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ABSTRACT

The use of complex biological molecules to solve
computational problems is an emerging field at the
interface between biology and computer science.
There are two main categories in which biological
molecules, especially DNA, are investigated as alter-
natives to silicon-based computer technologies. One
is to use DNA as a storage medium, and the other is
to use DNA for computing. Both strategies come with
certain constraints. In the current study, we present
a novel approach derived from chaos game repre-
sentation for DNA to generate DNA code words that
fulfill user-defined constraints, namely GC content,
homopolymers, and undesired motifs, and thus, can
be used to build codes for reliable DNA storage sys-
tems.

GRAPHICAL ABSTRACT

INTRODUCTION

Due to the increasing speed of global digitization, the
amount of digital data produced is growing exponen-
tially (1). Conventional storage mediums such as hard disks

have a maximum information density of about 103GB/mm3

(2). However, their life expectancy is rather short, and thus,
only magnetic tapes are used for long-term storage. Since
these tapes also have a very short life expectancy, they are
copied every five years on average to guarantee data safety.
An alternative data storage medium exists in nature in the
form of deoxyribonucleic acid (DNA), which consists of the
four nucleotides adenine (A), thymine (T), guanine (G) and
cytosine (C). DNA has an estimated information density of
about 4.6 × 108GB/mm3 and is, under optimal conditions,
stable for thousands of years (2). Several groups have devel-
oped approaches for DNA data storage (1,3–9) and DNA
watermarking (10–15). However, limitations in code word
design have only been partly addressed so far.

To store information into DNA, the binary informa-
tion is encoded into DNA sequences (code words) in the
first step. In the next step, these sequences are synthesized
and stored. The DNA can be sequenced at any time to
retrieve the stored information (16). The development of
Next-Generation Sequencing (NGS) technologies allows a
quick reading of the information, while the DNA synthe-
sis remains a limitation for DNA data storage, as the syn-
thesis is very time and cost consuming. Thus, DNA stor-
age systems are not competitive for commercial use at the
moment. However, it is expected that the costs for synthe-
sis will drop significantly in the near future (17). Neverthe-
less, DNA storage systems allow easy and low cost copy-
ing of media, in contrast to conventional storage systems.
A copy of a conventional storage medium efforts the same
price as the original medium. For DNA, the first synthe-
sis is relatively expensive, while copies can be achieved at
a very low price. The goal of this paper is to describe a
novel approach for the construction of codebooks (set of
code words), adhering to user-defined constraints, which
can be incorporated into any existing error-correction al-
gorithms. To this end, the code word library design can be
done separately from the subsequent error-correction codes
in some cases, e.g. for the proposed method, which is an ad-
vantage regarding computational complexity compared to
other codes where unwanted motifs need to be discarded
during encoding. In our approach, the code word design
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is independent of the subsequent error-correcting codes.
Thus, we do not address error correction explicitly in our
analysis.

DNA synthesis and sequencing methods are error-
prone (18), in particular, if the DNA sequence contains spe-
cific patterns. Common synthesis approaches first synthe-
size short fragments (oligos) of the target sequence, which
are subsequently assembled. The assembly process requires
that the oligos have a similar GC content and, if homopoly-
mers exist, that they are few in number and rather short (19).
Sequencing methods are another potential error source
(20), with error probabilities increasing for sequences con-
taining long stretches of homopolymers, a strongly deviat-
ing GC content, or method-dependent motifs (19).

Thus, due to limitations in the DNA synthesis and se-
quencing processes, the nucleotide composition of synthetic
DNA fragments that can be used for data storage is subject
to multiple constraints to reduce errors in, e.g. DNA syn-
thesis and DNA sequencing.

These constraints depend on the chosen methodologies
for synthesis, sequencing, and also storage but can be
roughly divided into restrictions regarding the GC content
of the sequences, homopolymers (hp) and undesired mo-
tifs (19).

• GC content must either be constant (strongly con-
strained) or within a certain interval (weakly con-
strained) (21) to reduce the probability of secondary
structure formation and to ensure uniform sequence cov-
erage in the sequencing (22).

• Homopolymers are continuous repeats of a certain nu-
cleotide that can lead to increased error rates in sequenc-
ing methods (23), as sequencing methods often fail to rec-
ognize the correct lengths of homopolymers. Thus, the
length of homopolymers should be limited for DNA code
words in DNA storage systems.

• Motifs are short subsequences in a DNA sequence. Se-
quencing and synthesis methods depend on short DNA
motifs to initiate the amplification steps of the work-
flows (24,25). Due to these limitations in synthesis, re-
spective motifs have to be excluded (e.g. restriction
sites (26)). Moreover, other motifs can introduce errors
throughout the sequencing process, for instance, due to
secondary structure formation (19).

