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Using road GIS (geographical information systems) data and travel demand data for two U.S. urban areas,
the dynamical driver sources of each road segment were located. A method to target road clusters closely
related to urban traffic congestion was then developed to improve road network efficiency. The targeted
road clusters show different spatial distributions at different times of a day, indicating that our method can
encapsulate dynamical travel demand information into the road networks. As a proof of concept, when we
lowered the speed limit or increased the capacity of road segments in the targeted road clusters, we found
that both the number of congested roads and extra travel time were effectively reduced. In addition, the
proposed modeling framework provided new insights on the optimization of transport efficiency in any
infrastructure network with a specific supply and demand distribution.

U
rban road network, one of the crucial infrastructures in cities, facilitates people’s daily commutes and
maintains modern society’s ability to function properly1,2. While each city has its own constraints in
geography, history and socio-economic mechanisms, road networks from very diverse cities were all

developed under the co-evolutions of urban travel demands and road network supplies2. Faced with rapidly
accelerating travel demands, transportation agencies had tried to alleviate traffic congestion through various
methods, which can be classified into two groups depending upon whether they increase road supply or decrease
travel demand3–6. For example, building new roads can increase the road network supply, whereas reducing the
usage of private vehicles is capable of decreasing demand of road usage.

Given the importance of urban road networks, their robustness and efficiency have drawn widespread atten-
tion in various scientific and engineering fields. Connectedness1, spatial accessibility7, betweenness centrality8,9,
the minimum spanning tree10, the price of anarchy11 and optimal navigation strategies12–14 were all investigated to
understand road network topology and improve transport efficiency15,16. Additionally, laws and models of human
mobility were studied using large-scale mobility data to estimate urban travel demand17–21. These investigations,
whether employing new statistical measures developed in complex network theory22,23, or uncovering abundant
information hidden in large-scale data, tremendously revolutionized the tools for understanding urban rhythms24

and solving urban problems25. However, a modeling framework was still missing, which would encapsulate travel
demand information into urban roads and dynamically adapt road networks to the time-variant and rapidly
growing mobility demands in this era of unprecedented global urbanization.

Here, based on large-scale road GIS data and mobile phone data in the San Francisco Bay area and the Boston
area (see Methods), a method was developed to target the road clusters most heavily used by drivers from time-
variant sources of traffic congestion, thus providing a basis for better informed urban traffic control, which
includes the mitigation of traffic congestion. To capture the dynamical urban travel demand, transient ODs (t-
ODs) for the morning period (6:00–10:00 a.m.), the noon/afternoon period (10:00 a.m. to 4:00 p.m.) and the
evening period (4:00–8:00 p.m.) were estimated (Fig. S2b). First, we defined a trip as a displacement occurring
within one hour in a specific time period (Fig. S2a, see Methods for definition of displacement) and counted the
number of trips Fij between each pair of zones i and j. In this study, zones were defined by towers’ servicing areas in
the Bay area and census tracts in the Boston area. The different zone definitions were resulted from the different
features of location records in the two mobile phone datasets (see Methods). The defined zones were only used in
the process of generating the t-ODs. All measurements regarding the dynamical driver sources (Fig. 1c–f) were
based on the census tracts for both Bay area and Boston area.

In order to avoid the data sampling bias caused by an unevenly distributed user penetration rate, we defined the
down-scale ratio (M(i) , 1) or the up-scale ratio (M(i) $ 1) as follows (Fig. S2c):

M ið Þ~Npop ið Þ
�

Nuser ið Þ ð1Þ
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where Npop(i) and Nuser(i) are the population and the number of
mobile phone users in zone i. We adjusted Fij using Eq. (2), thus
the number of trips generated by residents in a zone is proportional
with its population:

