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Consumer demand for affordable fish drives the ever-growing global aquaculture industry.
The intensification and expansion of culture conditions in the production of several finfish
species has been coupled with an increase in bacterial fish disease and the need for
treatment with antimicrobials. Understanding the molecular mechanisms of antimicrobial
resistance prevalent in aquaculture environments is important to design effective disease
treatment strategies, to prioritize the use and registration of antimicrobials for aquaculture
use, and to assess and minimize potential risks to public health. In this brief article we pro-
vide an overview of the molecular mechanisms of antimicrobial resistance in genes found
in finfish aquaculture environments and highlight specific research that should provide the
basis of sound, science-based policies for the use of antimicrobials in aquaculture.
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INTRODUCTION
Through a continuous process of expansion, intensification, and
diversification, aquaculture has become the fastest-growing food
industry in the world (Bostock et al., 2010). With production
of new species and the expansion of the production of current
species to new geographical locations, the risk of disease and need
for treatment continues to increase. This risk is compounded by
the uncertainties introduced by global climate change, which may
affect the emergence and dynamics of new and existing pathogens
(Tirado et al., 2010), and consequently the use of antimicrobials
and the prevalence of antimicrobial resistance.

The major concern surrounding the use of antimicrobials in
aquaculture is considered to be the potential to favor the devel-
opment of a reservoir of antimicrobial resistance genes (ARGs)
that may be eventually transferred to clinically relevant bacteria
(FAO/OIE/WHO, 2006). So far, lack of data, methodological con-
straints, and the complexity of characterizing exposure pathways
have prevented the derivation of quantitative estimates of the risk
that this may pose to public health. Nevertheless, there is consen-
sus in the scientific community and international organizations
concerned with human health, animal health, and food security
that steps should be taken to minimize it (FAO/OIE/WHO, 2006;
Smith, 2008; Heuer et al., 2009; WHO, 2011). On a global scale,
several of the major classes of antimicrobials are being used or
have been used in aquaculture. Among these are sulphonamides,
penicillins, macrolides, quinolones, phenicols, and tetracyclines
(Sapkota et al., 2008), all of which are listed as critically or highly
important antimicrobials in human medicine (WHO, 2011).
However, the judicious use of antimicrobials in global aquacul-
ture is important to effectively treat bacterial fish diseases and
maintain fish health and welfare.

The molecular mechanism, genomic context, and prevalence
of genes conferring resistance to antimicrobials determine their

clinical relevance (i.e., whether they confer low- vs. high-level clin-
ical resistance, their ability to be mobilized by lateral gene transfer,
and their frequency of occurrence). Thus, knowledge of ARGs
from aquaculture environments is important to design and prior-
itize monitoring programs that may generate data that eventually
becomes relevant for performing quantitative risk assessments
and develop sound treatment strategies to control fish disease.
Within this general scope, we provide this article as an overview
of the molecular mechanisms, genomic context, and prevalence
of quinolone, tetracycline, and phenicol resistance genes that have
been reported to occur in aquaculture environments.

ANTIMICROBIAL RESISTANCE GENES IN AQUACULTURE
ENVIRONMENTS
Quinolones (i.e., oxolinic acid, flumequine, and enrofloxacin),
tetracyclines [i.e., oxytetracycline (OTC)], and phenicols (i.e., flor-
fenicol) are among the most widely used antimicrobial compounds
in aquaculture, and they have been used extensively to control
bacterial fish disease in salmon farming [SERNAPESCA (Chile),
2009; Burridge et al., 2010; Rico et al., 2012]. Although the use of
quinolones in salmon farming currently accounts for less than 1%
of the overall use of antimicrobials, they continue to be used in
aquaculture production in several Asian countries [SERNAPESCA
(Chile), 2009; Burridge et al., 2010; Rico et al., 2012]. Quinolones,
tetracyclines, and phenicols have been reported to be selective
for a variety of ARGs and tend to occur in mobile genetic ele-
ments that favor their dissemination (i.e., transposons, plasmids,
and integrons; Cloeckaert et al., 2000; Chopra and Roberts, 2001;
Kümmerer, 2004; Schwarz et al., 2004; Roberts, 2005).