Due to the fact that DNA-based storage systems are in
their early stages of development, further constraints may
arise based on the experimental conditions, such as new sets
of motifs for novel synthesis or sequencing technologies, as
well as for novel concepts such as in vivo DNA storages.

To take these limitations and constraints into account, a
flexible code word design is required for DNA storage sys-
tems. Various deterministic approaches adhering to the ho-
mopolymer and GC content constraints exist, for instance
in (21,27–30). Other heuristic methods, e.g. in (16,31–34),
additionally take into account a large minimal Hamming
distance (the number of positions that differ between two
strings).

However, one important constraint that is overlooked
in the existing literature is that of undesired motifs, which
are important for the synthesis, sequencing, and storage

of DNA sequences. This is particularly relevant since the
amount and composition of these motifs largely depend on
the employed DNA manipulation techniques, for instance,
primer targets for random access or certain motifs with bi-
ological relevance for in vivo storage (1,2). Accordingly, so-
lutions for codebook design are required that allow the flex-
ible creation of code words while respecting various motif
constraints. This enables the evaluation of different combi-
nations of synthesis, sequencing, and storage techniques.

In our study, we developed a fractal-based method to
generate all possible code words that does not only take
into account GC content and homopolymer constraints,
but also the challenge of excluding user-specified motifs.
Our method is based on a modified frequency matrix chaos
game representation (FCGR), an extension of the chaos
game representation (CGR), which transforms a DNA se-
quence into a fractal.

The term fractal was introduced by Mandelbrot to de-
scribe self-similar geometrical forms (35). Moreover, he de-
scribed fractals as a set for which the Hausdorff dimension
exceeds the topological space. For a self-similar geometri-
cal form, the structural patterns of the form can be found
in small sections of the form in a repetitive manner. In ideal
fractals (in a mathematical sense), this self-similarity is infi-
nite (36).

The chaos game representation (CGR) was first de-
scribed by Barnsley (37). It is an iterative function system
to construct fractals. The underlying idea of the algorithm
is to assign numbers from one to three to the edges of a tri-
angle. The algorithm starts from a randomly chosen vertex.
Then the next vertex is drawn by randomly choosing a num-
ber from one to three, representing an edge of the triangle.
Half of the distance to the direction (so-called scaling fac-
tor) to this edge of the triangle is drawn to set the new vertex.
After several iteration steps, the Sierpinski triangle appears.
Abbreviations of the algorithm, such as a change of angle,
the scaling factor, or the number of edges, result in differ-
ently shaped fractals (37). The resulting patterns are called
chaos game representation (CGR). Jeffrey (38) was the first
who used the CGR algorithm for DNA, where the four nu-
cleotides are assigned to the edges of a square (see Figure 1).
There are several applications based on CGR (39), e.g. the
analysis and comparison of whole-genome sequences (40)
or phylogenetic predictions (41). Moreover, the CGR has
some interesting properties, as pointed out by Almeida
et al. (42). The CGR patterns are unique, the sequence can
be reconstructed by the coordinates, and the distributions of
the points can be described as a generalized Markov Chain
model.

The frequency matrix chaos game representation
(FCGR) is an extension (42) of the CGR, in which the
CGR is represented as a count matrix, where the number
of dots of the CGR in each section of a grid is counted.
The FCGR is particularly useful for machine learning
approaches as it provides a fixed input dimension for any
sequence length and has been successfully applied already
in protein classification (43). An FCGR with the order
of 2n represents a matrix of k-mers. Based on that, we
can consider it as a representation of all possible DNA
words of the length n (see Figure 2). We will refer to this
matrix representation in the order of 2n as matrix chaos
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Figure 1. Chaos game representation. Example mapping for creating a
CGR based on a given input sequence: CATAG.

game representation (mCGR) in the following. As shown
in Figure 2, the number of entries in the matrix increases
by 2n with increasing order. The coloring of the nucleotide
A shows an emerging fractal pattern. The white elements
in the matrix build the Sierpinski triangle. The different
gray values represent the amount of A in a sequence with
a self-similar pattern. The simple case of a word length n

= 1 is a representation of the four nucleotides
A T
G C . The

increasing word length can be represented as Kronecker
power (Kronecker Product of the matrix by itself) with the
following definition:

Mn = M ⊗ M ⊗ M... (1)

In CGR (or mCGR, respectively), the letter is appended
to calculate the strings in CGR (or mCGR). For prepending
the characters to the string, the representation is also known
as genomatrices (44–46). Both notations, CGR/mCGR as
well as genomatrices, have been used to demonstrate that
fractal patterns emerge from motifs (47,48). Since the posi-
tional information of the matrix elements can be used to re-
construct the underlying sequence, the matrix elements can
carry additional information, e.g. whether the use of the
corresponding sequence is restricted. Anitas (48) assigned
probabilities to the squares and applied the Kronecker pow-
ers to perform structural analyses of DNA by CGR. While
the Kronecker power results in a multiplication of the prob-
abilities, we propose an addition of the substrings instead of
a multiplication of probabilities.

