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ABSTRACT At the end of 2019, a new coronavirus, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), caused a pandemic that persists to date and has resulted in
more than 6.2 million deaths. In the last couple of years, researchers have made great
efforts to develop a diagnostic technique that maintains high levels of sensitivity and
specificity, since an accurate and early diagnosis is required to minimize the prevalence
of SARS-CoV-2 infection. In this context, CRISPR-Cas systems are proposed as promising
tools for development as diagnostic techniques due to their high specificity, highlighting
that Cas13 endonuclease discriminates single nucleotide changes and displays collateral
activity against single-stranded RNA molecules. With the aim of improving the sensitivity
of diagnosis, this technology is usually combined with isothermal preamplification reac-
tions (SHERLOCK, DETECTR). Based on this, we developed a reverse transcription-loop-
mediated isothermal amplification (RT-LAMP)-CRISPR-Cas13a method for SARS-CoV-2
virus detection in nasopharyngeal samples without using RNA extraction that exhibits
100% specificity and 83% sensitivity, as well as a positive predictive value (PPV) of 100%
and negative predictive values (NPVs) of 100%, 81%, 79.1%, and 66.7% for cycle thresh-
old (CT) values of ,20, 20 to 30, .30 and overall, respectively.

IMPORTANCE The coronavirus disease 2019 (COVID-19) crisis has driven the develop-
ment of innovative molecular diagnosis methods, including CRISPR-Cas technology.
In this work, we performed a protocol, working with RNA extraction kit-free samples
and using RT-LAMP-CRISPR-Cas13a technology; our results place this method at the
forefront of rapid and specific diagnostic methods for COVID-19 due to the high
specificity (100%), sensitivity (83%), PPVs (100%), and NPVs (81% for high viral loads)
obtained with clinical samples.
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Since their emergence at the beginning of the 21st century, coronaviruses have been
recognized as a health concern because of their ability to cause severe respiratory

infections in humans. At the end of 2019, a new coronavirus appeared, severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2), producing a novel illness, coronavirus
disease 2019 (COVID-19), and showing two remarkable characteristics: the virus causes
the development of an unusual viral pneumonia, and it is highly transmissible and thus
spreads rapidly (1–3). This led to the SARS-CoV-2 pandemic, which persists to date and has
caused more than 6.2 million deaths (WHO COVID-19 Dashboard [https://covid19.who.int/]).

Fortunately, vaccination campaigns have decreased the incidence of COVID-19 (4).
However, specialists claim that this virus is likely to coexist with us for a long time, as

Editor Daniel R. Perez, University of Georgia

Copyright © 2022 Ortiz-Cartagena et al. This is
an open-access article distributed under the
terms of the Creative Commons Attribution 4.0
International license.

Address correspondence to María Tomás,
MA.del.Mar.Tomas.Carmona@sergas.es.

The authors declare no conflict of interest.

Received 7 July 2022
Accepted 7 September 2022
Published 28 September 2022

September/October 2022 Volume 10 Issue 5 10.1128/spectrum.02398-22 1

RESEARCH ARTICLE

https://orcid.org/0000-0001-6632-1454
https://orcid.org/0000-0002-8531-6105
https://orcid.org/0000-0002-4039-4142
https://orcid.org/0000-0002-4476-856X
https://orcid.org/0000-0002-1846-4693
https://orcid.org/0000-0003-4501-0387
https://covid19.who.int/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/spectrum.02398-22
https://crossmark.crossref.org/dialog/?doi=10.1128/spectrum.02398-22&domain=pdf&date_stamp=2022-9-28


the price of vaccines and the necessary cold-chain stability make it difficult for the vac-
cine to reach the most remote places in the world, as SARS-CoV-2 does. Together with
the fact that no efficient therapy has been developed for COVID-19, this indicates that
accurate and early diagnosis in point-of-care (POC) testing is required to minimize the
prevalence of SARS-CoV-2 infection (1–3).

In the last couple of years, researchers have made great efforts to develop a diag-
nostic technique that maintains high levels of sensitivity and specificity, without the
need for expensive equipment or highly trained personnel for its implementation.
Such a diagnostic technique would allow the detection of SARS-CoV-2 infection in
health centers, as well as at home or in the field, which would accelerate the identifica-
tion of infected patients, enabling prompt treatment and halting the spread of SARS-
CoV-2 worldwide (5).

