

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data for molecular dynamic simulations in the OPLSAA force field: Partial charges of cholesterol, C7-hydroxycholesterol and C7-hydroperoxycholesterol, torsional parameters for the hydroperoxy group of C7-hydroperoxycholesterol

Michal Markiewicz^{a,*}, Robert Szczelina^b, Marta Pasenkiewicz-Gierula^a

^a Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland ^b Division of Computational Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, Krakow, Poland

ARTICLE INFO

Article history: Received 15 September 2021 Revised 5 October 2021 Accepted 11 October 2021 Available online 14 October 2021

Keywords: $7\alpha,\beta$ -hydroxycholesterol $7\alpha,\beta$ -hydroperoxycholesterol OPLSAA force field parameters Hydroperoxy group

ABSTRACT

This data article contains partial charges genercholesterol, C7-hydroxycholesterol ated for and C7hydroperoxycholesterol and torsional parameters for hydroperoxy of C7-hydroperoxycholesterol for molecular dynamics simulations in the OPLSAA force field [1] using the package Gromacs [2]. The hydroperoxy group remained unparameterized in the OPLSAA force field and the parameters obtained have the potential for re-use in similar simulations. The atom-centred point charges on each sterol molecule were derived using the restrained electrostatic potential (RESP) approach [3]. The parameters for the $C7-O_{FT}-O_{H}-H_{O}$ and C8-C7-O_{ET}-O_H torsion angles were derived by fitting the parameters of the torsional term (Ryckaert-Bellemans function) of the OPLSAA potential energy function to the

DOI of original article: 10.1016/j.csbj.2021.07.022

* Corresponding author.

E-mail addresses: m.markiewicz@uj.edu.pl (M. Markiewicz), robert.szczelina@uj.edu.pl (R. Szczelina), marta.pasenkiewicz-gierula@uj.edu.pl (M. Pasenkiewicz-Gierula).

https://doi.org/10.1016/j.dib.2021.107483

2352-3409/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

quantum mechanical rotational energy profile calculated at CCSD(T)/cc-pVQZ level of theory. This article presents data used in the research article "Chirality affects cholesteroloxysterol association in water, a computational study" [4].

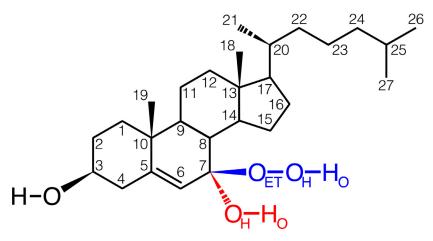
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Specifications Table

Subject	Chemistry
Specific subject area	Molecular dynamic simulations
Type of data	Table
	Figure
How data were acquired	Quantum energy calculations were carried out using package Gaussian 09
Data format	Text format, raw, analyzed
Parameters for data collection	Quantum mechanical calculations at B3LYP/6-31++G(d,p), MP2/cc-pVQZ and
	CCSD(T)/cc-pVQZ levels of theory
Description of data collection	Data were obtained as a result of quantum mechanical calculations
Data source location	Department of Computational Biophysics and Bioinformatics,
	Faculty of Biochemistry, Biophysics and Biotechnology,
	Jagiellonian University, Krakow, Poland
Data accessibility	Data are supplied with this article and 10.5281/zenodo.5549934
Related research article	M. Markiewicz, R. Szczelina, B. Milanovic, W.K. Subczynski, M.
	Pasenkiewicz-Gierula, Chirality affects cholesterol-oxysterol association in
	water, a computational study. Comput. Struct. Biotechnol. J. 19, 4319–4335,
	2021.

Value of the Data

- Parameters for hydroperoxy group in OPLSAA force field [1] are provided
- The force field parameters could be used in simulations of hydroperoxides, e.g. cholesterol hydroperoxides, which are key factors in the development of atherosclerotic plaque.
- The parameters, which have been missing in the OPLSAA force field so far, obtained in this work can be used in molecular dynamics simulations of biomolecular systems containing hydroperoxides especially lipid bilayers and lipoproteins using the package Gromacs [2].