Based on this initial idea, we developed and optimized
a model to generate a set of all possible code words of a
given length which adhere to various constraints, such as
limitation of homopolymers, undesired motifs, and vari-
able GC content constraints (both weakly, i.e. in an inter-
val, and strongly, i.e. as a fixed percentage), and thus can be

used and integrated into codes for DNA storage systems. To
this end, we compared our approach with existing methods
for code word design, namely (16,27–31,33,34). Moreover,
we integrated our codebooks into a lexicographic encoding
(which maps a binary sequence to DNA (29)) as a proof-of-
concept, and compared its performance with current state-
of-the-art algorithms, namely DNA Fountain codes (3).
However, our CGR-based codebook design can be used as
a basis for any DNA storage codes, e.g. error-correction
codes. We provide a Java implementation and R scripts
available at http://mCGR.heiderlab.de and source code at
https://github.com/HFLoechel/ConstrainedKaos.

The Hamming distance, which is particularly important
for error-correction and DNA-computing, a field that is
closely related to DNA storage systems, can also be easily
calculated with our model.

MATERIALS AND METHODS

Our approach is based on CGR, and we used the concept
of CGR to implement a mathematical model for designing
code words that fulfill certain constraints that are impor-
tant for DNA storage systems, namely homopolymers, un-
desired motifs, and GC content, as well as additional con-
straints that are necessary for DNA computing, namely the
Hamming distance of code words.

Homopolymers and undesired motifs

Homopolymers are defined as continuous repeats of a cer-
tain nucleotide and may lead to increased error rates in
sequencing methods (23). Thus, it is important that ho-
mopolymers are excluded from code words for DNA data
storage systems.

In each quarter of an mCGR, every sequence ends with
the same letter, for any order of the matrix. Moreover, mC-
GRs as fractals are self-repetitive. Consequently, a repeti-
tion of a particular pattern for any given subsequence exists.
An example demonstrating the construction of an mCGR
for the homopolymer CC is shown in Figure 3. This ap-
proach cannot only be used for the exclusion of homopoly-
mers but also for any undesired motif.

Thus, for any given sequence constraint, we first create
an mCGR of the last coordinate in the order of the con-
strained length, where we denote the element of the ex-
cluded sequence with 1 and the remaining elements with
0. This initial matrix serves as an input or generator ma-
trix for the next iteration step. The generator matrix is first
used for tiling over a matrix for the next word length. In
the second step, the generator matrix is stretched to the or-
der for the next word length and added to the matrix of
the first step. This results in the next generator matrix for
the next iteration step. This procedure will be repeated un-
til the desired sequence length is reached. For more than
one constraint, this procedure can be repeated and the re-
sulting matrices can be added. In Figure 3, an example for
homopolymer CC is shown, wherein step 1 the last matrix
element is denoted with one. A homopolymer with the same
length can be added by matrix addition. For instance, for
all homopolymers with a sequence length of two, the corre-
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Figure 2. Chaos game representation matrices for increasing word length (n). With the extension of CGR to FCGR in a matrix order of 2n (mCGR), each
element in the matrix represents a word/string of the given length. The increasing order can be achieved by Kronecker powers. The single characters of the
strings have a fractal order. The example is shown for the fractal pattern of the count of the nucleotide A.

Figure 3. Algorithm for constrained subsequences. (1) mCGR with the
constraining motif (here CC) is initialized. The matrix size is given by the
length of the constraint. (2) The mCGR is scaled to double the size and (3)
used for tiling. (4) The result is added and can be used for the next iteration
until the order of the matrix for the desired code word length is reached.

sponding generator matrix is

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

. For the addition of a

constraint with a length of 3, the mCGR of an order 23 has
to be calculated, and both matrices have to be combined by
matrix addition.

Thus, matrices with increasing orders of 2n are represen-
tations of all sequences of a given word length n. But instead
of using a matrix of characters, we use a representation of
ones and zeros for the generator matrix mCGRn (where n
indicates the length of the initial word).

In contrast to Equation (13), where we append a string
with a single character, we have to take the complete mCGR
of the initial iteration step into account (see Figure 3).
Thus, we have to exchange the appending part of the equa-
tion (Equation (12)). We can achieve this by mirroring the
prepending part (Equation (11)):

mCG Rn = 121 ⊗ mCG Rn−1 + mCG Rn−1 ⊗ 121
(2)

where 1n represents the square matrix of ones with an order
of n. The matrix elements that are not affected by the con-
straints remain zero, and the remaining elements are count-
ing the numbers of the events where constraints appear.