The use of nucleic acids as biomarkers has become the diagnostic gold standard,
because of the species specificity of the technique and because DNA and RNA can be
amplified (6).

Although the reverse transcription-PCR (RT-PCR) assay is routinely used as the gold
standard diagnostic test for COVID-19 (5, 7–10), throughout the pandemic period, it
has shown sensitivity levels of 45% to 60% (10) and even lower than 40%, according to
some authors (7), and worrying false-negative rates of 2% to 29% (10, 11). Additional
downsides of this amplification method are the elevated costs (expensive equipment
for implementation and readout of results), the need for specialized personnel in labo-
ratories and the time required (4 to 6 h) (5, 8, 10). Consequently, isothermal amplifica-
tion reactions are becoming especially important in the diagnosis of COVID-19 (5).
Although different methods of isothermal amplification are available, recombinase po-
lymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP) reac-
tions are the methods most commonly used in research. The LAMP-based technique
has displayed greater specificity than RPA (5, 12). LAMP has previously been used to
detect several microorganisms, and the aforementioned advantages led to its optimi-
zation for COVID-19 diagnosis, and it has been applied in association with other techni-
ques which increase diagnostic specificity, such as clustered regularly interspaced short
palindromic repeat (CRISPR)-associated protein (CRISPR-Cas) systems (5, 13–15).

Naturally, CRIPSR-Cas systems provide adaptive immunity for bacteria and archaea,
as they collect genomic fragments (spacers) from foreign elements (bacteriophages,
plasmids, and other mobile genetic elements) that are expressed in an RNA molecule
form (crRNA) that guides an endonuclease protein (Cas) to the pathogen for the final
degradation of its nucleic acid material (16, 17).

Since their discovery, CRISPR-Cas systems have revolutionized the field of molecular
biology. Initially, they were presented as highly specific tools for genome editing. However,
they are also applicable for the diagnosis and treatment of infectious diseases and are now
considered key for development in these areas (16, 17).

Class 2 CRISPR-Cas systems have a simpler effector structure, which makes them more
attractive for use in genome editing, diagnosis, and treatment. In this class, Cas12 and
Cas13 proteins display nonspecific endonuclease activity when activated (collateral activity)
against single-stranded DNA (ssDNA) and RNA (ssRNA), respectively. This feature could be
applied in clinical diagnosis, taking advantage of the reporter molecule target of this activ-
ity (collateral-based detection), which acts by amplifying the detection signal. Therefore,
Cas12 and Cas13 are proposed as the most promising tools for use in diagnostic techni-
ques, with the latter being particularly important in terms of specificity, as it has the ability
to discriminate single nucleotide changes (16).

Researchers recently developed two novel assays for detecting SARS-CoV-2 based
on CRISPR-Cas technology: DETECTR and SHERLOCK. The DETECTR technique uses
reverse transcription-LAMP (RT-LAMP) for amplification and Cas12 as an endonuclease,
while SHERLOCK uses RT-RPA for amplification and Cas13 (18, 19). On the basis of these
works, in this study, we describe the development and optimization of a LAMP-CRISPR-
Cas13a technique for the diagnosis of SARS-CoV-2 infection in clinical samples in a
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process that does not require RNA extraction or purification (Fig. 1). With this tech-
nique, high levels of sensitivity and specificity, comparable to those associated with
RT-PCR, were obtained.

RESULTS
Analysis of the state of the art.We obtained an output of more than 7,000 articles

as a result of a search using the keywords “RT-PCR diagnosis COVID-19”, of which
almost 4,000 were published in 2021 alone. This result was compared with the findings
of Bhatt et al. (20) concerning papers related to RT-LAMP and CRISPR for SARS-CoV-2
diagnosis. Of these, we analyzed 10 articles on the RT-LAMP technique and 10 articles
related to RT-LAMP-CRISPR-Cas technology, finding that only 1 applied the endonucle-
ase Cas13 for SARS-CoV-2 diagnosis, but always on samples treated with an RNA
extraction kit (21) (Table 1).

Data collected from the RT-LAMP articles were used to determine the range of val-
ues of the parameters considered: sensitivity, 81% to 98%; specificity, 36% to 100%;
positive predictive value (PPV), 86% to 100%; and negative predictive value (NPV), 78%
to 99% (Table 1). The results showed that major efforts have been made to detect
SARS-CoV-2 in RNA-purified samples (8/10), although RNA extraction-free research has
also yielded potentially useful results (sensitivity, .94%; specificity and PPV, 100%;
NPV, .92%). However, the highest levels of sensitivity and specificity were obtained in
projects involving extracted viral RNA (Table 1).