1. Data Description

- 1. Sterol partial charges
- 2. Torsional parameters for the hydroperoxy group of 7-OOH-Chol in the OPLSAA force field

2. Experimental Design, Materials and Methods

1. Sterol partial charges

The atom-centred point monopole charges on each sterol molecule were derived using multiconformation and multi-orientation restrained electrostatic potential (RESP) fitting [3] through the following steps:

Fig. 1. Molecular structure of cholesterol (Chol, *black*), C7-hydroxycholesterol (*black* and *red*, 7-OH-Chol) and C7-hydroperoxycholesterol (*black* and *blue*, 7-OOH-Chol). The C7-OH group of 7β -OH-Chol is in *red*, and the C7-OOH group of 7α -OH-Chol is in *blue*. The alpha stereoisomer has a substituent on the C7 atom which is oriented in the same direction as the OH group on the C3 atom, and that of the beta stereoisomer is oriented in the opposite direction. The Chol atoms are numbered according to the IUPAC convention [5]. The chemical symbol for carbon atoms, C, and the hydrogen atoms, H, are omitted except for the sterol polar groups, where the H atoms are explicitly included.

- 1a. For each sterol, 1000 conformations were generated by rotation around covalent bonds of the sterol hydrocarbon chain. From the generated conformations, 25 diverse conformations were selected on an RMSD basis (Fig. 2).
- 1b. The structures of the selected conformations were optimized at two levels of theory in QM calculations, first HF/6-31G* (Opt=Tight) and then B3LYP/6-31++G(d,p) (Opt=Tight, Int=UltraFine). All QM calculations were carried out using the package Gaussian 09 [6].
- 1c. For each of the optimized structures in four different orientations controlled by reorientation algorithm incorporated into the R.E.D. program [7], the values of the electrostatic potential on a molecular surface were calculated at the HF/6-31G* level, in compliance with the OPLS force field. The partial charges were obtained by fitting the classical Coulomb electrostatic potential to the QM molecular electrostatic potential calculated at the grid points on the Connolly surface around the sterol molecule (A in Table 1) or using the CHELPG approach (B in Table 1) [8].
- 1d. For each sterol and the calculation method (A or B, above), the partial charges are averages over 100 sets of charges calculated for all optimized conformers in 4 different orientations (Table 1).
- 2. Torsional parameters for the hydroperoxy group of 7-OOH-Chol in the OPLSAA force field
 - 2a. For the derived RESP charges and the optimized structure of the 7-OOH-Chol, torsions CT-OX-OH-HO (OPLS force field atom type names corresponding to C7-O_{ET}-O_H-H_O of the sterol, Fig. 1) and CT-CT-OX-OH (OPLSAA force field atom type names corresponding to C8-C7-O_{ET}-O_H of the sterol, Fig. 1) were rotated by increments of 10° about the O-O and the C-O bond, respectively; each rotation yielded 36 rotamers. The energy of each rotamer was calculated using methods at four levels of theory:
 - i. MP2/cc-pVDZ (marked below as MP2/SBS small basis set)
 - ii. MP2/cc-pVQZ (marked below as MP2/LBS large basis set)
 - iii. CCSD(T)/cc-pVDZ (marked below as CCSDT/SBS)
 - iv. CCSD(T)/cc-pVQZ (calculated using the HI-EM method [9] marked below as CCSDT/LBS)
 - 2b. The parameters for the CT-OX-OH-HO and CT-CT-OX-OH torsion angles (Table 2) were obtained by fitting the parameters of the torsional term (Ryckaert-Bellemans function)