GC content

First, we consider the simple case for 50 % GC content. De-
pending on the order of the nucleotides at the edges of the
mCGR, two patterns can evolve, as shown in Figure 4A. A
GC content of 50% is shown in gray, for a word length of n
= 2 and n = 4. If A and T are the opposite of each other,
the resulting patterns are bars. While if they are positioned
in diagonal directions, we get higher-order, more complex,
flower-like patterns. The emerging patterns can be explained
by the most simple case, namely the bars. We can reduce the
mCGR to the first row and assign A = T = 0 and G = C =
1. We then convert the characters of a string to their binary
representations. By using this simple encoding, new patterns
of alternating ones and zeros emerge. For the first character
in the sequence, we get an alternating pattern of zeroes and
ones, while for the second character, we end up with alter-
nating two zeros and two ones. Similar patterns occur for
the next characters (see Figure 4 B. To retrieve the GC con-
tent, we calculate the sum of a column and divide it by the
sequence length. By using this simple algorithm, we can-
not only retrieve sequences with exactly 50% GC content
but also defined intervals of interest. For the calculation of
these patterns, we use the generator matrix with A = T = 0

and C = G = 1 to
0 0
1 1 . However, we can also make use of

our mathematical model in Equation (8c), which is not used
for a complete motif but for the occurrence of a single char-
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Figure 4. GC content. (A) Patterns for 50 % GC content for the word length n = 2 (top) and n = 4 (bottom). The resulting matrices vary, depending on
the order of nucleotides at the edges. (B) Calculation of the GC content, shown for word length n = 2, n = 4, and n = 6. For A = T = 0, G = C = 1, and

an order of
A T
G C , bars emerge by coloring 50% GC content. The sum of the characters in a string can be used to calculate the amount of A = T and G =

C, respectively. Therefore, division by the sequence length can serve as an indicator for the GC content. n = 2: mCGR with 50 % GC content in gray. For
n = 4 and n = 6, the GC content of 50% is shown in green.

acter. For increasing word length, we have to double the size
of the original matrix and either append or prepend the gen-
erator matrix (a single character respectively), as shown in
Equation (3).

Dn = 12n−1 ⊗ D1 + Dn−1 ⊗ 121

= 121 ⊗ Dn−1 + D1 ⊗ 12n−1

wi th D1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
0 1
1 0

]
f or

[
A C
G T

]

[
0 0
1 1

]
f or

[
A T
G C

] (3)

Hamming distance

While the aforementioned constraints are very important
for DNA storage systems, another constraint is of the ut-
most importance when we consider the code words for
DNA computing, namely the Hamming distance. The
Hamming distance between two sequences of equal length
is the number of positions at which the corresponding sym-
bols are different (49). In order to use code words for DNA
computing or error correction, the Hamming distance of
code words should be maximized. Using mCGR, it is also
possible to integrate the Hamming distance as a constraint.
To this end, we again make use of the initial matrix with the
four nucleotides A, T, G, C. To calculate the Hamming dis-
tance for a single character, e.g. A, to all other nucleotides,
we can set A = 0 and G = T = C = 1. To get the Hamming
distance for a complete sequence, we have to append the cor-
responding Hamming distance for each nucleotide on each
position (see equation (4)). Based on this, we can create a
matrix with the Hamming distance of one single code word

to all other code words.

H(s)n =
{

H(s)1 = B1 n = 1
121 ⊗ H(s)n−1 + B1 ⊗ 12n−1

otherwise

wi th B1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 1
1 1

]
f or A

[
1 0
1 1

]
f or T

[
1 1
0 1

]
f or G

[
1 1
1 0

]
f or C

. (4)

To generate the complete table of the Hamming distance
for all code words, we can apply Equation 3) for the GC
content. To calculate the GC content, we used a binary rep-
resentation of the nucleotides, where the GC content corre-
spondents to the number of characters being A or T to the
number of characters being G or C, which is equal to the
Hamming distance for binary code words. This property en-
ables the exchange of the generator matrix with a generator
matrix D21 for the Hamming distance of all nucleotides:

wi th D1 =

⎡
⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎦ f or rows = columns (5)

Implementation

We implemented all algorithms in R and run-time opti-
mized versions for GC content and homopolymer/motif
constraints in Java v. 12.0.1.
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Since storing complete matrices would require a large
amount of storage space, we decided to exclusively store the
positions of the matrix elements affected by the constraints.
It is, therefore, a lightweight form of a sparse matrix, where
we do not assign values for the matrix elements. The set con-
taining constrained words can be used to deduce the set of
allowed words. We split equation (2) into two algorithms for
tiling and doubling of the matrix. For the GC content, we
implemented the approach shown in Figure 4B. The pseu-
docode for the algorithms can be found in Supplementary
Material S9.