Fall
ij ~

XNk

n~1
Tij nð Þ|M kð Þ ð2Þ

where Nk is the number of phone users in the kth zone and Tij(n) is the
number of trips that user n made between zone i and zone j during
the three weeks’ observational period. Using the car usage rate data26,
we estimated the number of trips produced by vehicles Fvehicle

ij (Fig.
S2d). Finally, we upscaled the estimated distribution of travel
demands with the hourly trip production W for the entire popu-
lation, thus defining the estimated t-OD (Fig. S2e):

t�ODij~W|
Fvehicle

ijPA
ij Fall

ij

ð3Þ

where A is the number of zones. To assign trips to the road networks,
we map each t-OD pair from zone based t-OD to intersection-based
t-OD. We find the road intersections within a zone and randomly
select one intersection to be the origin or destination in the intersec-
tion-based t-OD (Fig. S2b). With the intersection-based t-ODs, the
traffic flow from the two road networks was predicted using an
incremental traffic assignment method27 (see Methods). In the fol-
lowing, we present the results from the morning period as a case
study. For more detailed information on generating t-ODs, please
see the Supplementary Information (SI).

Results
Locating the dynamical driver sources of road segments. The
driver source was defined by a mobile phone user’s home location
where the user could be found from 9:00 p.m. to 6:00 a.m16. It

indicates each road segment where its users (drivers) live and
offers useful information for urban traffic planning16. Unfortuna-
tely, the information is not applicable for real-time traffic control
because it is unable to capture the time-variant vehicle origins for a
road at different times of a day. In this work, we have defined the
dynamical driver sources of a road segment as the census tracts where
its drivers’ trips start (not necessarily driver’s home) during a
particular time window, thus packaging the dynamical travel
demand information into a road segment. The intersection-based
t-ODs record the starting road intersection for each trip; thus, the
census tract where a trip starts can be located by finding the census
tract for the starting road intersection.

For each road segment, we calculated the fraction of traffic flow
contributed from each dynamical driver source and then ranked
these sources according to their contributions to traffic flow. Conse-
quently, we defined a road segment’s major dynamical driver sources
(MDDS) as the top ranked sources that produced 80% of the traffic
flow (similar to the definition of major driver source (MDS)16). As
Fig. 1c shows, the number of major dynamical driver sources NMDDS

follows an exponential distribution P NMDDSð Þ~0:13e{0:13NMDDS in
the Bay area and an exponential distribution P NMDDSð Þ~0:29e{0:28NMDDS

in the Boston area. For 90% of the Bay area (Boston area) road
segments, the NMDDS were smaller than 18 (9), implying that the
time-variant traffic flow in most roads could be attributed to the trips
starting from a low number of census tracts (Fig. 1d & e). Surpris-
ingly, the largest NMDDS only represents 5.6% (7.0%) of the Bay area
(Boston area) census tracts, while the largest NMDS was found to
occupy 19.0% (38.9%) of the Bay area (Boston area) census tracts.
This indicates that over a specific time period, a road’s vehicle origins
are confined to a much smaller scale than drivers’ home locations.
This is inspiring news for applying dynamical driver source predic-
tions in practical urban traffic control, since fewer sources need to be
paid attention when controlling a road segment’s traffic (Fig. S3).

Figure 1 | Sources of traffic congestion in the Bay area and Boston area. (a) Traffic flow in the Bay area road network. (b) Traffic flow in the Boston area

road network. (c) The number of major dynamical driver sources NMDDS of a road segment is well approximated by the exponential distribution

P NMDDSð Þ~0:13e{0:13NMDDS (R2 . 0.99) in the Bay area and the exponential distribution P NMDDSð Þ~0:29e{0:28NMDDS in the Boston area (R2 . 0.99).

(d) The color of a Bay area census tract (1,398 in total) represents the total extra travel time Te experienced by drivers whose trips originated from that

census tract during one of the peak morning hours. We defined the top 2% census tracts with the largest Te as congested driver sources and highlighted those

using yellow polygons. (e) The extra travel time Te of Boston area census tracts (750 in total). Congested driver sources have been pinpointed using yellow

polygons. (f) Extra travel time Te follows a power-law distribution P Teð Þ~4:46T{1:65
e (R2 . 0.99) in the Bay area and a power-law distribution