FIG 1 Workflow of the novel developed and optimized protocol for infectious disease diagnosis based on CRISPR-Cas13a technology.
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Most of the reviewed papers (8/10) related to RT-LAMP-CRISPR-Cas technology
used samples treated with extraction kits. Moreover, only 1 study applied the Cas13
enzyme as an effector protein and used RNA extracted using a kit. In this case, the val-
ues for the calculated data were 73% to 97% for sensitivity, 95% to 100% for specificity,
90% to 100% for PPV, and 50% to 95% for NPV (Table 1).

SARS-CoV-2 detection. The best results for collateral-based detection reaction
were achieved with 50 nM Cas13a enzyme and a Cas13a/crRNA molar ratio of 2:1. On
the other hand, the HybriDetect lateral flow kit showed higher sensitivity when re-
porter 2 was used at a final concentration of 1,000 nM and the assay buffer was supple-
mented with 5% polyethylene glycol (PEG).

Determination of the limit of detection (LOD) of the CRISPR-Cas13a-based technology
revealed that this technique detects as few as 1 to 10 SARS-CoV-2 particles (Fig. 2). After
proteinase K-heat inactivation (PK-HID) treatment, the LAMP-CRISPR-Cas13a technique cor-
rectly detected samples with a cycle threshold (CT) value of,20 as positive. From samples
with CT values of 20 to 30 and .30, the technique identified coronavirus as present in
83.3% and 62.5% of the samples, respectively (Fig. 3C). Finally, the CRISPR-Cas13a technol-
ogy did not detect SARS-CoV-2 infection in negative samples (Fig. 3A). Based on the results
obtained (Fig. 3B), we estimated that the RT-LAMP-CRISPR-Cas13a method for COVID-19
detection exhibits 100% specificity and 83% sensitivity, as well as a PPV of 100% and NPVs
of 100%, 81%, 79.1%, and 66.7% for CT values of ,20, 20 to 30, .30 and overall, respec-
tively (Fig. 3C). The statistical analysis yielded a receiver operating characteristic (ROC) curve
with an area under the curve (AUC) of 0.84 (95% confidence interval [CI], 0.73 to 0.93)
(Fig. 4A); in addition, examination of the scatterplot revealed that diagnostic results could
be confused in nasopharyngeal samples with a CT value of.30 (Fig. 4B).

DISCUSSION

Study of the state of the art revealed that greater efforts must be made to innovate
in diagnostic methods; Bhatt et al. (20) found 1,286 papers related to RT-LAMP and
CRISPR for SARS-CoV-2 diagnosis (surprisingly, only 98 of these applied RT-LAMP inte-
grated with CRISPR-Cas technology), in contrast with the 7,000 studies involving RT-
PCR. This indicates that efforts should also be focused on developing more efficient
RT-LAMP-CRISPR-Cas protocols without RNA purification, which would reduce the cost
of the testing and also produce results faster. Only 3 of the 20 papers reviewed did not
use an RNA extraction kit (22–24). In addition, there are several advantages to the

TABLE 1 Data and parameters collected from 10 articles applying different methods to detect SARS-CoV-2 infectiona

Method Sample RNA extraction kit Cas Sensitivity (%) Specificity (%) PPV (%) NPV (%) Ref.
RT-LAMP Saliva No 94.3 100 100 92.6 22

NPS/OPS No 95.2 100 100 92.6 23
NPS Yes 81.8 100 100 95.2 32
NPS Yes 94.5 99 98.8 95.2 25
NPS/Saliva Yes 85.9 99.5 96.8 97.4 26
NPS Yes 98.1 36.4 93.7 66.7 27
NPS Yes 98 90.9 87.5 98.6 28
NPS/OPS/Saliva Yes 97.8 99.9 99.8 99.9 29
NPS Yes 94.1 60.5 86.7 78.8 30
NPS/Saliva Yes 87 98.5 97.9 90.2 31

RT-LAMP-CRISPR NPS/OPS Yes Cas13 97.4 100 100 66.7 34
NPS/OPS No Cas12 89.7 100 100 78.6 24
Respiratory Yes Cas12 94 100 100 94.3 35
Saliva Yes Cas12 87.7 100 100 73.6 36
NPS/OPS Yes Cas12 85.7 100 100 50 37
NPS Yes Cas12 93.1 98.5 98.4 93.4 38
Respiratory Yes Cas12 92.6 100 100 93.1 39
NPS Yes Csm complex 73.9 100 100 45.5 21
NPS Yes Cmr complex 77.5 100 100 52.6 33
NPS Yes Cas3 90 95.2 90 95.2 40

aNPS, nasopharyngeal swab; OPS, oropharyngeal swab.
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application of Cas13 endonuclease, as it has been reported to be more specific than
other effector proteins (16).