Our implementation allows any combinations of con-
straints for GC content (as a fixed number or interval),
length of homopolymers, and undesired motifs (the latter
provided in a FASTA formatted file). We also implemented
a back-calculation algorithm for mCGR from elements in
the matrix to sequences so that the allowed code words can
be selected and stored as a FASTA file.

It is also possible to plot the results using the library
JFreeChart v. 1.0.19 with JCommon v. 1.0.23. We imple-
mented the CGR algorithm in Java, as a union square
(height and width from −1 to 1). The coordinates of the
CGR are stored as big integer fractions to increase the preci-
sion, and to avoid floating-point errors, by using the library
Apache Commons Math v. 3.6.1.

We further implemented an option to generate code-
books that exclusively contain code words that can be con-
catenated without building forbidden motifs or homopoly-
mers. Based on the approach proposed by Wang et al. (29),
we excluded code words, which can build an undesired mo-
tif or homopolymer. To do this, we identified the words end-
ing with the start of a motif or homopolymer matching at
least half the length of the motif/homopolymer and the se-
quences beginning with the end of motif/homopolymer at
least half the length. For instance, for the homopolymer
AAA we removed all words ending with AA and starting
with AA. Therefore, the matrix structure of the mCGR al-
lowed us a quick identification of the words that should be
excluded. Finally, the generated codebook can be used as
a basis for a code. As an example, we implemented a lex-
icographic encoding/decoding based on our codebook, as
proposed by Wang et al. (29) in python 3.

To encode an arbitrary input file using the lexicographic
approach, the codebook is first sorted lexicographically, fol-
lowed by partitioning the bits of the input file in blocks
according to the information rate of the codebook. The
decimal representation of a block is used as the index
of the codebook for the mapping of binary sequences to
code words. The decoding uses the same principle with a
hashmap of code words as keys and the indices of the lexi-
cographically sorted codebook as values.

Comparison

First, we determined the coding rates of the codebooks gen-
erated by mCGR and lexicographical mCGR, based on the
following equation (with C number of code words and n
length of code words):

coderate = log2(|C|)
n

(6)

We used different constraints and two sets of motifs,
named scenario 1 and 2. While the first set contains 10 mo-
tifs with a length of 6, in scenario 2, we considered the mo-
tifs listed in MESA (19) with a maximum sequence length
of 10 (overall 35 motifs).

To test and benchmark the mCGR-lexicographic code,
we produced a benchmark dataset consisting of seven
images in jpg format with different file sizes ranging
from 300kB to 1.7MB. We used mCGR images gener-
ated with our R implementation to create the dataset
(both the R script and the dataset are available under
github.com/HFLoechel/ConstrainedKaos).

Based on this benchmark dataset, we encoded/decoded
the benchmark dataset ten times and measured the run-
time with the python package timit on a laptop (AMD
Ryzen 5 3500 U, 16GB RAM) on a single CPU process.
For comparison, we used the same benchmark dataset
for encoding/decoding with the DNA Fountain code. For
the mCGR approach, we first generated the codebooks
in a word length of 10. Then we en- and decoded the
seven benchmark files in different sizes, with the lexico-
graphic code. For the DNA Fountain encoding/decoding,
we first determined the minimum amount of packages
needed for decoding for each file and applied the same
restrictions without considering motifs. We measured the
runtime 10 times for both codes. We disabled the Reed-
Solomon for the DNA Fountain to make a fair comparison.
For DNA Fountain, we noticed that with the minimal num-
ber of packages, the decoding did not work, and more pack-
ages are needed. To address this, we determined the minimal
package number for decoding before the actual benchmark.
Moreover, we used the encoded files and calculated the cod-
ing rates for each benchmark file, by dividing the number
of nucleotides in each encoded file by the file size in bits.
To make a fair comparison, we removed the header in the
DNA Fountain codes. While DNA Fountain codes can not
adhere to motif constraints, we analyzed the number of se-
quences in each encoded file affected by our motif selection
in the two different scenarios.

RESULTS

With our approach, it is possible to automatically gener-
ate all possible code words in a given length that take into
account the GC content, the homopolymers, and the unde-
sired DNA motifs.

Mathematical model

In the following section, we summarize the mathematical
background and equations that are used in our model.