Table 1

Calculated partial atomic charges on sterol molecules. A and B refer to different ways of the grid calculations (cf. point 1c below). O_{ET} is the ether oxygen atom of the C7-OOH group, O_{H} is the hydroxy oxygen atom and H_0 is the hydroxy hydrogen atom of the C7-OOH group; equivalent hydrogen atoms are omitted and the number assigned to the hydrogen atom corresponds to that assigned to the relevant carbon atom, e.g. H271 is bonded to C27; the numbers and names of atoms are such as in Fig. 1; colors of numbers in the Table correspond to the colors of groups in Fig. 1.

atom↓			7-Oxysterol				7-Peroxysterol			
Form \rightarrow	Cholesterol		alpha		beta		alpha		beta	
$\text{Grid} \rightarrow$	A	В	A	В	A	В	A	В	A	В
HO3	.4224	.4258	.4158	.4092	.4112	.4076	.417	.4134	.4082	.4048
03	711	7652	7096	.7383	6979	7391	718	7486	6944	732
C3	.2925	.4437	.3343	.4613	.2995	.4726	.3534	.4977	.3125	.4631
H3	.0149	0678	.0779	.012	.0872	.0069	.0756	.0113	.0833	.0087
C5 C6	086	1976 3258	0651 2962	0692 4758	0653 3319	0414 5432	0596 2397	0362 4303	1008 1968	1086
C6 H6	2429 .1334	3258 .144	2962 .1677	4758 .1785	3319 .1745	5432 .1904	2397 .1458	4303 .1589	1968 .1576	3956 .1796
C7	0674	.144	.1077	.5223	.1745	.6475	.0469	.1389	.064	.4623
H71	.0493	0209	.1183	0026	.1129	0227	.1216	.0016	.0883	0404
C8	021	.063	039	0531	0185	0726	0349	116	.0121	.1258
H8	.0704	0402	.0634	0475	.0964	0082	.0735	0269	.1167	0202
C9	.0271	.009	.0138	.0052	.0133	0434	.0219	.067	.0253	112
H9	.0345	0508	.0499	0359	.0165	054	.0477	0484	.0177	0458
C10	.0706	.4919	.085	.3688	.061	.3346	.0821	.3339	.0712	.3596
C19	0833	2356	0862	1547	0509	1549	1269	2007	0508	0948
H191	.0263	.037	.0249	.0192	.0125	.0175	.0335	.0307	.0158	.0041
C1	0669	2698	0286	1164	0395	0938	0257	073	0457	1159
H11	.0145	.0379	.0104	.0157	.0226	.0218	.0139	.0112	.0227	.0287
C2	0586	.054	1178 .04	1352 .0335	1299 .0478	1584	112	1747	1274 .0475	1534
H21 C11	.0577 072	.0162 .0246	.04 1332	.0335 0248	.0478 0821	.0366 .1016	.0356 111	.0393 .0006	.0475 0836	.0373 .1199
H111	.034	006	.0567	0248	.0409	0147	.0486	.0052	.0379	0214
C12	0918	2028	083	1715	0952	2163	0871	171	0976	2187
H121	.015	.0183	.0128	.0087	.0192	.0164	.011	.0089	.0207	.021
C13	.1031	.449	.1189	.4346	.1021	.4651	.1736	.4392	.0951	.4137
C18	1187	3953	1369	4761	1676	4727	1948	4895	1398	4528
H181	.025	.0739	.025	.0922	.0332	.0907	.035	.0945	.0296	.0908
C14	.0038	.0504	.0222	.2014	.0167	.1166	.0447	0902	.0328	0439
H14	.0229	0269	.0244	0588	0002	0541	.0016	0177	.0057	032
C15	0981	1183	0817	1189	0909	1078	0982	0022	1391	0597
H151	.029	.0145	.0291	.0133	.0355	.0187	.0303	.0032	.0442	.0146
C16	1212	0166	0887	0103	0982	0135	0975	1426	1079	0961
H161 C17	.04 .0292	.0073 0765	.0274 .0425	.0034 0764	.0314 .0393	.0032 0698	.0322 .0361	.0179 .2497	.0455 .0117	.0185 .085
H17	.0292	0783 0274	.0425	0784 0217	.0083	0698 026	.0301	.2497 0658	.0117	.085 046
C20	.0833	.285	.0838	.2783	.0812	.2665	.0934	.2735	.1104	.2865
H20	0116	0662	0154	0654	0137	0621	0195	0604	0189	0643
C21	121	316	1211	3123	1124	2971	1447	3002	1367	3027
H211	.0239	.0642	.0229	.0634	.0211	.0599	.0297	.0611	.0276	.0608
C22	0103	0716	0131	07	0053	0656	0294	1021	017	0941
H221	0043	0049	0043	0054	0058	0054	.0002	.0037	0031	.0023
C23	.0066	.1137	.0054	.1167	.0035	.1115	.0067	.1311	.0048	.1135
H231	.0022	0306	.0025	0313	.0025	0301	.0041	0319	.0019	0291
C24	065	1031	0691	1092	0683	1083	0783	1238	0779	1179
H241	.0039	0014	.0054	.0005	.0052	.0005	.0079	.0042	.0092	.0048
C25	.2607	.4183	.2595	.4198	.2615	.4195	.2677	.4248	.2618	.4176
H25 C26	0405 2078	0871 2863	0402 2138	0869 291	0409 2124	0868 2911	0407 2167	0869 2911	0417 2059	087 2899
H261	2078 .0404	2865	2138	291	2124 .0417	2911	2167	2911 .0542	2039 .0403	2899 .0543
C27	.0404 2078	2858	2032	2895	2053	.0348 2897	2183	.0342 2951	217	2868
H271	.0404	.0531	.0393	.0537	.0398	.0539	.0433	.0557	.0433	.0541
Ho			.4072	.4037	.4139	.4126	.413	.4132	.3923	.39
O _H			6333	7276	6631	7559	4246	4339	3985	4042
O _{ET}							2308	3128	2568	3317

