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Abstract

Background: Genome wide association studies (GWAS) have identified several SNPs associated with colorectal cancer (CRC)
susceptibility. Vitamin D is also inversely associated with CRC risk.

Methods: We examined main and joint effects of previously GWAS identified genetic markers of CRC and plasma 25-
hydroxyvitamin D (25(OH)D) on CRC risk in three prospective cohorts: the Nurses’ Health Study (NHS), the Health
Professionals Follow-up Study (HPFS), and the Physicians’ Health Study (PHS). We included 1895 CRC cases and 2806
controls with genomic DNA. We calculated odds ratios and 95% confidence intervals for CRC associated with additive
genetic risk scores (GRSs) comprised of all CRC SNPs and subsets of these SNPs based on proximity to regions of increased
vitamin D receptor binding to vitamin D response elements (VDREs), based on published ChiP-seq data. Among a subset of
subjects with additional prediagnostic 25(OH)D we tested multiplicative interactions between plasma 25(OH)D and GRS’s.
We used fixed effects models to meta-analyze the three cohorts.

Results: The per allele multivariate OR was 1.12 (95% CI, 1.06–1.19) for GRS-proximalVDRE; and 1.10 (95% CI, 1.06–1.14) for
GRS-nonproxVDRE. The lowest quartile of plasma 25(OH)D compared with the highest, had a multivariate OR of 0.63 (95%
CI, 0.48–0.82) for CRC. We did not observe any significant interactions between any GRSs and plasma 25(OH)D.

Conclusions: We did not observe evidence for the modification of genetic susceptibility for CRC according to vitamin D
status, or evidence that the effect of common CRC risk alleles differed according to their proximity to putative VDR binding
sites.
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Introduction

Both inherited and modifiable risk factors have been identified

for colorectal cancer (CRC). To date, genome wide association

studies (GWAS) have identified 32 SNPs at 23 independent loci

associated with CRC [1–16]. A substantial body of evidence also

demonstrates an inverse association between vitamin D status and

CRC [17–24]. Nonetheless, data examining the potential interac-

tion between genetic susceptibility to CRC and an environmental

factor such as vitamin D status are lacking.

There are plausible mechanisms by which genetic susceptibility

to CRC may vary according to vitamin D status. First, one of the

primary modes of action of vitamin D is via influence of gene

transcription by binding of the active form 1,25-dihydroxy-vitamin

D (1,25(OH)2D3) to the nuclear vitamin D receptor (VDR) [25]. A

prior study utilizing chromatin immunoprecipitation with mas-

sively parallel sequencing (ChIP-seq) to identify vitamin D

receptor (VDR) protein– DNA binding interactions observed that

VDR binding sites were significantly enriched near autoimmune

and cancer associated genes [26], including 3 previously identified

CRC-associated SNPs. Second, although our understanding of the
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functional implications of many CRC-associated SNPs is limited, it

is possible that some of these loci may be associated mechanis-

tically with pathways also influenced by vitamin D.

Thus, we examined the joint effects of genetic markers of

CRC previously identified by GWAS and plasma 25(OH)D on

CRC risk in three prospective cohorts: the Nurses’ Health Study

(NHS), the Health Professionals Follow-up Study (HPFS), and

the Physicians’ Health Study (PHS). We also specifically

explored the possibility that vitamin D status may differentially

influence risk of CRC according to genetic variants proximal to

regions of VDR binding demonstrated in functional ChIP-seq

studies.

Methods

Study Population
Our study included three case-control studies of CRC nested

within the Nurses’ Health Study (NHS), the Health Professionals

Follow-up Study (HPFS) and the Physicians’ Health Study

(PHS). The NHS was established in 1976 when 121,700 US

female registered nurses aged 30 to 55 years returned mailed

questionnaires on risk factors for cancer and cardiovascular

disease [27,28]. The HPFS was established in 1986 when 51,529

male health professionals aged 40 to 75 years responded to a

similar questionnaire [29]. In both cohorts, participants have

returned questionnaires every 2 years to update information

with response rates exceeding 90% [27,28]. In 1989-90, 32,826

NHS participants and in 1993-95, 18,018 HPFS participants

returned a blood specimen on ice packs. In 2001–04, 29,684

women in NHS and 13,956 men in HPFS who had not

previously provided a blood specimen mailed in a ‘swish-and-

spit’ sample of buccal cells. On receipt, blood and buccal cells

were centrifuged, aliquoted, and stored at 270uC [30]. The

Physicians’ Health Study was a randomized, double-blind,

placebo-controlled trial of aspirin and beta-carotene for the

primary prevention of cancer and cardiovascular disease among

22,071 U.S. male physicians ages 40 to 84 years enrolled in

1982 [31]. Participants with a prior diagnosis of heart disease,

cancer (except nonmelanoma skin cancer), renal or liver disease,

peptic ulcer, or gout or used vitamin A or beta-carotene

supplements, were excluded. Between 1982 and 1984, 14,916

men (more than 70% of participants) returned blood samples by

mail which were divided into aliquots and stored at 282uC
(later, at 2140uC) [32]. This study was approved by the Human

Subjects Committee at Brigham and Women’s Hospital and the

Harvard School of Public Health in Boston, MA, USA. All

participants provided informed consent.