For the alphabet � = {A,G,T,C}, the possible words
of a length of n are the four possible nucleotides. For our
mCGR approach, we have to split the concatenated string
into substrings. For the simple case of all possible words in

the length of two �2 and the initial mCGR for �1 A T
G C , we

can get the first letter of all possible two-letter strings with

the Kronecker product with the square matrix of ones
1 1
1 1 =



PAGE 7 OF 11 Nucleic Acids Research, 2022, Vol. 50, No. 5 e30

12, which can be considered as an extension with any pos-
sible character:

P2 = 121 ⊗ mCG R1

=
[

1 1
1 1

]
⊗

[
A T
G C

]

=

⎡
⎢⎣

A T A T
G C G C
A T A T
G C G C

⎤
⎥⎦ (7)

We can proceed with the end of the strings in equal manner
by exchanging both matrices:

A2 = mCG R1 ⊗ 121

=
[

A T
G C

]
⊗

[
1 1
1 1

]

=

⎡
⎢⎣

A A T T
A A T T
G G C C
G G C C

⎤
⎥⎦ (8)

Finally, the addition of both matrices, generates the com-
plete matrix mCGR2 for �2.

mCG R2 = P2 + A2

=

⎡
⎢⎣

AA T A AT TT
G A C A GT CT
AG TG AC TC
GG CG GC CC

⎤
⎥⎦ (9)

With this result, we can proceed to calculate the next
mCGR:

P3 = 121 ⊗ mCG R2

A3 = mCG R1 ⊗ 123

mCG R3 = P3 + A3 (10)

We can now formulate the general equation to describe
an mCGR by appending a single character as:

Pn+1 = 121 ⊗ mCG Rn (11)

An+1 = mCG R1 ⊗ 12n
(12)

mCG Rn+1 = An+1 + Pn+1 (13)

While this approach allows the construction of �n by ap-
pending a single letter, the model has to be extended to ad-
here to the different constraints. To this end, the mCGR
model is defined as follows:

The mCGR model is defined as

mCG Rn = Pn + An (14)

Prepending in the mCGR model is defined as

Pn = 121 ⊗ mCG Rn−1 (15)

while appending is defined as

An =
⎧⎨
⎩

mCG R1 ⊗ 12n−1
for Hamming and GC

mCG Rn−1 ⊗ 121
for hp and motifs

(16)

The mCGR1 for the Hamming distance is defined as

mCG R1 =

⎡
⎢⎣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎤
⎥⎦ (17)

For the mCGR1 notation
[

A T
G C

]
applies:

mCG R1 =

⎧⎪⎪⎨
⎪⎪⎩

[
0 0
1 1

]
GC

B1(i ) Hamming (one sequence)

(18)

The Hamming distance for the nucleotide at position i is
defined as

B1(i ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 1
1 1

]
f or A

[
1 0
1 1

]
f or T

[
1 1
0 1

]
f or G

[
1 1
1 0

]
f or C

. (19)

For motifs or homopolymers for n = i and i = length of
motif/homopolymer

mCG Ri with elements er,q (20)

is er, q = 1 for constrained substring, otherwise 0.

Implementation

We implemented all equations in R and Java. Figure 5A–
C shows the mCGR of code words implementing different
homopolymer constraints, with the usable sequences col-
ored in black. Different fractal patterns emerge from the
homopolymer constraints, which is caused by the fractal
arrangement of the elements in the matrix (as described in
Figure 2). A 50% GC content emerges as stripes in the rep-
resentation, which is caused by the arrangement of the nu-
cleotides.

Furthermore, we tested our implementation for several
constraints concerning undesired motifs (see Supplemen-
tary Material S1 and S2). If a single nucleotide, for example,
A, is forbidden, the Sierpinski triangle emerges. For other
constraints, other fractals emerge, e.g. the T-square (a de-
scription of this fractal can be found in (50)).

Figure 5D and E shows the resulting representation for
the GC content and Hamming distance for a word length
of three.
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Figure 5. mCGR for different constraints: (A–C) mCGR of code words with different constraints. (A) Increasing word length for hp ≥ 2, 2 to 4 from left
to right. A black area represents zero and a white area the highest number in the matrix. Thus, the code words with no homopolymers hp ≥ 2 are colored
in black. (B) and (C) mCGR of length = 10, from left to right: constraints for hp ≥ 2, hp ≥ 3, and hp ≥ 4. White areas contain homopolymers. (C) Code
words that does not fullfil 50 % GC content are excluded. (D and E) mCGR for the distance d with length = 3. (D) mCGR of GC content. (E) mCGR of
Hamming distance. Left: complete representation. Right: different distances are shown.

A detailed view on the GC constraint as mCGR for dif-
ferent lengths and order of edges is given in Supplementary
Material S3. The order of the edges has a high impact on
the resulting pattern. To calculate the Hamming distance,
we can apply the same equation for the GC content with a
different generator matrix.

For the GC content, we found a similar pattern as for the
Hamming distance of a binary code, as shown in (51). More
precisely, when considering the following redefinition of A
= T and G = C, one can notice that it is a transformation of
the Hamming distance in a binary system. Hence, extract-
ing all ones from the mCGR with diagonal order of A and
T will result in the adjacency matrix for a hypercube. For
other word lengths for the Hamming Distance see Supple-
mentary Material S4. The results for the Hamming distance
for a single word can be found in Supplementary Material
S5.

