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ARTICLE INFO ABSTRACT

Keywords: Introduction: Longitudinal magnetic resonance imaging (MRI) has an important role in multiple sclerosis (MS)
Brain diagnosis and follow-up. Specifically, the presence of new T2-w lesions on brain MR scans is considered a
MRI predictive biomarker for the disease. In this study, we propose a fully convolutional neural network (FCNN) to
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Automatic new lesion detection
Deep learning

Fully convolutional neural network
Learning-based registration

detect new T2-w lesions in longitudinal brain MR images.

Methods: One year apart, multichannel brain MR scans (T1-w, T2-w, PD-w, and FLAIR) were obtained for 60
patients, 36 of them with new T2-w lesions. Modalities from both temporal points were preprocessed and lin-
early coregistered. Afterwards, an FCNN, whose inputs were from the baseline and follow-up images, was trained
to detect new MS lesions. The first part of the network consisted of U-Net blocks that learned the deformation
fields (DFs) and nonlinearly registered the baseline image to the follow-up image for each input modality. The
learned DFs together with the baseline and follow-up images were then fed to the second part, another U-Net
that performed the final detection and segmentation of new T2-w lesions. The model was trained end-to-end,
simultaneously learning both the DFs and the new T2-w lesions, using a combined loss function. We evaluated
the performance of the model following a leave-one-out cross-validation scheme.

Results: In terms of the detection of new lesions, we obtained a mean Dice similarity coefficient of 0.83 with
a true positive rate of 83.09% and a false positive detection rate of 9.36%. In terms of segmentation, we obtained
a mean Dice similarity coefficient of 0.55. The performance of our model was significantly better compared to
the state-of-the-art methods (p < 0.05).

Conclusions: Our proposal shows the benefits of combining a learning-based registration network with a
segmentation network. Compared to other methods, the proposed model decreases the number of false positives.
During testing, the proposed model operates faster than the other two state-of-the-art methods based on the DF
obtained by Demons.

1. Introduction

Multiple sclerosis (MS) is an inflammatory disease of the central
nervous system, which is characterized by the presence of lesions in the
brain and the spinal cord. Magnetic resonance imaging (MRI) has be-
come a core paraclinical tool for diagnosing and predicting long-term
disability and treatment response in MS patients. Follow-up brain MRI
is required in patients who have not been diagnosed yet as MS patients
but who show clinical and radiological findings suggestive of MS
(Rovira et al., 2015). 3-6 months was suggested to be the optimal in-
terval between the baseline and the follow-up scans. A third scan can be

acquired 6-12 months later if no new lesions are seen in the first follow-
up scan (Pestalozza et al., 2005; Rovira et al., 2015). Several criteria
and strategies have been proposed for prompt identification of sub-
optimal responses in individual patients, based on a combination of
clinical and MRI measures assessed during the first 6 to 12 months after
initiating treatment (Freedman et al., 2013; Prosperini et al., 2014; Rio
et al.,, 2009; Sormani et al., 2013; Sormani and de Stefano, 2013;
Stangel et al., 2015). These criteria are related to the detection of dis-
ease activity on follow-up brain MRI studies compared to baseline
scans, defined as either gadolinium-enhancing lesions or new/enlarging
T2-w lesions. However, the detection of active T2-w lesions in MS
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patients can be hindered by several factors, such as a high burden of
inactive T2 lesions, the presence of small and confluent lesions, in-
adequate repositioning, and high interobserver variability (Altay et al.,
2013). Automatic methods can overcome these issues and provide a
robust estimation (Lladé et al., 2012).

Based on a review proposed by Lladé et al. (2012), methods can be
classified into either lesion-detection approaches or change-detection
approaches. In the lesion-detection approaches, both static and dy-
namic MS lesions on a single-time MR volume of a patient are detected.
These segmentation-based methods, which can be supervised or un-
supervised, rely on the intensity homogeneities of the tissues and ty-
pically apply data mining techniques (clustering or classification) to
distinguish lesions from normal tissues. In longitudinal analysis, a le-
sion quantification approach is subsequently needed to compute the
volumetric changes of each segmented lesion between two time points
for the MS lesion evolution (Kohler et al., 2019). In change-detection
approaches, the differences between successive MRI controls at both 2D
and 3D image levels are analyzed instead of at a single time point. An
MS lesion is generally seen as the combination of two different effects,
tissue transformation and tissue deformation (Thirion and
Calmon, 1999). Tissue transformation refers to the intensity change in
the tissue of the lesion, while tissue deformation refers to the mod-
ification of its surrounding tissue, due to lesion expansion or contrac-
tion. These change-detection methods can be subclassified into either
intensity-based approaches or deformation-based approaches.