QUINOLONE RESISTANCE
The protein targets of quinolones are the bacterial enzymes, DNA
gyrase and topoisomerase IV. DNA gyrase is a tetrameric enzyme
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encoded by the gyrA and gyrB genes, and its main activity is to cat-
alyze the negative supercoiling of bacterial DNA. Topoisomerase
IV is also a tetrameric enzyme and it is encoded by the parC and
parE genes; its function is to decatenate and relax the activity of
daughter replicons following DNA replication (Anderson et al.,
1998; Hawkey, 2003).

The acquisition of quinolone resistance is primarily due to
chromosomal mutations in topoisomerases genes (i.e., gyrA, gyrB,
parC, and parE) and mutations that reduce drug accumulation
by decreasing uptake or increasing efflux (Drlica and Zhao, 1997;
Ruiz, 2003). Additionally, at least three mechanisms of quinolone
resistance are known to be plasmid encoded: (1) Qnr proteins; (2)
AAC(6)-Ib-cr aminoglycoside acetyltransferases; and (3) QepA
and OqxAB efflux pumps. Qnr proteins protect DNA gyrase
and type IV topoisomerase from quinolone inhibition (Tran and
Jacoby, 2002; Jacoby, 2005) and the AAC(6)-Ib-cr determinant
acetylates several fluoroquinolones. Plasmid-encoded QepA and
OqxAB are active efflux pumps that may extrude hydrophilic flu-
oroquinolones such as enrofloxacin (Li, 2005; Poirel et al., 2008,
2012; Cattoir and Nordmann, 2009; Rodríguez-Martínez et al.,
2011).

Various point mutations in the quinolone resistance-
determining regions of the gyrA and/or parC genes have been
detected in quinolone-resistant strains of the fish pathogens
Aeromonas hydrophila, Vibrio anguillarum, and V. parahaemolyti-
cus (Okuda et al., 1999; Rodkhum et al., 2008; Lukkana et al.,
2012). Levels of quinolone resistance in Gram-negative bacteria
are suggested to be high when associated with point mutations
in both the gyrA and parC genes, whereas only an intermediate
level of resistance is associated with point mutations in the gyrA
gene only. However, high-level resistance to oxolinic acid associ-
ated with a single mutation in the gyrA gene has been reported
for strains of the fish pathogens Aeromonas salmonicida, Edward-
siella tarda, and Photobacterium damselae (Oppegaard and Sørum,
1994; Goñi-Urriza et al., 2002; Kim et al., 2005, 2011; Ozanne et al.,
2005). The extensive administration of quinolones in fish farm-
ing has been linked to increased mutations in DNA gyrase and
topoisomerase IV in quinolone-resistant fish pathogens such as
Yersinia ruckeri, Flavobacterium psychrophilum, and V. anguillarum
(Gibello et al., 2004; Izumi and Aranishi, 2004; Colquhoun et al.,
2007; Izumi et al., 2007; Shah et al., 2012).

Plasmid-mediated quinolone resistance in bacteria associated
with fish farms has been detected in several countries. Ishida
et al. (2010) detected the qnr and aac(6′)-Ib-cr resistance deter-
minants in bacterial strains isolated from fish farm water samples
in Egypt. Recently, Buschmann et al. (2012) reported the occur-
rence of topoisomerase protection genes qnrA, qnrB, and qnrS, the
putative enzymatic inactivation gene aac(69)-Ib-cr and the efflux
pump gene oqxA among strains isolated from un-polluted and
fish farm-impacted marine sediments in Chile. Jiang et al. (2012)
found a high prevalence of qnrB and qnrS genes in Escherichia
coli strains recovered from Chinese farmed fish while qnrD and
aac(6′)-Ib-cr genes occurred less frequently. Han et al. (2012)
found 17 strains encoding chromosomal mutations in gyrA, 11
strains encoding mutations in parC, and a few strains carrying
the qnrS1-like and qnrS2 genes among 33 Aeromonas spp. isolated
from diseased fish and from water samples. The identification of