To evaluate our approach, we generated a codebook
containing 10 nucleotides (nt) long sequences without ho-
mopolymers longer than 2 nt, a GC content between 40–
60 %, and a set of undesired motifs with relevance to se-
quence synthesis and sequencing. Due to the recursive def-
inition of our model, a code word length of 10 nt covers
all possible words shorter or equal to 10 nt as well as any
longer code words. The resulting codebook contained 484
263 DNA sequences. We used the sequence evaluation tool
MESA (19) to test whether the code words in the codebook
fulfill the desired requirements. MESA is a web application
for the assessment of synthetic DNA fragments with re-
spect to homopolymers, GC content, k-mer repetitions, and
undesired motifs. Using the MESA API, we evaluated the

generated sequences concerning the fulfillment of the afore-
mentioned constraints. MESA could not detect any unful-
filled constraints in our codebook. The input constraints
and commands for the Java application as well as the MESA
configuration are included in the GitHub repository. The
MESA results confirmed that all sequences adhered to the
restrictions.

Comparison

In Supplementary Material S6, we compare our approach
with other state-of-the-art methods for code word designs.
In contrast to other approaches, our method is highly flexi-
ble in the number and type of constraints. This allows creat-
ing code words that adhere to a multitude of different con-
straints simultaneously. Furthermore, it is the only method
so far that can generate code words adhering to undesired
motifs. The GC content can be chosen as an interval or for
a fixed percentage.

The Java implementation can be applied either to con-
struct a codebook comprising all possible sequences in a
given length under user-defined constraints, or all possible
sequences which can freely be concatenated without form-
ing undesired motifs or homopolymers, in order to use them
for lexicographic encoding.

Our approach allows the generation of codebooks
with user-defined constraints. Therefore, we generated
codebooks and calculated the corresponding code rates
(Figure 6). For those, we varied the code word length, ho-
mopolymer length, and different GC content constraints
with and without motif constraints. Additionally, we pre-



PAGE 9 OF 11 Nucleic Acids Research, 2022, Vol. 50, No. 5 e30

Figure 6. Code rate of mCGR with different constraints for different code word lengths.

pared codebooks for a lexicographic encoding (lex). These
codebooks only contain code words that can freely be con-
catenated while still adhering to the constraints. In scenario
1 (Figure 6E and F), we added 10 undesired motifs with a
length of 6. For choosing a GC interval of 40–60%, in differ-
ent words (Figure 6C–F), a variation between odd and even
numbers becomes visible, which is a result of the possible
combinations to fit the interval. For example, code words
of a length of 6 nucleotides, which have to adhere to an in-
terval of 40–60% GC content, are always at exactly 50% GC
to fit the criterion. Three nucleotides are either G or C, and
the three remaining are either A or T. In contrast, an un-
even code word length, e.g. 7, leaves more options. In this
case, three or four nucleotides can be G or C and the re-
maining A or T to fit in the interval and vice versa. For
a 10 nt code word, there are even more options to fit the
criterion of a 40–60% GC content. Namely, there are three
options: 4–6, 5–5 and 6–4. With an increase of the word
length from 10 nt to 12 nt, the increase of the code rate is
very small. Thus, regarding the runtime and memory, a code
word length of 10 nt is reasonable for preparing a codebook
based on the mCGR. The code rates for lexicographic en-
coding (lex) are shown in Figure 6D and F, which decreases
as a result of a smaller codebook. In a second scenario (sce-
nario 2), we created a lexicographic codebook with a set
of 35 undesired motifs of a maximum sequence length of
10 nt (hp ≥ 4, GC 40–60%, a code word length of 10), lead-
ing to a code rate of 1.84. We used the three lexicographic
codebooks (all with hp ≥ 4, GC 40–60%, code word length
of 10), one with no motif constraint, one with the set of
motifs of scenario 1, and one with the set of scenario 2,

for encoding/decoding a benchmark dataset. The dataset
consists of seven image files in different file sizes and com-
pared them with the DNA Fountain code. In Supplemen-
tary Material S7, the results for the runtime benchmarks
are presented. After preprocessing the codebooks, the lexi-
cographic code has a linear runtime between a few seconds
for encoding/decoding. The absolute encoding time is lower
than for decoding. The encoding/decoding for DNA Foun-
tain for our benchmark datasets was between minutes and it
could be shown that the decoding has a non-linear runtime.