P Teð Þ~8:94T{1:81
e (R2 . 0.99) in the Boston area. The maps in (a), (b), (d), (e) were generated using TransCAD 5.0 and ArcGIS.
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Pinpointing road clusters heavily used by drivers from congested
driver sources. Defining dynamical driver sources, we next built a
connection between a road network and its sources of traffic
congestion. For a road segment, the level of congestion can be
quantified by the extra travel time te, which is defined as the
difference between the actual travel time ta and the free flow travel
time tf (te 5 ta 2 tf). The free flow travel time tf equals to the length of
the road segment divided by the speed limit of the road segment. The
actual travel time ta was calculated using the Bureau of Public Roads
(BPR) function that widely used in civil engineering:

ta~tf 1za VOCð Þb
� �

ð4Þ

Commonly used values a 5 0.15 and b 5 4 were selected26. The
volume over capacity VOC 5 V/C, where V is the hourly traffic
flow and C is the hourly road capacity.

The drivers who travel through congested roads experience a sig-
nificant amount of extra travel time. To pinpoint these drivers, the
total extra travel time Te generated by drivers from each census tract
was calculated. Despite that the populations in the census tracts are
similar (Fig. S1c & d), the extra travel time Te generated by the census
tract can be very different. It is observed that Te follows a power-law
distribution P Teð Þ~4:46T{1:65

e in the Bay area and a power-law
distribution P Teð Þ~8:94T{1:81

e in the Boston area (Fig. 1f). Some
census tracts present a Te 116 times larger than the average; during a
specific time window the major traffic flow in congested roads is
attributed to few dynamical driver sources.

Defining the top 2% dynamical driver sources with the largest Te as
congested driver sources (28 in the Bay area, 15 in the Boston area), we
pinpoint the major sources of congestion during the morning peak
(yellow polygons in Fig. 1d & e). Collecting road segments used at
least once by drivers from congested driver sources, we obtained two
giant road clusters in the Bay area and the Boston area (with 12,288
road segments and 6,809 road segments respectively). Drivers from
the congested driver sources heterogeneously used road segments

within the giant road clusters (Fig. S4). For each road segment, traffic
flow generated by the congested driver sources was denoted as F. In
the Bay area (Boston area), more than 90% of the road segments have
an F smaller than 292 (106), while the largest F reaches 4,589 (1,509).

In order to pinpoint the road clusters used most heavily by drivers
from the congested driver sources, we ranked road segments by their
traffic flow F; each time, we removed a road segment with the lowest
F from the giant road cluster. The fraction of removed road segments
was denoted as f. We found that in a wide range of f, the largest road
cluster covered almost all road segments left; however, when f passed
a threshold fc , 0.82 (fc , 0.70) in the Bay area (Boston area), the size
of the largest road cluster Gf dropped sharply, meaning that the giant
road cluster broke down (Fig. 2a & b).

Interestingly, in the phase f . fc, where giant road clusters fell
apart, dramatic changes were also observed for the properties closely
related to traffic congestion (Fig. 2c–f). Taking the Bay area as an
example, the ratio Rte is the average extra travel time of the remaining
road segments over the average extra travel time of all road segments.
We found that Rte increased slowly with f when f , fc, but sharply
when f . fc. In the case of the 500 road segments remaining, the ratio
Rte was as large as 20, implying that the road segments left had much
greater extra travel times than average (Fig. 2c). Similar results were
found for average traffic flow V and average volume over capacity
(VOC), which represented roughly 5 times the overall average when
there were 500 road segments remaining. In conclusion, road seg-
ments with extremely high te, V, VOC were targeted in the phase f .

fc using our methodology. For more statistics relating to te, V, VOC,
please see Fig. S4 in SI. For results from the noon/afternoon period
and evening period, please see Fig. S5 in SI.