QnrS determinants in Aeromonas spp. suggests that they may act
as an environmental reservoir of qnrS genes, as already described
for tet genes (Rhodes et al., 2000; Schmidt et al., 2001a). Some
qnr genes have also been described in the Vibrionaceae family
and it is suggested that water-borne Vibrionaceae may constitute a
natural reservoir for Qnr-like quinolone-resistance determinants
(Poirel et al., 2005; Cattoir et al., 2007; Cattoir and Nordmann,
2009). Evidence suggests that qnr-plasmids are most commonly
integron associated and carry multiple resistance determinants,
providing resistance to several classes of antimicrobials, including
beta-lactams and aminoglycosides (Li, 2005).

TETRACYCLINE RESISTANCE
Oxytetracycline is a broad-spectrum bacteriostatic antimicrobial,
active against a wide variety of Gram-positive and Gram-negative
bacteria, which is extensively used in fish farming. Tetracyclines
bind reversibly to the 70S ribosome of prokaryotes and block
protein synthesis (Chopra, 1985; Roberts, 1996).

Mechanisms of tetracycline resistance include active efflux,
ribosomal protection, ribosomal RNA mutations, and tetracy-
cline inactivation (Speer and Salyers, 1989; Salyers et al., 1990;
Burdett, 1991; Levy, 1992; Speer et al., 1992; Taylor and Chau,
1996). Tetracycline resistance in fish farm-associated bacteria has
been found to be mainly mediated by one or more of the Tet fam-
ily of proton-dependent efflux pumps or via ribosomal protection
by cytoplasmic proteins found widely in Gram-negative bacteria
(Roberts, 2005; Roberts et al., 2012).

Several tet determinants have been identified in fish farm bac-
teria from a number of geographical locations and fish species
(DePaola et al., 1988; Adams et al., 1998; Rhodes et al., 2000;
Schmidt et al., 2001a; Furushita et al., 2003; Miranda et al., 2003;
Akinbowale et al., 2007; Seyfried et al., 2010; Gao et al., 2012).
The genes tet(A), tet(B), tet(E), tet(H), tet(L), tet(34), and tet(35)
were found in tetracycline-resistant bacteria isolated from Chilean
salmon farms (Miranda et al., 2003). Recently, Seyfried et al.
(2010) detected the presence of tet(A), tet(B), tet(D), tet(E),
tet(G), tet(M), tet(O), tet(Q), tet(S), and tet(W) genes in med-
icated and non-medicated feed samples and water samples from
non-commercial fish farms in the United States. Similarly, Jun
et al. (2004) found a high prevalence of tet(A) and tet(D) genes
associated with mobile plasmids and tet(B) and tet(G) genes asso-
ciated with non-mobile elements in Edwardsiella tarda strains
isolated from fish farms in Korea. Nonaka et al. (2007) found
a high incidence of tet(M)-carrying Vibrio strains in fish farms
and Agersø et al. (2007) detected tet(E) in Aeromonas strains from
Danish fish farms associated with large plasmids capable of hori-
zontal transfer to Escherichia coli. Nawaz et al. (2009) found a high
prevalence of tet(B) and, to a lesser extent, tet(A), tet(C) and the
co-occurrence of tet(A) and tet(B) in Escherichia coli isolated from
farm-raised catfish. Kim et al. (2004) reported the occurrence of
tet(M) and tet(S) in tetracycline-resistant bacteria from fish farms
in Korea and Nonaka and Suzuki (2002) found the novel OTC-
resistance determinant tet(34) in a Vibrio strain isolated from
cultured yellowtail (Seriola quinqueradiata).