In this work, our research group developed an RT-LAMP-CRISPR-Cas13a protocol for
diagnosing SARS-CoV-2 infection with an LOD of 10 viral copies, which is similar to the
LOD of the RT-PCR method, considered the gold standard for diagnosis of COVID-19 (5, 7–
10, 41). However, it has been reported that the RT-PCR for SARS-CoV-2 detection has a lim-
ited sensitivity of 45% to 60% (10), while the RT-LAMP-CRISPR-Cas13a technology
increases this value significantly, up to 83%. As previously mentioned, the gold standard

FIG 2 LOD assay for SARS-CoV-2 detection with the N2 gene as the target using serial dilutions (1:10) from two
samples with different CT values.

FIG 3 (A) Test strips (left) for SARS-CoV-2 detection using samples with CT values ranging from 13 to 38 and negative samples as negative
controls, with numerical results (right) for each interval of CT values (,20, 20 to 30, and .30). (B) Results obtained using the N2 gene for
SARS-CoV-2 detection. (C) Table containing the specificity, sensitivity, PPV, and NPV RT-LAMP-CRISPR-Cas13a technique values obtained by
processing the data in Fig. 4B.
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shows downsides in terms of costs, implementation, and time consumption (5, 8, 10) that
are surpassed by the RT-LAMP-CRISPR-Cas13a technique. (i) RT-PCR requires a high-quality
RNA extraction method, while our technology is applied on samples processed using the
simple PK-HID protocol. (ii) The gold standard depends on expensive equipment and
specialized personnel, which raise the price per reaction and difficulty of use outside of
laboratories; by contrast, the RT-LAMP-CRISPR-Cas13a protocol eliminates the need for a
thermocycler and sophisticated readout equipment, allowing easier implementation. (iii)
The RT-PCR protocol takes at least 4 to 6 h, in contrast with the RT-LAMP-CRISPR-Cas13a
method, which takes less than 2 h. For all these reasons, this RT-LAMP-CRISPR-Cas13a-
based assay is proposed as a strong option to replace the current molecular gold standard
diagnostic test.

Furthermore, considering the criteria recommended by the WHO (42), this novel
technique fulfills the three key features of accuracy, accessibility, and affordability. This
is because on the one hand, it showed an accuracy [(true positive {TP} 1 true negative
{TN})/total] of 87.2%, and on the other hand, it is both accessible and affordable.

Comparing our results on sensitivity, specificity, PPV, and NPV with those obtained in
previous studies, we found that the specificity and PPV values of the RT-LAMP-CRISPR-
Cas13a technology were higher than those in 7 of the 10 RT-LAMP papers reviewed
(25–31), and in one case, the sensitivity of this novel technique was even higher (32).
Moreover, this technique showed higher sensitivity and NPV values than those in 2 of the
10 RT-LAMP-CRISPR papers reviewed which applied an RNA extraction kit to the clinical
samples (21, 33). Among the others, 7 of 8 studies used DNA target-endonuclease effec-
tors, and thus, a higher sensitivity could be obtained due to the intrinsic stability of DNA
in contrast to that of RNA molecules. The lower sensitivity of the RT-LAMP-CRISPR-Cas13a
protocol (83%) than that described in a previous study (97.4%) could be explained by the
fact that the researchers used an RNA extraction kit (Direct-zol), so that the RNA was puri-
fied and concentrated, and also that the results were revealed by fluorescence (34).