In the intensity-based approaches, voxelwise comparisons are per-
formed between successive scans to segment new lesions (Elliott et al.,
2013; Ganiler et al., 2014; Moraal et al., 2009; 2010; Schmidt et al.,
2019; Sweeney et al., 2013). In the deformation-based approaches, the
new T2-w lesion detection is performed by analyzing the deformation
fields (DFs) obtained by nonrigid registration between successive
scans (Cabezas et al., 2016; Rey et al., 2002; Thirion and Calmon,
1999). Nonrigid registration and the use of DFs between time points
have been shown to improve the detection of new T2-w MS lesions in
longitudinal studies (Cabezas et al., 2016; Salem et al., 2018). These
DFs can either be obtained using classic nonrigid registration ap-
proaches based on optimization or, recently, using learning-based ap-
proaches. In real cases, both tissue transformation (changes in in-
tensity) and tissue deformation generally occur. Hence, the mass effect
of the lesion should also be taken into account in order to define a
precise lesion evolution. Deformation based approaches are sensitive to
these changes in the brain. However, they do not provide information
about stable lesions.

New lesion detection approaches have also been proposed, com-
bining information from different sources. For instance,
Fartaria et al. (2019) proposed a strategy for longitudinal analysis of MS
lesions based on a combination of segmentation-based and intensity-
based approaches to assess the performance of the partial-volume-
aware lesion segmentation tool, and to propose a method for the gen-
eration of a lesion progression map between two time points. Moreover,
several methods have been proposed as combinations of intensity-based
and deformation-based approaches. Cabezas et al. (2016) improved the
subtraction pipeline proposed by Ganiler et al. (2014) by combining
subtraction and DF operators to decrease the number of false positive
lesions detected by the subtraction pipeline. Salem et al. (2018) merged
intensity- and deformation-based approaches in an automated multi-
channel supervised logistic regression classification. Their model used
features taken not only from the baseline, follow-up, and subtraction
images but also from the DF operators obtained from the non-rigid
registration between time-points scans.

Classic registration approaches establish a dense nonlinear corre-
spondence between a pair of 3D brain scans. For these approaches,
registration is defined as an optimization problem that needs to be
solved for each volume pair using a similarity metric while enforcing
smoothness constraints on the mapping. Solving this optimization is
computationally intensive and therefore, extremely slow in practice
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(Ashburner, 2007; Avants et al., 2008; Bajcsy and Kovai, 1989; Beg
et al., 2005; Dalca et al., 2016; Glocker et al., 2008; Thirion, 1998).
However, different graphics processing unit (GPU)-based accelerated
approaches have been proposed to improve the efficiency and speed up
the optimization (Han et al., 2009; Punithakumar et al., 2017; Wu et al.,
2019).

Common learning-based approaches rely on classification algo-
rithms to register the two scans. These algorithms involve a first stage in
which a model is estimated on training data composed of a set of fea-
tures and their corresponding ground truth (GT) and a second stage in
which the model is tested on a new dataset to provide the desired re-
sults. Classic machine-learning methods require hand-crafting feature
vectors to extract appearance information (Geremia et al., 2011). In
contrast, convolutional neural networks (CNNs) can learn a set of fea-
tures that are specifically optimized for the current task directly from
the image data. Currently, CNNs have demonstrated superior perfor-
mance in brain imaging specifically for segmenting tissues (Moeskops
et al., 2016; Zhang et al., 2015), brain tumors (Havaei et al., 2017;
Kamnitsas et al., 2017; Pereira et al., 2016) and white matter
lesions (Brosch et al., 2016; Valverde et al., 2017). In the case of re-
gistration approaches, learning-based approaches learn a parametrized
registration function from a collection of images during training.
During testing, a registration field can be quickly computed by directly
evaluating the function using the learned parameters. Some proposed
methods (Sokooti et al., 2017; Yang et al., 2017) rely on a precomputed
DF as the GT, and the others rely only on the images being registered or
segmentation masks, without comparing the expected DF with a pre-
computed DF (Li and Fan, 2018; de Vos et al, 2017).
Specifically, Balakrishnan et al. (2019) developed a new CNN approach
that computes the deformation between two images by training the
network using a similarity metric and a regularization term similar to
classic registration methods, obtaining comparable results with current
state-of-the-art approaches.

