(a)
at the center of the energy spectrum. We obtain hc= 3.60 ± 0.12
and ν= 1.88 ± 0.2 (details are presented in the Methods section).

Although we study smaller systems, up to L= 16, compared with
the previous study50 (L � 22), the estimation of ν exhibits a
significant improvement to satisfy the Harris bound ν ≥ 2. This
highlights the usefulness of our formula (5) since a finite-size
scaling of the conventional method, s2,center= S2(L/2)/(L/2),
under the same conditions yields hc= 3.60 ± 0.12 and ν= 1.30
± 0.12 (Fig. 5b).

In general, when a physical quantity in a finite-size system has
an O(1/L) difference from the quantity in the thermodynamic
limit, this difference deteriorates the finite-size scaling, and the
critical exponent estimated from the scaling becomes
completely different from that in the thermodynamic limit
(for example, see the conventional ferromagnetic-spin glass
transition55,56). In this sense, the critical exponent ν in our study
is also sensitive to the finite-size effect of O(1/L). However,
using formula (5), we can remove the finite-size effect of O(1/L),
as shown in Fig. 2, resulting in an improvement in the estimation
of ν.

Discussion
In conclusion, we studied the volume law of entanglement in
general scrambled pure quantum states. By employing the cTPQ
states, we derive analytical formulae for the nRPC for general
local Hamiltonians at any temperature. In particular, we show
that the 2RPC S2ð‘Þ is parametrized by only two parameters (Eq.
(5)), and our formula improves the finite-size scaling of the
thermodynamic quantities. We numerically demonstrate that the
same formula for the 2RPC works as a fitting function for general
scrambled pure states other than cTPQ states, namely, excited
eigenstates of general Hamiltonians and states after quantum
quenches. We also propose the generalized formula that can
incorporate the energy fluctuation in Supplementary Eq. (11).
Finally, we employ our formula to detect the ETH–MBL phase
transition. The full characterization of the 2RPC by our formula
improves the estimate of the critical exponent of the transition
and would resolve the controversy over the breakdown of the
Harris bound at the transition.

Methods
Derivation of Equation 5. Here we present the detailed calculation of n-th Rényi
EE (REE) of the cTPQ states (Eq. (5))17,18.

For any local observable O on H∑, its expectation value of a cTPQ state satisfies
hψjOjψi¼ trðOe�βHÞ=trðe�βHÞ, and the standard deviation from the average is
exponentially small with respect to the volume of the system18 (here we denote a
random average over the coefficients {zj} by � � �). In this sense, we can regard cTPQ
states as a canonical example of thermal pure states that corresponds to the thermal
Gibbs ensemble ρGibbs≡ e−βH/tr(e−βH) at inverse temperature β.
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Fig. 5 Finite-size scaling across the ETH–MBL phase transition. a Finite-size scaling of ln(a), extracted from the fitting of the 2RPC of the eigenstates of the
Hamiltonian (11), vs. L1/ν(h− hc). The estimation of the critical exponent ν is significantly improved. b Same finite-size scaling as a for s2,center= S2(L/2)/
(L/2), which is a conventional estimate of the 2REE per site50
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The reduced density matrix of the cTPQ state ψ in A is written as

ρA¼ trB ψj i ψh j ¼ 1
Zψ

X
a1 ;a2 ;b1 ;i1 ;j1

π12 a1j i a2h j; ð11Þ

where πpq � zip z
�
jp apbp e�

1
2βH

		 		ip
 �
jp e�

1
2βH

		 		aqbp
 �
, abj i � aj i 	 bj i, and aj if ga and

bj if gb are complete orthonormal bases in the subsystem A and B, respectively. The
two indices ip; jq 2 jj if gj run over the orthonormal basis jj if gj . In this notation,
we obtain

trAρ
n
A¼

P
ðaÞ;ðbÞ;ðiÞ;ðjÞ

π12; π23; � � � ; πn1
Zn
ψ

; ð12Þ

where (x)≡ x1, x2, ⋯, xn. What we want to calculate is a random average of n-th
REE, Sn : ¼ 1

1�n ln trAρnAð Þ. The term π12, π23⋯πn1, however, includes the product of
random variables such as zi1 z

�
j1 ; zi2 z

�
j2 ; � � � ; zin z�jn and it is difficult to calculate the

average of the logarithm of it. Instead, we calculate Sn by averaging the trace before
taking the logarithm of it, ~Sn : ¼ 1

1�n ln trAρnA
� �

. As we give a proof in
Supplementary Note 4, the difference between Sn and ~Sn is exponentially small in
terms of the system size L (see also ref. 36).