In all three cohorts, incident cases of CRC were identified

by follow-up questionnaires and confirmed by medical records

review or through mortality follow-up. In each cohort, up to 3

controls were randomly selected from those who were alive and

free of cancer at the time of case ascertainment. In NHS and

HPFS, controls were matched to each case on ethnicity, year of

birth and month/year of blood or buccal sampling [30]; in

PHS, controls were additionally matched on smoking status

[32].

Laboratory Assessment
We previously measured plasma levels of 25(OH)D through a

radioimmunosorbent assay in the laboratory of Dr. Bruce W.

Hollis (Medical University of South Carolina, Charleston, SC).

The median intra-assay coefficient of variation from blinded

quality-control samples was 11.8% in NHS, 10.1% in HPFS, and

13.8% in PHS. Cases and their controls were analyzed in the same

batch, and laboratory personnel were blinded to case, control, and

quality-control status [23,32,33].

Genotyping
Genomic DNA was extracted from blood samples (HPFS, NHS,

PHS) and buccal cells (NHS, HPFS) using conventional methods.

We used the TaqMan Open Array SNP genotyping platform

(Biotrove, Woburn, MA) with 384-well format TaqMan assays to

genotype the following CRC-associated variants identified from

previous GWAS: rs6691170, rs6687758, rs10936599, rs16892766,

rs6983267, rs10795668, rs3802842, rs10505477, rs7014346,

rs7136702, rs11169552, rs4444235, rs4779584, rs9929218,

rs4939827, rs10411210, rs961253, rs4925386 [4,8-10,12,15,16].

TaqMan primers and probes were designed using Primer Express

Oligo Design software v2.0 (ABI PRISM). Primers, probes, and

conditions for genotyping assays are available upon request. We

genotyped rs2151512 on Taqman as a surrogate for rs4925386

(linkage disequilibrium r2 1.0 in the HapMap CEU population)

since genotyping by Taqman for rs4925386 on chromosome

20q13.33 was not successful.A subset of participants (954 cases and

1328 controls) had blood genomic DNA successfully genotyped

using Illumina HumanOmniExpress. Missing SNP data was

imputed to HapMap II release 22 using MACH [34]. All

genotyping underwent standard quality control including concor-

dance checks for blinded and unblinded duplicates and examina-

tion of sample and SNP call rates. The call rate was .97% for all

samples and .98% for all SNPs.

Statistical Analysis
We included a total of 1895 CRC cases and 2806 controls with

genotype information assembled from NHS, HPFS, and PHS for

our GRS. Within each cohort, we calculated allelic odds ratios and

95% confidence intervals for CRC associated with each SNP and

for genetic risk scores (GRSs). The GRS is an allelic scoring system

incorporating each of the specified risk alleles associated with CRC

based on prior GWAS to assign a single quantitative index of

genetic risk to each subject. Our GRS assumes an additive allelic

effect with carriage of an increasing number of copies of each risk

variant.

We constructed a GRS comprised of 18 Taqman CRC

susceptibility SNPs (GRS-18). We also examined GRSs comprised

of a subset of these SNPs based upon the 10 SNPs examined in. a

ChiP-seq analysis (GRS-10) conducted by Ramagopalan et al. In

this analysis, 3 CRC-associated SNPs were proximal (within

150 kb on either side of main disease-associated SNP) to increased

VDR binding (vitamin D response elements (VDRE)) (GRS-

proximalVDRE), and 7 SNPs were not proximal to areas of

increased VDR binding (GRS-nonproxVDRE) [26]. Among the

2,282 subset of individuals with additional GWAS data, we

created a GRS comprised of 31 CRC associated SNPs from

GWAS (GRS-31). We also calculated GRSs using the effect

estimates and standard errors for these same SNPs from large scale

GWAS [35] and tested for differences in the GRS-proximalVDRE

and GRS-nonproxVDRE.

For analyses of the joint effect of plasma 25(OH)D and GRS-18,

we included the 881 cases and 1566 controls in NHS, HPFS, and

PHS who also had previously measured 25(OH)D prior to CRC

diagnosis [23,32]. This was repeated for the joint effects of GRS-

31 and pre-CRC 25(OH)D levels among the 672 cases and 909

controls with both GWAS data and vitamin D levels. We

calculated odds ratios and 95% confidence intervals for CRC

associated with each 1 ng/mL increase in 25(OH)D; high versus

low vitamin D according to a threshold level of 25(OH)D

associated with lower CRC risk ($32 ng/mL); and quartiles of

Joint Effect of CRC Loci and 25(OH)D on CRC Risk

PLOS ONE | www.plosone.org 2 March 2014 | Volume 9 | Issue 3 | e92212



T
a

b
le

1
.