In this study, we propose a fully convolutional neural network
(FCNN) approach to detect new T2-w lesions in longitudinal brain MR
images. The proposed model combines intensity-based and deforma-
tion-based features within an end-to-end deep learning approach. To
the best of our knowledge, this is the first longitudinal approach based
on CNN that deals with lesion changes in brain MRI. Other longitudinal
approaches based on CNNs have been presented before (Birenbaum and
Greenspan, 2016), but those methods independently provide a cross-
sectional segmentation of lesions at each time point using longitudinal
information. Our proposed model is trained end-to-end. The DFs and
the new T2-w lesions are learned simultaneously using a combined loss
function. We evaluated the performance of the method using a leave-
one-out cross-validation scheme on 36 patients with a clinically isolated
syndrome (CIS) or early relapsing MS presenting new T2-w lesions on
the follow-up scan and also on 24 patients with no new lesions.

2. Methods
2.1. Network architecture

Fig. 1 shows the new T2-w MS lesion segmentation architecture.
The proposed network is an FCNN that takes four image modalities (T1-
w, T2-w, PD-w, and FLAIR) in both baseline and follow-up as inputs and
outputs the new T2-w lesion segmentation mask. The network consists
of two parts. The first part is U-Net blocks that learn the DFs and
nonlinearly register the baseline image to the follow-up image for each
input modality. The learned DFs and the baseline and follow-up image
modalities are then fed to the second part of the network, another U-Net
that performs the final detection and segments the new T2-w lesions.
The network is trained end-to-end with gradient descent and simulta-
neously learns both DF and new T2-w lesion segments.

3D registration architecture: A 3D registration block is built for
each input modality following the architecture shown in Fig. 2(a). This
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Fig. 1. Scheme of the new T2-w MS lesion segmentation network. The proposed network consists of four 3D registration blocks and one 3D segmentation block. The
inputs are baseline/follow-up images of the T1-w, T2-w, PD-w, and FLAIR. For each input modality, there is a 3D registration block that learns the deformation field
(DF) and nonlinearly registers the baseline image to the follow-up image. Afterwards, the learned DFs and the baseline and follow-up images are fed to the
segmentation block, which performs the final detection and segmentation of the new T2-w lesions. The network is trained end-to-end using a combined loss function.

block is inspired by the work of Balakrishnan et al. (2019) (Vox-
elMorph), which is a learning framework for deformable medical image
registration. The registration block learns the DF and nonlinearly reg-
isters the baseline image to the follow-up image. It is a fully convolu-
tional network that follows a U-shaped architecture (Ronneberger et al.,
2015). The U-Net architecture consists of four downsample (the con-
tracting path) and upsample steps (the expansive path). The core ele-
ment (CE) block is a two-3D convolution layer (kernel size = 3 and
stride = 1) with K channels. Each convolution is followed by a Lea-
kyReLU layer. The number of channels, K, of CE blocks are (64, 128,
256, and 512) and (512, 256, 128, and 64) for the contracting path and
expansive path, respectively. The U-Net’s downsampling followed by
the upsampling and skip connections allow the network to exploit in-
formation at large spatial scales while retaining useful local informa-
tion. Moreover, as discussed in Drozdzal et al. (2016), skip connections
facilitate gradient flow during training. The spatial transformation
(Balakrishnan et al., 2019; Jaderberg et al., 2015) warps the baseline

image to the follow-up space using the learned DF and enabling end-to-
end training. The LeakyReLU activations are used instead of ReLU so
that the learned DFs can have both positive and negative values.