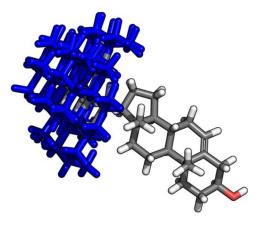
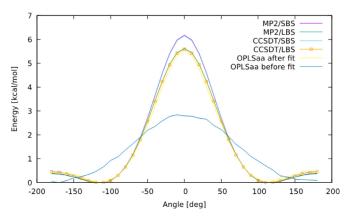



Fig. 2. Conformations of Chol selected for calculation of partial charges.

Table 2

Torsional parameters for the $C7-O_{ET}-O_{H}-H_0$ and $C8-C7-O_{ET}-O_{H}$ torsion angles (Fig. 1) obtained from fitting the Ryckaert-Bellemans dihedral function to the CCSD(T)/cc-pVQZ energy profile.

Torsion	C ₀	C ₁	C ₂	C ₃	C ₄	C ₅
C7-O _{ET} -O _H -H _O C8-C7-O _{ET} -O _H	-3.65214 -1.3566	-0.35069 4.42684	9.99453 9.6062	-4.5091 -18.5349	-0.64	4.42

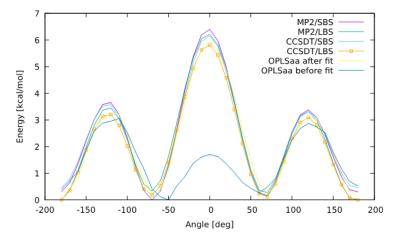


Fig. 3. 2D potential energy surfaces for rotation about the O-O bond in the $C7-O_{ET}-O_{H}-H_{O}$ isolated moiety calculated at four levels of theory in QM calculations (see below) together with the energy profile, calculated on the basis of the original OPLSAA parameters (*blue*) and those obtained in the fitting procedure (*yellow*).

of the OPLSAA potential energy function (Eq. (1)) to the CCSD(T)/cc-pVQZ energy profile for rotation (Figs. 3 and 4), each based on the 36 energy values calculated in point 2a above.

$$V_{rb}(\phi) = \sum_{n=0}^{5} C_n (\cos{(\psi)})^n, \text{ where } \psi = \phi - 180^0$$
(1)

Eq. (1). Ryckaert-Bellemans dihedral potential.