B
as

e
lin

e
ch

ar
ac

te
ri

st
ic

s
o

f
ca

se
s

an
d

co
n

tr
o

ls
in

N
H

S,
H

P
FS

an
d

P
H

S.

N
H

S
H

P
F

S
P

H
S

ca
se

s
co

n
tr

o
ls

ca
se

s
co

n
tr

o
ls

ca
se

s
co

n
tr

o
ls

n
=

9
2

2
n

=
1

4
3

6
n

=
5

8
6

n
=

8
7

1
n

=
3

8
7

n
=

4
9

9

A
g

e
at

d
ia

g
n

o
si

s
6

6
.8

(9
.2

)
6

6
.0

(9
.1

)
6

9
.2

(9
.2

)
7

0
.0

(9
.1

)
6

8
.9

(9
.1

)
6

8
.2

(9
.4

)

A
g

e
at

sa
m

p
le

d
ra

w
(y

e
ar

,
m

e
an

)
6

5
.4

(8
.8

)
6

3
.2

(8
.5

)
6

4
.8

(8
.5

)
6

4
.9

(8
.4

)
5

9
.3

(9
.0

)
5

7
.4

(8
.6

)

M
e

an
2

5
(O

H
)D

n
g

/m
L

2
4

.5
(9

.8
)

2
6

.5
(9

.7
)

2
8

.3
(9

.3
)

2
9

.3
(9

.4
)

2
5

.7
(9

.7
)

2
5

.2
(8

.9
)

N
o

n
-w

h
it

e
(%

)
1

.4
0

.4
8

7
4

5

B
M

I
(m

e
an

(S
D

))
2

6
.1

(5
.1

)
2

6
.0

(5
.0

)
2

6
.2

(3
.3

)
2

5
.6

(3
.3

)
2

5
.2

(2
.8

)
2

4
.6

(2
.6

)

Fo
rm

e
r

o
r

cu
rr

e
n

t
sm

o
ke

r
(%

)
5

8
5

5
5

4
5

1
5

9
5

7

A
lc

o
h

o
l

co
n

su
m

p
ti

o
n

$
1

5
g

o
r

$
2

d
ri

n
ks

/d
ay

1
4

1
3

3
2

3
0

3
0

2
7

B
e

e
f,

p
o

rk
o

r
la

m
b

as
a

m
ai

n
d

is
h

$
1

/d
ay

(%
)

1
6

1
4

1
4

1
4

3
4

P
h

ys
ic

al
ac

ti
vi

ty
#

7
.6

M
ET

s-
h

/w
e

e
k

o
r

#
3

ti
m

e
s/

m
o

n
th

3
3

3
3

3
7

3
3

3
0

2
5

R
e

g
u

la
r

as
p

ir
in

u
se

(%
)

3
5

4
6

4
6

5
2

4
9

4
8

R
e

g
u

la
r

N
SA

ID
u

se
(%

)
3

3
4

0
2

3
2

2
N

/A
N

/A

Fa
m

ily
h

is
to

ry
C

R
C

in
p

ar
e

n
t

o
r

si
b

lin
g

(%
)

2
3

1
7

1
9

1
5

N
/A

N
/A

T
o

ta
l

ca
lc

iu
m

in
ta

ke
(m

g
/d

ay
,

m
e

an
(S

D
))

9
5

2
.4

(3
6

4
.1

)
1

0
0

7
.5

(3
8

6
.9

)
9

1
6

.3
(3

9
9

.7
)

9
5

0
.6

(3
8

2
.5

)
N

/A
N

/A

T
o

ta
l

fo
la

te
in

ta
ke

(m
g

/d
ay

,
m

e
an

(S
D

))
4

2
6

.8
(1

7
9

.1
)

4
4

7
.8

(1
9

4
.9

)
5

2
5

.9
(2

2
6

.3
)

5
6

6
.2

(2
3

1
.6

)
N

/A
N

/A

N
/A

:
n

o
t

av
ai

la
b

le
.

W
it

h
in

e
ac

h
co

h
o

rt
,

3
co

n
tr

o
ls

w
e

re
ra

n
d

o
m

ly
se

le
ct

e
d

fr
o

m
p

ar
ti

ci
p

an
ts

al
iv

e
an

d
fr

e
e

o
f

ca
n

ce
r

at
th

e
ti

m
e

o
f

ca
se

as
ce

rt
ai

n
m

e
n

t,
an

d
m

at
ch

e
d

to
ca

se
s

b
as

e
d

o
n

e
th

n
ic

it
y,

ye
ar

o
f

b
ir

th
an

d
m

o
n

th
/y

e
ar

o
f

b
lo

o
d

o
r

b
u

cc
al

sa
m

p
lin

g
(N

H
S

an
d

H
P

FS
)

[3
0

]
an

d
in

P
H

S,
co

n
tr

o
ls

w
e

re
ad

d
it

io
n

al
ly

m
at

ch
e

d
o

n
sm

o
ki

n
g

st
at

u
s

[3
2

].
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
0

9
2

2
1

2
.t

0
0

1

Joint Effect of CRC Loci and 25(OH)D on CRC Risk

PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e92212



T
a

b
le

2
.