3D segmentation architecture: A 3D segmentation block is used
for segmenting the new T2-w lesions. It is a two-branch network where
each branch is a U-Net following the architecture shown in Fig. 2(b).
The U-Net architecture is exactly the same as the U-Net used in the
registration block, but using a ReLU activation layer instead of the
LeakyReLU layer. The inputs of the first branch are the four image
modalities (T1-w, T2-w, PD-w, and FLAIR) in both baseline and follow-
up, while the second branch input is the four DFs learned from the first
registration blocks. The outputs of the two branches are concatenated
before the classification step. One UNetCore processes the DFs (de-
formation-based) and another UnetCore processes the baseline/follow-
up modalities (intensity-based). Note that the model is merging the
intensity with the DFs to segment the new lesions.
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Fig. 2. The 3D registration and segmentation architectures. Each input modality has its 3D registration block (a) that learns the deformation field (DF) and non-
linearly registers the baseline image to the follow-up image. The registration block is a U-Net architecture with four downsample and upsample steps. The spatial
transform block is used to warp the baseline image to the follow-up space using the learned DF enabling end-to-end training. The four learned DFs and the baseline
and follow-up images are then fed to the segmentation block (b), another U-Net that performs the final detection and segmentation of the new T2-w lesions.

2.2. Loss functions

The loss function used in this work is the summation of two loss
functions. One function is an unsupervised loss function that controls

the registration part of the network (Balakrishnan et al., 2019). It
consists of two components: A similarity part that penalizes differences
in appearance between the moved baseline and follow-up images, and a
regularization part that enforces a spatially smooth deformation and is
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often modeled as a linear operator on the spatial gradients of DF as
stated in (Balakrishnan et al., 2019). Therefore, the registration block is
trained in an unsupervised manner using the spatial transform block
which is used to warp the baseline image to the follow-up space using
the learned DF. The block learns the DF by minimizing the mean square
error (MSE) between the warped baseline and the follow-up images
during training. The other function is a supervised loss function
Lcrossenropy (Cross-Entropy) that controls the segmentation part of the

1 N
LTotal = LCrossEmrapy(Seg, GT) + Z ~r Z (Fmi - Bm (DFm)i)2
- - - 0

'meModalities N i=1

S loss

Similarity part
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was identified and delineated on the PD-w image using the ROBEX
Tool? (Iglesias et al., 2011). Second, the four images underwent a bias
field correction step using the N4 algorithm from the ITK library® with
the standard parameters for a maximum of 400 iterations
(Tustison et al., 2010). The T1-w and FLAIR images were linearly re-
gistered to the PD-w using Nifty Reg tools® (Modat et al., 2014; 2010).
Finally, the baseline and the follow-up intensity values were normalized
per modality and per patient (i.e., between the baseline and the follow-

Regularization part

+ 22 o IVDE@)IP

Registration loss function (1)

network and penalizes differences between the segmentation and GT.
The loss function L, is as follows:

where F,, B,(DF,), and DF,, are follow-up image, baseline image
warped by DF (moved baseline), and DF for a modality m, respectively.
Seg and GT are the automatic segmentation and the ground truth, re-
spectively. N is the number of voxels in a patch and A is a regularization
parameter.

3. Experimental setup
3.1. Datasets

VH dataset: The database used in this paper consists of images from
60 different patients with a clinically isolated syndrome (CIS) or early
relapsing MS who underwent brain MRI in the Vall d’Hebron Hospital’s
center for monitoring disease evolution and treatment response. Each
patient underwent brain MRI within the first 3 months after the onset of
symptoms (baseline) and at 12 months’ follow-up after the onset.
Thirty-six of the patients (13 women and 23 men; 35.4 = 7.1 years of
age) confirmed MS with new T2-w lesions, while 24 patients did not
present new T2-w lesions. The baseline and follow-up scans for all
patients were obtained in the same 3T magnet (Tim Trio; Siemens,
Erlangen, Germany) with a 12-channel phased array head coil. The MRI
protocol included the following sequences: 1) transverse proton density
(PD)- and T2-weighted fast spin-echo (TR = 3080 ms, TE = 21 — 91 ms,
voxel size = 0.78 x 0.78 x 3.0 mm?), 2) transverse fast FLAIR (TR =
9000 ms, TE =87 ms, TI = 2500 ms, flip angle = 120°, voxel size
= 0.49 X 0.49 x 3.0 mm?), and 3) sagittal T1- weighted 3D magnetiza-
tion-prepared rapid acquisition of gradient echo (TR = 2300 ms, TE
=298 ms, TI = 900 ms, voxel size = 1.0 x 1.0 x 1.2 mm®). The Vall
d’Hebron Hospital’s ethics committee approved the study, and written
informed consent was signed by the participating patients.