ROC analysis has become a popular method for evaluating the accuracy of medical
diagnostic systems, as it provides accurate indices for the techniques tested that are
not distorted by fluctuations caused by the use of arbitrarily chosen decision criteria or
cutoff points (43). The AUC determines the inherent ability of the test to correctly iden-
tify a person as infected or not, where an AUC value of 0.5 indicates an absence of
capacity for discrimination between infected and healthy populations, a value of 0.5 to

FIG 4 (A) ROC curve for RT-LAMP-CRISPR-Cas13a technology. (B) Scatterplot of two groups, false-negative and true-positive
detections with RT-LAMP-CRISPR-Cas13a, versus the CT values of the respective samples.
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0.7 is related to unsatisfactory discrimination, and the discrimination power is accepta-
ble when the AUC value is between 0.7 and 0.8, excellent for values contained in the
range 0.8 to 0.9, and perfect when the AUC is close to 1 (44). The value of the area
under the ROC curve, calculated by statistical analysis, validated our RT-LAMP-CRISPR-
Cas13a technique as a reliable diagnostic method. Furthermore, the results shown in
Fig. 4B indicate that this protocol provides less accurate diagnostics when viral loads
are low. However, we should bear in mind that at this stage of infection, individuals
present almost no risk of being contagious (45, 46).

In summary, the high levels of specificity, sensitivity, PPV, and NPV obtained using
this promising protocol working with RNA extraction kit-free samples place the LAMP-
CRISPR-Cas13a technology at the forefront of rapid and specific diagnostic methods
for infectious diseases. Thus, this technique could be established as a diagnostic tool
for detecting other viral (papillomavirus [47, 48], Zika virus [49, 50], dengue virus [50],
African swine fever virus [51], Ebola virus [52]) and bacterial (53, 54) (tuberculosis [55])
diseases, as previously done by other authors for infections such as those caused by
multiresistant pathogens (56, 57). However, Cas13 detection methods should be opti-
mized to enable direct diagnosis without prior amplification of nucleic acids.

MATERIALS ANDMETHODS
Study of the state of the art. A study of the state of the art was conducted with the aim of compar-

ing the use of different novel diagnostic techniques. First, we conducted a search in PubMed with the
keywords “RT-PCR diagnosis COVID-19” and compared the output with the number of publications on
RT-LAMP and RT-LAMP-CRISPR strategies for COVID-19 diagnosis (20). Then, we collected data on the
different sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) from
10 papers related to RT-LAMP and 10 papers on the RT-LAMP-CRISPR-Cas COVID-19 diagnostic tech-
nique (21–40). We used the results to calculate the parameters needed for the comparison.

In silico analysis and design of RT-LAMP primers, crRNAs, and RNA reporters. The nucleocapsid
gene (GenBank Gene ID: 43740575) of the SARS-CoV-2 virus was selected for study due to the fact that it
shows a higher abundance of subgenomic mRNAs than other targets, which boosts the sensitivity of the
diagnostic technique (58). Furthermore, the mutation rate found in this gene is lower than that in other
targets, such as the spike gene and the ORF gene (59, 60). The target sequence was analyzed in silico
with the aim of designing specific primers for amplification of a genetic region without any previously
described mutation (N gene region, 12 to 213 bp [N2 gene]) (61). Three pairs of LAMP primers were
designed using PrimerExplorer V5 software (F3-B3, FIP-BIP, and Floop-Bloop) to amplify the SARS-CoV-2
N2 gene. The FIP LAMP primer contained the T7 polymerase promoter in its sequences for the subse-
quent transcription step (Table 2).

Two different RNA reporters (reporters 1 and 2) were used to reveal the results in order to select the
one with the best signal. Both contained a single isomer derivative of fluorescein modification (FAM) at
the 59 extreme and a biotin molecule at the 39 extreme (Table 2).

Clinical samples. Clinical samples were supplied by the Microbiology Service of the Teresa Herrera
Materno Infantil Hospital (A Coruña, Spain). The samples (n = 133) were obtained from nasopharyngeal
swabs for SARS-CoV-2 detection (Table 3).

TABLE 2 Sequences of primers, crRNAs, and reportersa

Name Sequence Position on gene
LAMP primers
F3_N2 TGGACCCCAAAATCAGCG 12229
B3_N2 GCCTTGTCCTCGAGGGAAT 195–213
FIP_N2 TGCGTTCTCCATTCTGGTTACTGCGAAATTAATACGACTCACTATAGGGAATGCACCCCGCATTACG
BIP_N2 CGCGATCAAAACAACGTCGGCCCTTGCCATGTTGAGTGAGA
Floop_N2 CAGTTGAATCTGAGGGTCCACCAA 50–73
Bloop_N2 CAAGGTTTACCCAATAATACTGCGT 127–151

crRNA
crRNA_N2 gauuuagacuaccccaaaaacgaaggggacuaaaacGGUCCACCAAACGUAAUGCGGGGUGCAU 40–59