R
is

k
o

f
co

lo
re

ct
al

ca
n

ce
r

ac
co

rd
in

g
to

su
sc

e
p

ti
b

ili
ty

SN
P

s
in

N
H

S,
H

P
FS

,
P

H
S.

L
o

cu
s/

G
e

n
e

rs
n

u
m

b
e

r
P

ro
x

im
it

y
to

V
D

R
E

b
T

e
st

e
d

a
ll

e
le

N
H

S
,

H
P

F
S

,
P

H
S

O
R

(9
5

%
C

I)
N

H
S

,
H

P
F

S
,

P
H

S
P

-v
a

lu
e

R
e

f
P

re
v

io
u

s
O

R
(9

5
%

C
I)

G
E

C
C

O
1

O
R

(9
5

%
C

I)
G

E
C

C
O

1
P

-
v

a
lu

e

1
1

q
2

3
/C

11
o

rg
93

rs
3

8
0

2
8

4
2
x

p
ro

xi
m

al
V

D
R

E
A

0
.8

6
(0

.7
8

,
0

.9
5

)
0

.0
0

3
2

0
.9

0
(0

.8
7

–
0

.9
3

)
0

.9
0

(0
.8

7
–

0
.9

4
)

4
.4

6
E-

0
7

1
8

q
2

1
/S

M
A

D
7

rs
4

9
3

9
8

2
7
x

p
ro

xi
m

al
V

D
R

E
C

0
.9

2
(0

.8
5

,
1

.0
1

)
0

.0
7

6
2

,3
0

.8
3

(0
.8

1
–

0
.8

6
)

0
.8

9
(0

.8
6

–
0

.9
2

)
1

.6
6

E-
1

0

1
9

q
1

3
.1

/R
H

P
N

2
rs

1
0

4
1

1
2

1
0
x

p
ro

xi
m

al
V

D
R

E
C

1
.1

0
(0

.9
5

,
1

.2
7

)
0

.2
0

9
4

1
.1

5
(1

.1
0

–
1

.2
0

)
1

.0
8

(1
.0

2
–

1
.1

5
)

0
.0

1
2

8
q

2
4

/S
R

R
M

1P
1/

P
O

U
5F

1B
/M

Y
C

rs
6

9
8

3
2

6
7
x

n
o

n
p

ro
xV

D
R

E
G

1
.1

8
(1

.0
8

,
1

.2
9

)
2

.0
0

E-
0

4
5

,6
,7

,8
1

.2
1

(1
.1

8
–

1
.2

4
)

1
.1

3
(1

.0
9

–
1

.1
8

)
1

.2
5

E-
1

1

8
q

2
3

.3
/T

R
P

S1
/E

IF
3H

rs
1

6
8

9
2

7
6

6
x

n
o

n
p

ro
xV

D
R

E
A

0
.8

9
(0

.7
7

,
1

.0
3

)
0

.1
0

9
9

0
.8

0
(0

.7
6

–
0

.8
4

)
0

.8
1

(0
.7

6
–

0
.8

7
)

4
.5

9
E-

1
0

1
0

p
1

4
/K

R
T8

P
16

/T
C

EB
1P

3
rs

1
0

7
9

5
6

6
8
x

n
o

n
p

ro
xV

D
R

E
A

0
.9

4
(0

.8
6

,
1

.0
4

)
0

.2
2

1
9

0
.8

9
(0

.8
6

–
0

.9
1

)
0

.9
5

(0
.9

1
–

0
.9

9
)

0
.0

1
0

1
4

q
2

2
.2

/B
M

P
4/

M
IR

55
80

rs
4

4
4

4
2

3
5
x

n
o

n
p

ro
xV

D
R

E
C

1
.0

8
(0

.9
9

,
1

.1
8

)
0

.0
7

1
1

0
,4

1
.0

9
(1

.0
6

–
1

.1
2

)
1

.0
7

(1
.0

3
–

1
.1

1
)

1
.5

9
E-

0
4

1
5

q
1

3
/S

C
G

5/
G

R
EM

1
rs

4
7

7
9

5
8

4
x

n
o

n
p

ro
xV

D
R

E
C

0
.9

5
(0

.8
5

,
1

.0
5

)
0

.3
1

1
1

0
,1

1
0

.8
7

(0
.8

4
–

0
.9

1
)

0
.8

9
(0

.8
4

–
0

.9
3

)
5

.0
3

E-
0

7

1
6

q
2

2
.1

/C
D

H
1

rs
9

9
2

9
2

1
8
x

n
o

n
p

ro
xV

D
R

E
A

0
.9

8
(0

.8
9

,
1

.0
8

)
0

.7
4

2
4

0
.9

1
(0

.8
9

–
0

.9
4

)
0

.9
5

(0
.9

2
–

0
.9

9
)