Only new T2-w lesions that were visually detected on the follow-up
scan were annotated on the PD-w images and semiautomatically deli-
neated using Jim 5.0 software." First, an expert neuroradiologist de-
tected changes visually by using baseline and follow-up scans, and then
a trained technician delineated them semiautomatically by using the
subtraction image. The raters always annotated the complete new le-
sion or only the new part of the lesion in the case of large lesion growth.
The dataset used in our study contained only two growing lesions, and
the remainder were new lesions. Finally, the expert neuroradiologist
confirmed the final segmentation. This analysis was used as the re-
ference standard for comparison. The 36 patients with new T2-w lesions
exhibited a total of 191 lesions. The lesions were distributed as 15.15%
small (3-10 voxels), 53.53% medium (11-50 voxels), and 31.31% large
(50+ voxels).

Preprocessing: For each patient, the same preprocessing steps were
performed on both baseline and follow-up images. First, a brain mask

L http://www.xinapse.com/home.php.

up scans, and not across the entire dataset) using a histogram matching
approach based on Nyl et al. (2000).” To warp the baseline images to
the follow-up space, the baseline PD-w image was linearly registered to
the follow-up PD-w image using Nifty Reg tools. To avoid interpolation
more than once, baseline T1-w and FLAIR images were warped using
the combined affine transformation.

3.2. Training and implementation details

For training the network, 3D 32x32x32 patches with a step size of
16x16x16 were extracted from the baseline and follow-up images of the
four input modalities. Zero padding was applied to all the input vo-
lumes. This configuration was chosen empirically to give the highest
performance of the proposed model. Using smaller and larger patch
sizes, did not significantly improve performance. Moreover, increasing
the patch size was more computationally- and memory-expensive. Note
also that we aimed to learn the registration part from all image loca-
tions and not only for those containing new lesions. Therefore, the
whole model was trained end-to-end, including the registration and the
segmentation part, using a uniform sampling of patches to cover all the
image. The extracted patches were divided into training and validation
sets (70% for training and 30% for validation). The training set was
used to adjust the weights of the neural network, while the validation
set was used to measure how well the trained model performed after
each epoch. The model was trained using Adam (Kingma and Ba, 2014)
with default parameters and regularization parameter A = 0.01
(Balakrishnan et al., 2019). The extracted patches were passed to the
network for training in minibatches of size 4, and the network was set
to train for 30 epochs. To prevent overfitting, the training process was
automatically terminated when the validation accuracy did not increase
after 5 epochs.

The proposed method was implemented in Python,® using Keras’
with the TensorFlow® backend (Abadi et al., 2015). All experiments
were run on a GNU/Linux machine running Ubuntu 18.04 with 128 GB
RAM. The training was carried out on a single TITAN-X GPU (NVIDIA
Corp, United States) with 12 GB RAM memory. To promote the re-
producibility and usability of our research, the proposed pipeline will
be available for downloading at our research website.’

2 https://www.nitrc.org/projects/robex.

3 https://itk.org/Doxygen/html/classitk_1_
1N4BiasFieldCorrectionImageFilter.html.

4 https://sourceforge.net/projects/niftyreg/.

S https://itk.org/Doxygen/html/classitk_1_1HistogramMatchingImageFilter.
html.

6 8https://www.python.org.

7 https://keras.io.

8 https://www.tensorflow.org/.