Of the two observed phases, the phase f . fc is of great interest. In
this phase, a few road clusters that identified the roads most fre-
quently used by drivers from congested driver sources, are pin-
pointed in particular regions of the two urban areas. We measured
the sizes of the road clusters after removing a fraction of f 5 0.96 road
segments from the giant road cluster in the Bay area, finding that

Figure 2 | Locating the road segments used extensively by drivers from congested driver sources. (a) The size of the largest road cluster Gf with the

fraction of removed road segments f. We observed a sharp decrease of Gf at a threshold fraction fc , 0.82 in the Bay area. Below the threshold fc, the largest

cluster size Gf was larger than 0.9, above the threshold fc, the largest cluster size Gf was smaller than 0.2. (b) The size of the largest road cluster Gf with f in

the Boston area. (c), (d) The ratio of average extra travel time of the remaining road segments and that of all road segments was denoted by Rte 5

,te.remain/,te.all. The ratio Rte increased slowly with f when f , fc, but increased sharply when f . fc. (e), (f) The ratio of the average traffic flow V and

the average VOC of the remaining road segments and those of all road segments were denoted by RV and RVOC. Similar to Rte, the ratios RV, RVOC increased

slowly with f when f , fc, but increased sharply when f . fc. Results from the noon/afternoon period and evening period, please refer to Figure S5.
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most road clusters were small (N , 10); a low number of clusters
constituted a large fraction of road segments left (Fig. 3a & b). During
the morning period, the top five largest road clusters represented
56% of the road segments left (Fig. 3b). The top road clusters cap-
tured the minority group of roads closely related to congestion; at the
same time it avoided scattering tiny road clusters, making this
method feasible in practical implementations. The top five road
clusters located at different time periods for the Boston area are
shown in Figure 4. Interestingly, at different times of a day, the
targeted road clusters had different spatial distributions. For
instance, during the morning peak hours in the Bay area, the largest
targeted road cluster was located near the San Francisco airport;
however, during the evening period, no targeted road cluster was
found near the airport (Fig. 3). In the Boston area, the largest targeted
road cluster was observed in downtown Boston during the morning
period and noon/afternoon period, while during the evening period
no targeted road cluster was observed downtown (Fig. 4). The pro-
posed modeling framework endowed road networks with the cap-
ability of sensing urban traffic rhythms, which we believe can provide
useful urban travel demand information for new generations of
urban traffic control technologies.

Improving road network efficiency based on targeted road
clusters. The method of targeting road clusters closely related to
traffic congestion can trigger numerous applications. As proof of
this concept, we will present how these findings can be applied to
mitigate traffic congestion. There are two ways to mitigate traffic
congestion. The first is to increase the capacity of congested roads,
thus reducing their extra travel time. However, civil engineers

discourage this method because it may disrupt urban textures or
attract more vehicles to the road. The second is to reduce the
number of vehicles on congested roads by increasing the related
travel costs (i.e., congestion pricing), thus forcing drivers to avoid
using congested roads by either changing their routes or abandoning
their trips. As a proof of concept here, the capacity of road segments
in the targeted road clusters was increased to reduce extra travel time,
whereas the speed limits on road segments in the targeted road
clusters was lowered in order to direct drivers to avoid congested
roads. As a reference, we used a benchmark strategy in which five
road clusters were randomly generated that were the same sizes as the
targeted road clusters (Fig. 5a, see Methods).

We first increased the capacity of road segments in the targeted
road clusters (targeted strategy) by a fraction of DC (DC 5 0.1, 0.2,
0.3). The total travel time T slightly decreased, while the total extra
travel time Ste significantly decreased in both urban areas (Fig. 6a &
b). As DC equals to 0.3, the total extra travel time decreased 26%
(17%) in the Bay area (Boston area), which equaled 48,065 (11,373)
minutes of extra travel time saved in one hour during peak morning
hours and 4 times (16.7 times) of that achieved by the benchmark
strategy. The number of congested road segments also decreased 7%
(14%) in the Bay area (Boston area), which is 7 times (8.8 times) that
achieved by the benchmark strategy (Fig. 6c). We next decreased the
speed limit of road segments on the targeted road clusters by a
fraction of DS (DS 5 0.1, 0.2, 0.3), observing that the total travel time
T increased slightly in the Bay area (Boston area) (Fig. 6d). This is not
surprising because lowering the speed limit reduced road network
capacities. However, the interesting finding was that the total extra
travel time Dte and the number of congested roads N(VOC . 1)