0
.0

2
2

2
0

p
1

2
.3

/F
ER

M
T1

/B
M

P
2

rs
9

6
1

2
5

3
x

n
o

n
p

ro
xV

D
R

E
A

1
.1

3
(1

.0
4

,
1

.2
4

)
0

.0
0

6
1

0
,4

1
.1

2
(1

.0
9

–
1

.1
5

)
1

.0
8

(1
.0

4
–

1
.1

2
)

3
.6

7
E-

0
5

1
q

4
1

/D
U

SP
10

/C
IC

P
13

rs
6

6
9

1
1

7
0
x

-
G

1
.0

1
(0

.9
2

,
1

.1
0

)
0

.8
9

0
1

2
0

.9
4

(0
.9

2
–

0
.9

7
)

0
.9

8
(0

.9
4

–
1

.0
2

)
0

.3
9

0

1
q

4
1

/D
U

SP
10

/C
IC

P
13

rs
6

6
8

7
7

5
8
x

-
A

1
.0

1
(0

.9
2

,
1

.1
1

)
0

.8
2

6
1

2
0

.9
2

(0
.8

9
–

0
.9

4
)

0
.9

5
(0

.9
0

–
1

.0
0

)
0

.0
5

0

3
q

2
6

.2
/M

Y
N

N
rs

1
0

9
3

6
5

9
9
x

-
C

1
.0

2
(0

.9
2

,
1

.1
3

)
0

.7
2

6
1

2
1

.0
8

(1
.0

4
–

1
.1

0
)

0
.9

9
(0

.9
4

,1
.0

4
)

0
.6

3
0

8
q

2
4

/M
Y

C
/S

R
R

M
1P

1/
P

O
U

5F
1

B
rs

1
0

5
0

5
4

7
7
x

-
A

1
.1

8
(1

.0
8

,
1

.2
9

)
2

.0
0

E-
0

4
6

1
.1

7
(1

.1
2

–
1

.2
3

)
1

.1
4

(1
.0

9
–

1
.1

9
)

8
.2

3
E-

1
0

8
q

2
4

/M
Y

C
/S

R
R

M
1P

1/
P

O
U

5F
1

B
rs

7
0

1
4

3
4

6
x

-
A

1
.1

9
(1

.0
9

,
1

.3
0

)
1

.0
0

E-
0

4
2

1
.1

9
(1

.1
5

–
1

.2
3

)
1

.1
2

(1
.0

8
–

1
.1

7
)

4
.1

6
E-

0
8

1
2

q
1

3
.1

3
/L

A
R

P
4/

D
IP

2B
rs

7
1

3
6

7
0

2
x

-
C

0
.9

3
(0

.8
5

,
1

.0
2

)
0

.1
1

8
1

2
0

.9
4

(0
.9

3
–

0
.9

6
)

0
.9

1
(0

.8
7

–
0

.9
5

)
2

.7
6

E-
0

5

1
2

q
1

3
.1

3
/D

IP
2B

/A
TF

1
rs

1
1

1
6

9
5

5
2
x

-
C

1
.0

8
(0

.9
8

,
1

.1
9

)
0

.1
2

8
1

2
1

.0
9

(1
.0

5
–

1
.1

1
)

1
.0

7
(1

.0
2

–
1

.1
2

)
0

.0
0

4

2
0

q
1

3
.3

3
/L

A
M

A
5

rs
4

9
2

5
3

8
6
a

,x
-

C
1

.0
2

(0
.9

3
,

1
.1

2
)

0
.7

0
0

1
2

1
.0

8
(1

.0
5

–
1

.1
0

)
1

.0
7

(1
.0

2
–

1
.1

1
)

0
.0

0
5

1
q

2
5

.3
/L

A
M

C
1

rs
1

0
9

1
1

2
5

1
d

-
A

1
.0

4
(0

.9
2

,
1

.1
9

)
0

.5
2

2
1

1
.0

9
(1

.0
6

–
1

.1
3

)
1

.0
9

(1
.0

6
–

1
.1

3
)

9
.4

5
E-

0
8

2
q

3
2

.3
/N

A
B

P
1/

SD
P

R
rs

1
1

9
0

3
7

5
7
d

-
C

1
.0

4
(0

.8
8

,
1

.2
5

)
0

.6
2

9
1

1
.1

5
(1

.0
9

–
1

.2
2

)
1

.1
5

(1
.0

8
–

1
.2

3
)

1
.3

8
E-

0
6

5
q

3
1

.1
/P

IT
X

1/
H

2A
FY

rs
6

4
7

1
6

1
d

-
A

0
.9

9
(0

.8
5

,
1

.1
3

)
0

.8
1

6
1

3
1

.1
7

(1
.1

1
–

1
.2

2
)

1
.0

7
(1

.0
2

–
1

.1
1

)
0

.0
0

2

6
q

2
1

/S
R

SF
3/

C
D

K
N

1A
rs

1
3

2
1

3
1

1
d

-
A

1
.1

3
(0

.9
8

,
1

.3
1

)
0

.0
9

1
1

4
1

.1
0

(1
.0

7
–

1
.1

3
)