The spread of tet genes is often facilitated by their location
on mobile genetic elements, such as plasmids and transposons
(Roberts, 1994; DePaola and Roberts, 1995; Chopra and Roberts,
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2001). Tn1721 and Tn1721-like elements, for example, are known
to play a significant role in the global dissemination of the tet(A)
gene (Rhodes et al., 2000; Sørum et al., 2003; Chenia and Vietze,
2012). Miranda et al. (2003) found the tet(H) gene as part of
the transposon Tn5706 in Moraxella and Acinetobacter strains
isolated from salmon farms. In addition, they were able to trans-
fer tet(B) and tet(34) genes from strains of Serratia liquefaciens,
Pseudomonas pseudoalcaligenes, and Brevundimonas vesicularis.
Similarly, Furushita et al. (2003) transferred tet(B), tet(D), and
tet(Y) genes from bacterial isolates from different Japanese fish
farms by conjugation and Adams et al. (1998) reported that var-
ious OTC-resistant isolates of Aeromonas salmonicida transferred
R-plasmids carrying the tet(A) gene to environmental and clinical
isolates of Aeromonas spp. Class 1 integrons harboring different
combinations of the resistance gene cassettes ant(3′′)Ia, aac(6′′)Ia,
dhfr1, oxa2a, and/or pse1 and tet genes were also detected in a
large number of plasmid bearing Aeromonas spp. strains isolated
from tilapia, trout, and koi cultures in South Africa (Jacobs and
Chenia, 2007). In Edwardsiella ictaluri strains isolated from dis-
eased freshwater catfish in Vietnam, Dung et al. (2009) found
the tet(A) gene associated with a high-molecular weight plas-
mid belonging to the IncK group. In addition, all strains were
able to transfer their tet(A)-carrying plasmids to Escherichia coli
recipients.

Several studies have also reported the co-occurrence of tetra-
cycline and sulphonamide resistances genes. Agersø and Petersen
(2007) showed that tet(39) and sul2 genes located on plasmids of
different sizes to be common among clonally distinct Acinetobac-
ter spp. from fish farms in Thailand. Su et al. (2011) detected the
genes tet(A), tet(C), and the sulphonamide-resistance gene, sul2,
in more than 50% of the strains of Enterobacteriaceae they isolated
from fish farms in China. Gao et al. (2012) recently reported the
co-occurrence of tetracycline- and sulphonamide-resistance genes
in Bacillus species isolated from aquaculture farms in China.

PHENICOL RESISTANCE
Florfenicol is a synthetic fluorinated analog of chloramphenicol
whose bacteriostatic activity is based on a reversible binding to
the 50S subunit of 70S bacterial ribosomes that prevents peptide
elongation (Schwarz et al., 2004). The replacement of a hydroxyl
group with a fluorine atom protects florfenicol from inactivation
by chloramphenicol acetyltransferases (CATs), a common mecha-
nism of bacterial resistance to chloramphenicol (Shaw and Leslie,
1991; Schwarz et al., 2004). The effectiveness of florfenicol against
a number of relevant fish pathogens makes it a very valuable drug
for the fish farming industry (Fukui et al., 1987; Nordmo et al.,
1994; Samuelsen et al., 1998, 2003; Bruun et al., 2000; Gaunt et al.,
2003; McGinnis et al., 2003; Michel et al., 2003; Samuelsen and
Bergh, 2004).

Mechanisms of resistance to florfenicol include specific and
non-specific drug transporters, RNA methyltransferases, and spe-
cific hydrolases (Paulsen et al., 1996; Schwarz et al., 2004; Poole,
2005; Long et al., 2006; Tao et al., 2012). Genes floR and fexA
belong to the major facilitator superfamily and code for efflux
proteins that export florfenicol out of the cell (Schwarz et al.,
2004). The gene cfr, which has been shown to be an RNA
methyltransferase that belongs to the recently discovered radical

S-adenosylmethionine (SAM) superfamily of proteins (Sofia et al.,
2001), inhibits ribose methylation and thereby causes resi-
stance to florfenicol, chloramphenicol, and clindamycin (Long
et al., 2006).