Additionally, we calculated the actual coding rate for
each encoded file. For the DNA Fountain algorithm, we re-
moved the 16 nt long headers for each package in advance
to make the results comparable to the lexicographic encod-
ing. The maximum code rate for DNA is 2 bits/nt while
the lexicographic encoding has a constant code rate of 1.8
bits/nt in all three cases. Wang et al. (29) reached a code
rate of 1.9 bits/nt with the same constraints. They dismissed
all sequences ending with homopolymers of 3 nt and ap-
plied a concatenation scheme, avoiding the concatenation
of sequences that are building homopolymers. Since we dis-
missed all code words that could form a motif or homopoly-
mer, we can achieve a code rate of 1.88 for the same set-
ting, while the implementation of our encoding/decoding
decreased the actual code rate for our benchmark dataset to
1.8. The DNA Fountain code rate varies for the files with
no visible pattern between 1.65 and 1.75 bits/nt. For the
DNA Fountain encoded files, we counted the number of
sequences affected with motifs for the two scenarios. For
scenario 1, about 29% of the packages contained motifs in
scenario 2, about 30%, independent of the file size. The re-
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lation of affected sequences is constant over the file size but
varies with respect to the chosen scenarios. Detailed plots
for the code rate comparison and the number of packages
including motifs can be found in Supplementary Material
S8.

DISCUSSION

In the current study, we present a novel approach for gener-
ating codebooks that fulfill certain constraints that are im-
portant for DNA storage systems but have not been fully
addressed by other approaches. These codebooks can be
used as a basis for any DNA storage codes, e.g. error-
correcting codes. The constraints include GC content (vari-
able, strong and weak) as well as undesired motifs, which
are particularly important for DNA syntheses and DNA se-
quencing. Our model calculates all possible code words in a
given length, excluding those code words that do not adhere
to the given constraints. Thus, for a given set of constraints,
the maximal information density can be easily calculated.

The removal of undesired patterns is very complex. One
can construct all possible code words in advance while dis-
carding those with undesired motifs, homopolymers, or GC
content. The remaining code words can further be used for
encoding, as we did in our approach. In contrast, Fountain
codes search for packages fulfilling all constraints during
the encoding process. This step is very time-consuming as
every code block needs to be checked against a number of
motifs.

Our novel approach further offers the opportunity to cal-
culate the Hamming distance, which is of high relevance for
DNA computing (52). It is also possible to apply our ap-
proach for the Hamming distance for larger alphabets.

As a proof-of-concept, we used lexicographic encoding
(29) to map binary strings to DNA code words. The ma-
trix structure allows quick identification of sequences with
a specific prefix or suffix. This enables a dynamic exclusion
of matrix areas, depending on the last nucleotide(s) of the
previously mapped code word. The mCGR-lexicographic
code outperformed the DNA Fountain code, with respect
to runtime and code rate. In our approach, we did not incor-
porate any error-correction due to the fact that the mCGR
approach can be combined with any error-correction algo-
rithm as mentioned before. Thus, we also disabled the error-
correction in DNA Fountain to make a fair comparison.
While Fountain-codes should be able to reach the theoreti-
cal maximum of 2 bits/nt, it turned out to be impossible to
decode the data under this assumption. Additional pack-
ages for decoding need to be added to address this, which
affected the code rate of the DNA Fountain code. In our lex-
icographical encoding, we discarded all sequences that can
potentially form motifs/homopolymers, which decreased
the code rate compared to the lexicographic approach of
Wang et al. (29). Moreover, in two possible scenarios, on av-
erage, 30 % of the packages in the Fountain codes contain
undesired motifs, which could lead to problems in synthesis
or sequencing in the DNA storage systems.

To the best of our knowledge, this is the first algorithm
that constructs code words that not only adhere to the com-
monly described constraints in the literature, but also to ar-
bitrary undesired motifs, which play an important role in in

vitro and in vivo studies of DNA codes and DNA storage
systems, in particular for DNA synthesis and sequencing.
As the structure of the matrix also allows the quick identifi-
cation of reverse complementary code words, it can further
be used in the design of DNA fragments for microarrays.
The current JAVA implementation has some limitations re-
garding the code word and motif length. Without increas-
ing the maximum allowed memory usage of JAVA (4GB for
a system with 16GB main memory), a maximal code word
length of around 12 nt can be calculated.

The mCGR method offers a new opportunity to con-
struct code words and new perspectives regarding DNA
codes. Besides the construction of specific code words, it
can also be applied to visualize DNA-based encodings. The
mCGR is a matrix representation of all possible code words
for a given length �n for DNA. Fractal patterns emerge
from different constraints that can be mathematically de-
scribed, and the back-calculation can be used to retrieve the
code words.

DATA AVAILABILITY

The implementation (for Java and R) is available at: http:
//mCGR.heiderlab.de. The source code is available at: https:
//github.com/HFLoechel/ConstrainedKaos.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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