1
.0

4
(1

.0
0

–
1

.0
8

)
0

.0
6

4

9
p

2
4

/T
P

D
52

L3
/U

H
R

F2
/G

LD
C

rs
7

1
9

7
2

5
d

-
A

1
.0

1
(0

.8
8

,
1

.1
5

)
0

.9
3

7
6

,
1

5
1

.0
7

(1
.0

3
–

1
.1

2
)

1
.0

6
(1

.0
2

–
1

.1
0

)
0

.0
0

1

1
1

q
1

3
.4

/P
O

LD
3

rs
3

8
2

4
9

9
9
d

-
G

1
.1

4
(1

.0
0

,
1

.2
9

)
0

.0
4

9
1

4
1

.0
8

(1
.0

5
–

1
.1

0
)

1
.0

8
(1

.0
4

–
1

.1
2

)
3

.4
3

E-
0

5

1
2

p
1

3
.3

2
/C

C
N

D
2

rs
3

2
1

7
8

1
0
d

-
T

1
.2

0
(0

.9
4

,
1

.5
2

)
0

.1
3

8
1

1
.2

0
(1

.1
2

–
1

.2
8

)
1

.2
0

(1
.1

2
–

1
.2

8
)

5
.8

6
E-

0
8

1
2

p
1

3
.3

2
/C

C
N

D
2

rs
3

2
1

7
9

0
1
d

-
G

1
.0

6
(0

.9
4

,
1

.2
1

)
0

.3
3

9
1

1
.1

0
(1

.0
6

–
1

.1
4

)
1

.1
0

(1
.0

6
–

1
.1

4
)

3
.3

1
E-

0
7

1
2

p
1

3
.3

2
/R

P
L1

8P
9/

C
C

N
D

2
rs

1
0

7
7

4
2

1
4
d

-
T

0
.9

3
(0

.8
0

,
1

.0
9

)
0

.3
9

4
3

1
.0

4
(1

.0
0

–
1

.0
9

)
1

.0
4

(0
.9

9
,

1
.0

8
)

0
.1

2
0

1
2

q
2

4
.2

1
/T

B
X

3
rs

5
9

3
3

6
d

-
T

1
.0

5
(0

.9
1

,
1

.2
0

)
0

.5
0

8
1

1
.0

9
(1

.0
6

–
1

.1
3

)
1

.0
9

(1
.0

6
–

1
.1

3
)

3
.6

7
E-

0
7

1
4

q
2

2
.2

/B
M

P
4/

A
TP

5C
1P

1/
C

D
K

N
3

rs
1

9
5

7
6

3
6
d

-
C

1
.0

8
(0

.9
5

,
1

.2
3

)
0

.2
5

3
1

0
0

.9
2

(0
.9

0
–

0
.9

5
)

0
.9

5
(0

.9
2

–
0

.9
9

)
0

.0
0

6

1
5

q
1

3
/S

C
G

5/
G

R
EM

1
rs

1
1

6
3

2
7

1
5
d

-
A

1
.0

2
(0

.9
0

,
1

.1
6

)
0

.7
0

9
1

0
1

.1
2

(1
.0

8
–

1
.1

6
)

1
.0

5
(1

.0
1

–
1

.0
9

)
0

.0
1

2

1
5

q
1

3
/S

C
G

5/
G

R
EM

1
rs

1
6

9
6

9
6

8
1
d

-
C

0
.8

7
(0

.7
0

,
1

.1
0

)
0

.2
4

4
1

0
0

.8
4

(0
.8

0
–

0
.9

0
)

0
.9

3
(0

.8
7

–
0

.9
9

)
0

.0
1

8

Joint Effect of CRC Loci and 25(OH)D on CRC Risk

PLOS ONE | www.plosone.org 4 March 2014 | Volume 9 | Issue 3 | e92212



25(OH)D [32]. We tested for multiplicative interactions between

GRSs and vitamin D using a product term in the model and

assessing its significance by the Wald method.

We adjusted our genetic analyses for age at sample collection,

race, cohort, and type of sample (blood or cheek). Analyses which

also incorporated plasma 25(OH)D additionally adjusted for

season of blood draw and 25(OH)D analysis batch. We also used

multivariate models which included additional CRC risk factors,

including regular aspirin use (yes or no), body mass index (BMI; in

tertiles), physical activity (in tertiles), history of CRC in a parent or

sibling (yes or no), smoking status (never, former or current

smoker), alcohol consumption (0–4.9, 5–9.9, 10–14.9 or $ 15.0 g

per day), and consumption of beef, pork or lamb as a main dish (0–

3 times per month, once a week, 2–4 times per week or $5 times

per week). In NHS and HPFS we also included regular non-

steroidal anti-inflammatory drugs (NSAIDs) use (yes or no) and

energy-adjusted calcium and folate intake (in tertiles). Study

specific estimates were meta-analyzed to determine a combined

OR and 95% CI using inverse variance weights [36]. Fixed effect

model estimates were used as all tests of heterogeneity were non-

significant (p.0.05).