Most studies of florfenicol resistance in fish farming have
reported the occurrence of the floR gene. Dang et al. (2007)
detected the floR gene in tetracycline-resistant bacteria isolated
from aquaculture sites in China, and Ishida et al. (2010) detected
the floR gene in four strains of Gram-negative bacteria isolated
from fish farms in Africa. In North America, McIntosh et al. (2008)
reported the occurrence of Aeromonas salmonicida strains carry-
ing a conjugative IncA/C plasmid harboring floR, sul2, and tetA
genes that were transferable to Aeromonas hydrophila and Edward-
siella tarda. Welch et al. (2009) detected IncA/C plasmid-mediated
florfenicol resistance in the catfish pathogen Edwardsiella ictaluri,
and Gordon et al. (2008) reported a multiresistant Aeromonas bes-
tiarum strain carrying a plasmid harboring the floR, tetY, sul2, and
strA–strB resistance genes. A relatively recent study showed that
many florfenicol-resistant bacterial strains isolated from Chilean
salmon farms carried the floR gene, whereas others possessed
non-specific efflux pumps that conferred florfenicol resistance
(Fernández-Alarcón et al., 2010). In fish farm impacted marine
sediments, Buschmann et al. (2012) recently reported the occur-
rence of several strains containing plasmid-borne floR, tet, and qnr
genes.

PRIORITIZING RESEARCH AND POLICY NEEDS
The studies discussed in the previous sections support the hypoth-
esis that fish farms represent a reservoir of diverse ARGs, many of
which may be readily mobilized by lateral gene transfer. Given the
extent of global aquaculture and its fast-paced growth, it is imper-
ative that research needs with regards to the use of antimicrobials
and the emergence and potential spread of antimicrobial resis-
tance are prioritized. This research should form the basis of sound,
science-based policies that contribute to the sustainability of the
aquaculture industry and minimize risks to public health. Further
studies are needed to explore the prevalence of antimicrobial resis-
tance in zoonotic fish pathogens such as Aeromonas hydrophila,
Edwardsiella tarda, Mycobacterium fortuitum, Mycobacterium
marinum, Photobacterium damselae, Pseudomonas fluorescens,
and Streptococcus iniae (Austin and Austin, 2012). Moreover,
there are important knowledge gaps regarding the co-occurrence
of antimicrobial-resistant bacteria from aquaculture environ-
ments with human pathogens throughout production cycles and
across a range of aquaculture environments, the transfer rate
of resistance genes between aquaculture and clinically relevant
bacteria under field or semi-field conditions, and the epidemi-
ology of antimicrobial resistance in areas of intense aquaculture
activity.

Good management strategies can make a significant contri-
bution to minimize the use of antimicrobials in fish and the
emergence and spread of antimicrobial resistance in aquaculture
environments. Among these precautionary practices are the use
of “good quality” fish stocks, reducing stocking densities, main-
taining overall good environmental conditions (e.g., dissolved O2

levels), the implementation of proper biosecurity measures, the
development of effective vaccines and vaccination programs, and

www.frontiersin.org August 2013 | Volume 4 | Article 233 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/Antimicrobials,_Resistance_and_Chemotherapy/archive


“fmicb-04-00233” — 2013/8/20 — 21:34 — page 4 — #4

Miranda et al. Antimicrobial resistance mechanisms in finfish aquaculture

the rotation of antimicrobial compounds in the treatment of fish
disease. Although the use of antimicrobials in human medicine
places constraints on the type of antimicrobials that may be used
in veterinary medicine, the rotation of antimicrobials in aqua-
culture may play an important role in reducing the chances of

selection, co-selection, and dissemination of antimicrobial resis-
tance. In this context, it is also important that efforts are directed
toward creating incentives for the development and registration of
antimicrobials for aquaculture use in addition to implementation
of antimicrobial stewardship practices.
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