By taking the random number average of trAρnA with using several properties of
{zi} such as zi¼0; z�i zj¼δij and jzij2jzjj2¼1þ δij , we can calculate n-th REE of the
cTPQ state for any Hamiltonian (below we just use Sn to denote ~Sn). For example,
the 2REE is Eq. (3), and the third REE is

S3 ¼ � 1
2 ln trA trBe�βH

� �3þ3trM
�h

þtrB trAe�βH
� �3þN

�
= tr e�βH
� �3i

;
ð13Þ

where M¼e�βH trBe�βH 	 trAe�βH
� �

and N¼P a1b1je�βH ja3b2

 �

a2b2 e�βH
		 		a1b3
 �

a3b3 e�βH
		 		a2b1
 �

. After the same simplification as we do for the
second REE, the term N is shown to be exponentially smaller than the other terms.
Then, we obtain the final result Eq. (6). It is difficult to write down a general
expression of Sn for all n, but we can calculate it for given integer n ≥
2 systematically by taking an average in Eq. (12). It would be interesting to study
whether the universality that we reported for the 2REE holds for the EE (n= 1).

Finally, we also comment on the case of infinite temperature β= 0 and its
relation to the previous studies. When β= 0, we can obtain a fairly simple equation
for general n:

Sn¼‘ln2� 1
n� 1

ln
Xn
k¼1

Nðn; kÞ 2‘

2L�‘

� �k�1
" #

; ð14Þ

where Nðn; kÞ ¼ 1
n

n
k

� �
n

k� 1

� �
is known as the Narayana numbers. It is

possible to take an analytic continuation n → 1 and reproduce the result on the EE
S1=−trA(ρA ln ρA) calculated in ref. 13.

Numerical fitting by our formula (5). Throughout this work, numerical fitting by
our formula (5) for given data of the 2RPC fS2ð‘ÞgL‘¼0 is performed with the least
squares method implemented in the numerical package scipy.optimize.leastsq by
regarding a and K in Eq. (5) as fitting parameters.

Details on the numerical calculations on ETH–MBL transition. In the demon-
stration of the ETH–MBL transition, we did exact diagonalization on the Hamil-
tonian (11) HMBL¼

PL
i¼1 Si � Siþ1 þ hzi S

z
i

� �
, where random magnetic fields fhzi gi

are taken from a continuous uniform distribution within [−h,h] and periodic
boundary condition is imposed. Since the Hamiltonian conserves the total mag-
netization Sztot¼

P
i S

z
i , we fixed the magnetization sector as Sztot¼0. We define

energy density ε of the eigenstates with energy E by using the extremal values of
energies, ϵ= (E−Emin)/(Emax−Emin), and focus on the case of ϵ= 0.5 throughout
our analysis. For each realization of the magnetic fields, an energy eigenstate closest
to ε= 0.5 is chosen and the 2RPC S2ð‘Þ for that eigenstate is calculated. The
number of realizations of the random magnetic fields is 1000 for all presented data.
After averaging S2ð‘Þ over all realizations, we perform fitting of S2ð‘Þ by our
formula (5) and obtain ln(a) for each value of the disorder strength h.

The scaling analysis of ln(a) and s2,center= S2(L/2)/(L/2) is performed to
determine the critical disorder strength hc and the critical exponent ν in a following
procedure50. First, we assume a universal scaling function of the form g(L1/ν(h−
hc)) in a window of width 2w centered at hc, namely, [hc− w, hc+ w]. The function
g is approximated by a polynomial of degree three and the polynomial as well as hc
and ν are optimized to make all data collapse into one line. In our analysis w= 2.0
is used, and (hc, ν)= (3.60 ± 0.12, 1.88 ± 0.2) is found for the case of ln(a), whereas
(hc, ν)= (3.60 ± 0.12, 1.30 ± 0.13) for s2,center (the errors are estimated by a
bootstrap method).

Data availability. All numerical data and computer codes used in this study are
available from the corresponding author upon request.
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