Results

Our analysis included 1895 CRC cases and 2806 controls

assembled from the three cohorts. Table 1 summarizes the

baseline characteristics of each cohort. The direction and

magnitude of our individual SNP effect estimates were comparable

to those of the original reports as well as those observed in the

Genetics and Epidemiology of Colorectal Cancer Consortium

(GECCO) and Colon Cancer Family Registry (CCFR). GECCO/

CCFR encompasses 13 studies, including NHS, HPFS, and PHS

with genetic information on a total of 10,061 cases and 12,768

controls (Table 2).

The additive GRSs comprised of the CRC risk alleles yielded

effect estimates for CRC within our three cohorts that were

comparable with those derived from all 13 cohorts encompassed

by GECCO and CCFR (Table 3). We also compared the

estimates obtained from models with the GRS-proximalVDRE

and GRS-nonproximalVDRE scores alone with models contain-

ing both GRSs (conditional models) and did not observe a material

difference. There was no significant difference between a GRS-

VDR (multivariate OR, 1.12; 95% CI 1.06, 1.19), and a GRS-

nonproximalVDRE (multivariate OR, 1.10; 95% CI 1.06, 1.14)

(p-heterogeneity = 0.52).

Consistent with our prior reports [23,32], we observed an

inverse association between 25(OH)D and CRC in a meta-

analysis of results from the three cohorts (Table 4). Compared

with individuals in the lowest quartile of 25(OH)D, men and

women in the highest quartile had a multivariate OR for CRC

of 0.63 (95% CI 0.48–0.82; p-trend,0.001), and for those with

higher levels of 25(OH)D ($ 32 ng/mL) compared with lower

levels, the multivariate OR was 0.79 (95% CI 0.65–0.98;

p = 0.03).

Tests of multiplicative interactions between continuous GRSs

and continuous 25(OH)D did not yield statistically significant

results, nor did tests of multiplicative interactions between

GRSs and vitamin D categorized by a threshold level of

32 ng/mL. Likewise, the risk estimates associated with GRS31

did not vary according to quartile of vitamin D (phet = 0.98)

(Figure 1).
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Discussion

There is substantial evidence supporting an inverse association

between circulating 25(OH)D and CRC risk; meta-analyses and

systematic reviews have observed a 50% lower risk of CRC

comparing extreme quintiles of 25(OH)D [21,24]. Several

mechanisms have been hypothesized to underlie this association,

some of which may be shared by pathways associated with the

putative functional consequences of CRC susceptibility SNPs

proximal to VDR-DNA binding sites. In addition, vitamin D

signaling occurs through binding of the active form 1,25(OH)D to

nuclear vitamin D receptor (VDR) along specific genomic

sequences known as vitamin D response elements (VDREs),)

which act to activate or repress gene transcription [25]. In our

study of 1895 CRC cases and 2806 controls nested within three

prospective cohorts, we did not observe statistically significant

evidence for interaction between CRC genetic markers, including

the 3 CRC SNPs identified in a prior CHiP-seq analysis as being

adjacent to VDR-DNA binding sites, and plasma 25(OH)D on

CRC risk, despite observing an increased risk for CRC associated

with GRSs and an inverse association between circulating

25(OH)D levels and CRC. [26].

The lack of a significant interaction between 25(OH)D and

genetic susceptibility to CRC may have several explanations. First,

pathways associated with CRC susceptibility loci may in fact be

distinct or overlap minimally with mechanisms associated with

vitamin D. Second, our GRS and single measures of plasma

25(OH)D measures may be relatively insensitive or incomplete

markers of relevant biological pathways shared by genetic

susceptibility and vitamin D. Third, we constructed GRSs

informed by the results of a functional study by Ramagopalan et

al. that applied ChiP-seq in lymphoblastoid cells treated with

calcitriol for 36 hours to demonstrate subsequent differential

association of vitamin D receptor binding with three specific CRC

susceptibility loci [26]. However, a separate study utilizing ChIP-

Seq in monocytes treated with calcitriol for 40 minutes found only

18% of calcitriol-stimulated VDR-binding sites common to those

observed in Ramagopalan et al. [37,38]. These results suggest that

VDR target gene regulation may differ according to cell type and/

or duration of vitamin D exposure which may be difficult to assess

using circulating measures of 25(OH)D.