Figure 3 | Spatial distribution of targeted road clusters in the Bay area. The targeted road clusters are depicted in different colors (dark blue: the 1st

largest, light blue: the 2nd largest, green: the 3rd largest, orange: the 4th largest, red: the 5th largest). (a), (c), (e), (g), (i), (k) Targeted road clusters show

different spatial distributions during morning period, noon/afternoon period and evening period, which can be addressed by the different distributions of

travel demand over the three periods. (b), (d), (f), (h), (j), (l) The distribution of the size of the targeted road clusters for morning period, noon/afternoon

period and evening period when 500 road segments remain (f 5 0.96) and 1,000 road segments remain (f 5 0.92). The maps in (a), (c), (e), (g), (i), (k)

were generated using TransCAD 5.0 and ArcGIS.
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decreased with almost no construction costs. As DS equals to 0.3, the
total extra travel time Ste decreased 8% (5%) in the Bay area (Boston
area), which equaled 14,259 (3,354) minutes of extra travel time
saved during one hour of the peak morning hours and 12.6 times
(3.1 times) of that achieved by the benchmark strategy (Fig. 6e). The
number of congested road segments decreased 3% (5%) in the Bay
area (Boston area), while the number of congested road segments
slightly increased when using the benchmark strategy (Fig. 6f).

We next explored the effects of congestion mitigation on different
scales of targeted road clusters. Increasing the scale of the targeted
road clusters, more prominent reductions of total travel time T, total
extra travel timeSte and number of congested road segments N(VOC
. 1) were observed when increasing the road capacity (Fig. S6, Fig.
S7). However, this method is usually subject to high construction
costs as well as other side effects, such as urban texture disruption;
therefore, careful evaluations need to be taken before practical imple-
mentations. Increasing the scale of targeted road clusters upon which
the speed limit is reduced, both total travel time T and total extra
travel time Ste increased, while the number of congested road seg-
ments N(VOC . 1) decreased (Fig. S6, Fig. S7). This suggests that a

balance needs to be made between reducing extra travel time and
reducing the number of congested roads. To avoid a large increase of
travel time, lowering the speed limit is appropriate to a small group of
carefully selected road segments. The advantages of this method rely
on its low operation/construction cost, flexibility and adaptability to
dynamical travel demands.

Discussion
More detailed travel demand information can be added into the
current modeling framework. For example, to capture the different
human mobility patterns between weekdays and weekends, we
divided the mobile phone data according to the types of days (week-
day or weekend), and targeted the dynamical driver sources. We
observed slightly different spatial distributions of the targeted road
clusters in weekdays and weekends, indicating that more detailed
travel demand information would lead to more accurate estimations
of the dynamical sources of traffic congestions (Fig. S8–Fig. S12 in
SI). The empirical investigations of the time-variant travel demand
and congested driver sources provided us a way to introduce more

Figure 4 | Spatial distribution of targeted road clusters in the Boston area. Measurements in Figure 3 were conducted for the Boston area. The maps in

(a), (c), (e), (g), (i), (k) were generated by TransCAD 5.0 and ArcGIS.
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realistic modeling properties and a guidance to generate practical
models dedicated to transport networks’ improvements.

We firmly believe that the proposed methodology can be applied
to a wider range of transport networks and potentially appeal the
interest of the general audience from diverse research fields. The
generality of our results relies on the ubiquitous existence of the
sources of basic transporting elements in many networks. The pro-
posed modeling framework can be extended to other supply-demand
related networks, from transportation networks9–16 to the Inter-
net28,29, in which the basic transporting elements have ‘‘sources.’’ It
can also be applied to epidemic spreading networks30,31, in which the

basic diffusing elements have ‘‘sources.’’ In this study, using road
network as an example, we developed a method to target the link
clusters that were heavily correlated with the congestion of the trans-
porting elements, thus, offering new insight to understand similar
scenarios in other related studies of network flows.