% http://atc.udg.edu/nic/.
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3.3. Evaluation

We evaluated the proposed framework in different scenarios. First,
we analyzed the accuracy of the detection using a leave-one-out cross-
validation strategy with the 36 patients with new MS lesions. We chose
the leave-one-out cross-validation strategy to be able to perform a
quantitative comparison with the results published in (Salem et al.,
2018). In this evaluation strategy, the proposed network was trained
using 35 patients and tested with the remaining patient. This process
was repeated until all patient images were used as test images. More-
over, to demonstrate the contribution of simultaneously learning both
the DF and the segmentation of new T2-w lesions, the following models
were analyzed:

e SimLearnedDFs: This is our main model in which the four regis-
tration blocks and the segmentation block were trained simulta-
neously end-to-end using the loss function explained in Section 2.2.
The four image modalities (T1-w, T2-w, PD-w, and FLAIR) in both
baseline and follow-up combined with the learned DFs were fed to
the segmentation block as first and second inputs, respectively.
SepLearnedDFs: In this model, the registration blocks and the
segmentation blocks were trained separately. The four registration
blocks were trained first to obtain the DFs. Then, the four image
modalities (T1-w, T2-w, PD-w, and FLAIR) in both baseline and
follow-up combined with the learned DFs were fed to the segmen-
tation block as first and second inputs, respectively. This model was
used for comparison with the SimLearnedDFs model to highlight
the impact of the end-to-end simultaneous training of the DFs and
new T2-w lesions.

e DemonsDFs (The proposed network using the DFs obtained from
Demons (Thirion, 1998)): This model did not use the registration
blocks of the proposed network shown in Fig. 1. It used only the
segmentation block with four image modalities (T1-w, T2-w, PD-w,
and FLAIR) in both baseline and follow-up as the first input. The
second input of the segmentation block was the DFs directly com-
puted by the registering baseline image to the follow-up image for
every input modality using a multiresolution Demons registration
approach from ITK (Thirion, 1998). This model was used for com-
parison with the SimLearnedDFs model to highlight the impact of
learned-based DFs with end-to-end training over the DFs from De-
mons.

NDFs (The proposed network without DFs): This model did not use
the registration blocks of the proposed network shown in Fig. 1. It
used only the segmentation block with only the four image mod-
alities (T1-w, T2-w, PD-w, and FLAIR) in both the baseline and
follow-up as input. This model was used for comparison with the
other three models to highlight the impact of the addition of the DFs
in increasing the detection of new T2-w lesions.

Second, we analyzed the specificity of the method with 24 patients
with no new T2-w lesions. Testing the performance on these cases al-
lowed us to further study how robust was the proposed method to avoid
detecting false positives in patients with inactive disease. To do this, we
performed a new training using all the 36 images with new MS lesions.
In addition, we compared the obtained results with those of recent
state-of-the-art approaches (Cabezas et al., 2016; Salem et al., 2018;
Schmidt et al., 2019; Sweeney et al., 2013) applied to the same dataset
used in this work. For the work of Schmidt et al. (2019), we used their
implementation of the longitudinal pipeline available at https://www.
statistical-modeling.de/Ist html. The lesion growth algorithm
(Schmidt et al., 2012) was used to obtain the initial cross-sectional WM
lesion segmentation per time point. The parameter x was empirically
optimized for the current dataset, selecting the value x = 0.15. Ad-
ditionally, the Pearson correlation coefficient was used to analyze the
linear relationship between manual annotations and the automatic
detections obtained with the proposed model (SimLearnedDFs) in terms
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of number of new lesions and new lesion volume.

We also studied the performance of the proposed model
(SimLearnedDFs), the three variants (SepLearnedDFs, DemonsDFs,
NDFs), and the state-of-the-art approaches (Cabezas et al., 2016; Salem
et al.,, 2018; Schmidt et al., 2019; Sweeney et al., 2013) on different
brain regions. To the best of our knowledge, there is no current study
that states that the location of the lesion is important for the long-
itudinal assessment of MS, although the lesion location (periventricular,
juxtacortical, infratentorial, and deep white matter) is used to prove
dissemination in space according to the McDonald criteria
(McDonald et al., 2001). The motivation for performing this study was
mainly to analyze the behavior performance of all the approaches on
these specific regions. In particular, the analysis of the new MS lesion
detection was divided into 4 types (periventricular, juxtacortical, in-
fratentorial, and deep white matter) according to its location in the
brain. An atlas with three segmented regions (cortex, ventricles, and
(cerebellum and brainstem)) was resampled for each patient space after
nonlinearly registering the atlas template to the T1-w image of each
patient. After the registration, a new MS lesion was considered peri-
ventricular, juxtacortical, or infratentorial if it touched the cortex,
ventricles, or (cerebellum and brainstem), respectively. Otherwise, it
was considered a deep white matter lesion.