Fig. 4. 2D potential energy surfaces for rotation about the C-O bond in the $C8-C7-O_{ET}-O_{H}$ isolated moiety calculated at four levels of theory in QM calculations (see below) together with the energy profile, calculated on the basis of the original OPLSAA parameters (*blue*) and those obtained in the fitting procedure (*yellow*).

2.1. Files description

Provided datasets include (1) partial atomic charges of cholesterol, C7-hydroxycholesterol and C7-hydroperoxycholesterol. The names and order of atoms in the molecules are according to the IUPAC convention [5]; (2) torsional parameters for the C7- O_{ET} - O_{H} - H_{O} and C8-C7- O_{ET} - O_{H} torsion angles. The data file format is Excel(.xlsx).

Ethics Statement

The studies described in the manuscript are computational, therefore were not conducted on humans or animals.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT Author Statement

Michal Markiewicz: Methodology, Validation, Formal analysis, Investigation, Writing – original draft; **Robert Szczelina:** Methodology, Software, Validation, Formal analysis, Investigation, Writing – review & editing; **Marta Pasenkiewicz-Gierula:** Conceptualization, Validation, Writing – review & editing, Supervision, Project administration, Funding acquisition.

Acknowledgments

This publication was supported by the Polish National Science Center 2016/22/M/NZ1/00187 and in part by PL-Grid Infrastructure.

References

- W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118 (1996) 11225–11236, doi:10.1021/ja9621760.
- [2] M.J. Abraham, T. Murtola, R. Schulz, S. Pall, J.C. Smith, B. Hess, E. Lindahl, GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputer, SoftwareX 1-2 (2015) 19–25, doi:10.1016/ j.softx.2015.06.001.
- [3] W.D. Cornell, P. Cieplak, C.I. Bayly, P.A. Kollman, Application of RESP charges to calculate conformational energies, hydrogen-bond energies, and free-energies of solvation, J. Am. Chem. Soc. 115 (1993) 9620–9631, doi:10.1021/ja00074a030.
- [4] M. Markiewicz, R. Szczelina, B. Milanovic, W.K. Subczynski, M. Pasenkiewicz-Gierula, Chirality affects cholesteroloxysterol association in water, a computational study, Comput. Struct. Biotechnol. J. 19 (2021) 4319–4335, doi:10. 1016/j.csbj.2021.07.022.
- [5] A.D. McNaught, Nomenclature of carbohydrates (IUPAC Recommendations 1996), Pure Appl. Chem. 68 (1996) 1919–2008.
- [6] Gaussian 09, Revision A.1, Frisch, M.J. et al., Gaussian, Inc., Wallingford CT, 2009.
- [7] F.Y. Dupradeau, A. Pigache, T. Zaffran, C. Savineau, R. Lelong, N. Grivel, P. Cieplak, The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building, Phys. Chem. Chem. Phys. 12 (28) (2010) 7821–7839, doi:10. 1039/C0CP00111B.
- [8] E. Sigfridsson, U. Ryde, Comparison of methods for deriving atomic charges from the electrostatic potential and moments, J. Comput. Chem. 19 (1998) 377–395 (199803)19:4≤377::AID-JCC1≥3.0.CO;2-P, doi:10.1002/(SICI)1096-987X.
- [9] J.B. Klauda, S.L. Garrison, J.W. Jiang, G. Arora, S.I. Sandler, HM-IE: quantum chemical hybrid methods for calculating interaction energies, J. Phys. Chem. A 108 (2004) 107–112, doi:10.1021/ci500273s.