Taken together, we located the dynamical driver sources for each
road segment in the Bay area and the Boston area. For most road
segments the major dynamical driver sources are limited, thus con-
gested driver sources can be pinpointed. Giant road clusters invol-
ving all roads used by drivers from the congested driver sources were
generated in the two urban areas. As we gradually removed the less-
used roads from the giant road clusters, we observed phase transition
phenomena for the size of the largest road cluster and the properties
closely related to traffic congestion. In the phase f . fc, extra travel
time, traffic flow and VOC increased much faster with f than they did
when f , fc, enabling us to target road clusters highly correlated with
traffic congestion. As a proof of concept, we lowered the speed limit
and increased the capacity of road segments in the targeted road
clusters to improve transport efficiency. While increasing the road
capacity in targeted road clusters have a more prominent effect in
reducing extra travel time, its implementation is usually expensive,
inflexible and may induce more travel demands. Lowering the speed
limit in targeted road clusters, which can be incorporated with almost
no implementation cost, can adapt to the dynamic urban travel
demands and mitigate traffic congestion at the expense of slightly
increased travel time.

Methods
Road GIS data and mobile phone data. This study employed the Bay area and
Boston area road networks, which consist of highways and arterial roads. For each
road segment, the speed limit, the number of lanes and the direction of traffic were
extracted from the database. The capacity of a road segment was estimated according
to the 2000 Highway Capacity Manual32. Different mobile phone operators collected
the mobile phone data in the Bay area and the Boston area. When a person used a
phone in the Bay area, the mobile phone tower providing the service was recorded; in
the Boston area, the user’s location coordinates were estimated using a standard
triangulation algorithm (Fig. S1a & b). Due to the different features of location
records, user displacement was defined as the change of servicing towers in the Bay
area and the change of census tracts in the Boston area.

Figure 5 | Illustration of the random road clusters (a) A random road

cluster has the same size with its corresponding targeted road cluster. Five

random road clusters were generated in the benchmark strategy. (b) A

random road cluster starts from one randomly chosen road segment and

grows by finding its neighboring road segments. Different colored road

segments represent the growing layers. The growing process stops when the

size of random road cluster reaches the size of its targeted counterpart. The

maps in the figure were generated using TransCAD 5.0 and ArcGIS.

Figure 6 | Mitigating traffic congestion by lowering speed limit or increasing capacity. Blue and red solid (dashed) lines show the effects of congestion

mitigation using the Bay area and Boston area targeted (random) road clusters. (a) The decrease of total travel time DT with the increase of capacity DC.

(b) The decrease of total extra travel time DSte with the increase of DC. (c) The decrease of number of congested road segments DN(VOC . 1) with the

increase of DC. (d) The change in total travel time DT with the reduction of speed limit DS. (e) The decrease of total extra travel time DSte with the

reduction of DS. (f) The decrease of number of congested road segments DN(VOC . 1) with the reduction of DS.
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Incremental traffic assignment. With the intersection based t-ODs calculated, we
assigned the trips to the two road networks. The most fundamental method is
provided by the Dijkstra algorithm, commonly used for routing in transportation
networks33. With the Dijkstra algorithm, we could find the shortest path with
minimum travel time between the origin and destination in a road network. However,
the Dijkstra algorithm ignores the dynamical change of travel time with traffic flow.
Therefore, we apply the incremental traffic assignment (ITA) method27 to assign the
t-OD pairs to the road networks. In this method, we first split the original t-OD of a
specific time period into four sub t-ODs, containing 40%, 30%, 20% and 10%
(commonly used values26) of the OD pairs. The OD-pairs (trips) in the four sub t-ODs
were randomly selected from the original t-OD. Trips in the first sub t-OD were
assigned using free travel time tf along the routes computed by Dijkstra’s algorithm.
After that, the actual travel time ta in a road segment was updated using the BPR
function (Eq. 4). Next, the trips in the second sub t-OD were assigned using the
updated ta, consequently the actual travel time ta in a road segment was updated
again. Iteratively, we assigned all trips in the four sub t-ODs. In the process of finding
the shortest path, we measured traffic flow for each road segment.

Method to generate random road clusters. A random road cluster starts from a
randomly chosen road segment and diffuses to its neighboring segments that share
the same intersections. The random road cluster grows until its size reaches that of the
targeted road cluster (Fig. 5). Road segments that were visited by one random road
cluster were not used in generating other random road clusters. As Figure 5a
illustrates, five random road clusters were generated in the Bay area road network;
their sizes were 71, 68, 60, 56 and 27, the same sizes of the targeted road clusters
depicted in Fig. 3a.
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