Reporters
Reporter 1 FAM-mArArUrGrGrCmAmArArUrGrGrCmA-Biotin
Reporter 2 FAM-UUUUUU-Biotin

aUnderlined letters indicate overhang T7 promoter sequences, and lowercase letters indicate scaffold sequences. All primers were supplied by IDT, and reporters were
supplied by GenScript.
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Ethical approval. Ethical approval was granted by the Galicia Drug Research Ethics Committee
(CEIm-G), and internal ethical approval was received by the Institute of Research A Coruña (INIBIC) from
Coruña Hospital (CHUAC) (2020/207).

Sample processing. For sample processing, a proteinase K-heat inactivation (PK-HID) protocol was
applied to samples from swabs stored in viral transport medium (Gibco) (62) as follows. Aliquots (95 mL)
of samples were treated for 15 min at 55°C with 5 mL of proteinase K (10 mg/mL; stock), prepared at
1 mg/mL in a final volume of 100 mL, and heat-inactivated at 98°C for 5 min. Finally, the extracted RNA
samples were stored at280°C.

RT-LAMP reaction. Amplification using the RT-LAMP (WarmStart LAMP kit [DNA and RNA]; NEB)
reaction was performed following the manufacturer’s protocol. Briefly, RNA samples (5 mL) were added
to a reaction mix containing 12.5 mL of WarmStart LAMP 2� master mix and 2.5 mL of 10� primer mix
(FIP-BIP, 16 mM; F3-B3, 2 mM; Floop-Bloop, 4 mM; stock) adjusted to a final volume of 25 mL with dH2O.
The reaction mixtures were incubated at 65°C for 1 h.

Collateral-based detection. Each Cas13a-based detection reaction mixture was incubated at 37°C for
30 min with the following reaction components: 2 mL of 10� cleavage buffer (200 mM HEPES, 90 mM mag-
nesium chloride, 600 mM sodium chloride), 0.5 mL of deoxynucleoside triphosphates (dNTPs) (HiScribe T7
quick high-yield RNA synthesis kit), 0.5 mL of T7 polymerase (HiScribe T7 quick high-yield RNA synthesis kit),
20 U RNase murine inhibitor (NEB), 0.15mL Cas13a endonuclease (25 nM; MCLAB), 0.5mL crRNA (50 nM; IDT),
2mL reporter (1,000 nM; IDT), and 5mL of a cDNA sample, adjusted to a final volume of 20mL with dH2O.

Different concentrations of Cas13a and crRNA (200, 100, and 50 nM) were tested, and two different
enzyme/guide molar ratios were used (1:1 and 2:1).

HybriDetect lateral flow assay. Results were revealed using the HybriDetect lateral flow assay as
described by the manufacturer (Milenia Biotec), with some modifications. Briefly, 20 mL of collateral-
based detection product was mixed with 80 mL of assay buffer in a 96-well plate. Immediately, the gold
extreme of the trip was submerged in the mix and held for 2 to 3 min.

Following the manufacturer’s instructions, the reactive strips required calibration before application
for management of an optimal RNA reporter concentration, and as mentioned, reporters 1 and 2 were
tested. The results obtained using two different assay buffers were also compared: the kit assay buffer
and the same supplemented with 5% polyethylene glycol (PEG).

The results obtained, i.e., true positive (TP), false positive (FP), false negative (FN), and true negative
(TN), were used to calculate the following parameters: sensitivity (TP/TP1FN), specificity (TN/TN1FP),
PPV (TP/TP1FP), and NPV (TN/TN1FN).

Limit of detection. For estimating the number of initial SARS-CoV-2 viral particles that the CRISPR-
Cas13a technology was able to detect, we serially diluted (1:10) the RNA extracted using hospital equip-
ment from two clinical samples with CT values of 20 and 25. Finally, 5-mL aliquots of each dilution were
used for calculation of the limit of detection (LOD). Here, we applied an estimated correlation between
the CT value and the viral load.

Statistical analysis. Statistical analysis was conducted using the GraphPad Prism9 program to con-
struct a receiver operating characteristic (ROC) curve with a confidence interval of 95% (Wilson/Brown
method) and to construct a scatterplot of two groups (false-negative and true-positive samples) against
the CT value of each sample.
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