Our study has several strengths. First, the availability of both

genetic information and prediagnostic measures of plasma

25(OH)D in our three cohorts permitted, to our knowledge, the

Table 3. Comparison of GRS-31, GRS-18, GRS-10, GRS-proximalVDR and GRS-nonproxVDR.

n (cases/controls)
GRSproximalVDRa

OR (95% CI)
GRSnonproxVDRb

OR (95% CI)
GRS-10x OR
(95% CI)

GRS-18d OR
(95% CI)

GRS-31e OR
(95% CI)

NHS 2358 (922/1436) 1.10 (1.01, 1.20) 1.13 (1.07, 1.19) 1.12 (1.07, 1.17) 1.07 (1.04, 1.10) 1.05 (1.02, 1.09)

HPFS 1457 (586/871) 1.13 (1.01, 1.26) 1.08 (1.01, 1.15) 1.09(1.03, 1.16) 1.05 (1.01–1.09) 1.04 (0.98, 1.10)

PHS 886 (387/499) 1.15 (1.01, 1.31) 1.07 (0.98, 1.17) 1.09 (1.01, 1.18) 1.07 (1.02–1.12) 1.05 (1.00, 1.10)

Meta analysis 4701 (1895/2806) 1.12 (1.06, 1.19) 1.10 (1.06, 1.14) 1.10 (1.07, 1.14) 1.06 (1.04–1.09) 1.05 (1.02, 1.08)

GECCO 22829 (10061/12768) 1.11 (1.09, 1.14) 1.09 (1.07, 1.11) 1.10 (1.08, 1.11) 1.08 (1.07, 1.09) 1.08 (1.07, 1.09)

aGRS-proximalVDR: additive genetic risk score used to estimate a per allele OR and 95% CI. Includes SNPs; rs3802842, rs4939827, rs10411210.
bGRS-nonproxVDR: additive genetic risk score used to estimate a per allele OR and 95% CI. Includes SNPs; rs6983267, rs16892766, rs10795668, rs4444235, rs4779584,
rs9929218, rs961253.
xGRS-10: additive genetic risk score used to estimate a per allele OR and 95% CI. Includes SNPs; rs3802842, rs4939827, rs10411210, rs6983267, rs16892766, rs10795668,
rs4444235, rs4779584, rs9929218, rs961253.
dGRS-18: additive genetic risk score used to estimate a per allele OR and 95% CI. Includes SNPs; rs3802842, rs4939827, rs10411210, rs6983267, rs16892766, rs10795668,
rs4444235, rs4779584, rs9929218, rs961253, rs6691170, rs6687758, rs10936599, rs10505477, rs7014346, rs7136702, rs11169552, rs2151512.
eGRS-31: additive genetic risk score used to estimate a per allele OR and 95% CI based upon the subset of cases and controls with GWAS data (394 cases/772 controls in
NHS; 228 cases/222 controls in HPFS; 332 cases/332 controls in PHS). Includes SNPs; rs3802842, rs4939827, rs10411210, rs6983267, rs16892766, rs10795668, rs4444235,
rs4779584, rs9929218, rs961253, rs6691170, rs6687758, rs10936599, rs7136702, rs11169552, rs4925386, rs10911251, rs11903757, rs647161, rs1321311, rs719725,
rs3824999, rs3217810, rs3217901, rs10774214, rs59336, rs1957636, rs11632715, rs16969681, rs2423279, rs4813802.
doi:10.1371/journal.pone.0092212.t003

Table 4. Risk of colorectal cancer associated with circulating 25(OH)D within NHS, HPFS and PHS.

NHS HPFS PHS Meta-analysis

N (case/control) 352/665 277/535 252/366 881/1566

Continuous 25(OH)D 0.98 (0.97, 1.00) 0.99 (0.97, 1.01) 1.01 (0.99, 1.03) 0.99 (0.98, 1.00)

High vitamin D ($ 32 ng/ml) 0.76 (0.54, 1.08) 0.77 (0.56, 1.05) 0.91 (0.59, 1.41) 0.79 (0.65, 0.98)

Quartile 1 1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent)

Quartile 2 0.77 (0.53, 1.12) 0.90 (0.60, 1.35) 0.70 (0.41, 1.19) 0.80 (0.62, 1.02)

Quartile 3 0.58 (0.39, 0.87) 0.64 (0.41, 0.99) 0.91 (0.54, 1.52) 0.67 (0.52, 0.86)

Quartile 4 0.57 (0.38, 0.87) 0.67 (0.42, 1.05) 0.67 (0.39, 1.17) 0.63 (0.48, 0.82)

doi:10.1371/journal.pone.0092212.t004
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first analysis of the effect of CRC susceptibility loci according to an

integrated biomarker of an environmental determinant of CRC

risk. Second, our reasonably large sample size provided individual

SNP and GRS associations that were similar in the direction and

magnitude with estimates from larger cohorts, including the

GECCO and CCFR consortium. We acknowledge limitations of

our study, including a single measurement of 25(OH)D which may

not reflect long-term vitamin D status or the tissue-specific effects

of vitamin D. We also had a more limited sample size of

participants with both genetic information and measured levels of

plasma 25(OH)D.

In summary, in this large study of CRC cases and controls

characterized for genetic susceptibility to CRC with prediagnostic

measurements of 25(OH)D levels, we did not observe evidence for

the modification of genetic susceptibility for CRC according to

vitamin D status.
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