Standard measures such as the true positive fraction (TPF), the false
positive fraction (FPF), and the Dice similarity coefficient (DSC), which
was computed lesion-wise and voxel-wise, were used for the quantita-
tive analysis and were computed as follows:

TPF:L
TP + FN

FPF:L
FP + TP

DSC 2% TP

2X TP + FP + FN

where TP, FN, and FP are the number of true positives, false ne-
gatives, and false positives, respectively. In terms of detection, a lesion
was considered as a TP if there was at least one voxel overlapping
(Cabezas et al., 2016; Ganiler et al., 2014; Salem et al., 2018). In terms
of segmentation, only the voxel-wise DSC was computed.

For all the evaluated pipelines, the automatic segmentation masks
were obtained by thresholding the probability maps at 0.5 (using
argmax). This thresholding value was not optimized. Since the outputs
of the network were two probability maps (for the lesions and back-
ground), we used the argmax function which chooses the class with the
highest probability. Since we are dealing with a binary problem, the
highest probability is always 0.5 or greater. Therefore, using argmax is
equivalent to using a threshold of 0.5. All automatic lesions with a size
lower than three voxels were removed as done in previous works
((Battaglini et al., 2014; Roura et al., 2015; Salem et al., 2018)). A
paired t-test at the 5% level was used to evaluate the significance of the
obtained results.

4. Results

Table 1 summarizes the new T2-w lesion detection and segmenta-
tion mean results for our proposed model (SimLearnedDFs) and the
three variants (SepLearnedDFs, DemonsDFs, NDFs). We also included
four state-of-the-art approaches for comparison (Cabezas et al., 2016;
Salem et al., 2018; Schmidt et al., 2019; Sweeney et al., 2013) when
analyzing the 36 MS patients. We note that our SimLearnedDFs model
outperformed the three variants (SepLearnedDFs, DemonsDFs, NDFs)
models and had the best values for all the evaluation measures. Ad-
ditionally, it outperformed all the state-of-the-art approaches in terms
of all evaluation measures. Regarding the mean runtime per patient, the
SimLearnedDFs model could process a test case in less than 9 minutes


https://www.statistical-modeling.de/lst.html
https://www.statistical-modeling.de/lst.html

M. Salem, et al.

Table 1
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Lesion Detection Results: Comparison between the different models evaluated. The results represent the mean detection TPF, FPF, DSCd, mean segmentation DSCs,
and the mean runtime in minutes when analyzing the 36 MS patients using a leave-one-out cross-validation scheme. The automatic segmentation masks were
obtained by thresholding the probability maps at 0.5 (using argmax), and all automatic lesions with a size lower than three voxels were removed.

Method TPF FPF DScd DSCs Runtime (in minutes)
SimLearnedDFs 83.09 = 21.06 9.36 * 16.97 083 = 0.16 0.55 *= 0.18 8.70 =+ 0.09
SepLearnedDFs 57.77 + 34.34 13.67 + 21.99 0.60 =+ 0.31 0.39 =+ 0.22 9.08 =+ 0.06
DemonsDFs 62.06 * 32.74 11.98 + 23.09 0.67 *= 0.29 042 =+ 0.24 18.10 * 0.05
NDFs 53.99 = 38.01 17.20 *= 26.96 055 *= 0.35 0.37 =+ 0.28 7.58 =+ 0.09
Sweeney et al. (2013) 59.82 + 37.59 33.59 + 33.52 0.57 + 0.33 0.44 =+ 0.26 8.36 =+ 0.01
Cabezas et al. (2016) 7093 =+ 34.48 17.80 + 27.96 0.68 =+ 0.33 0.52 * 0.24 1836 * 0.02
Salem et al. (2018) 80.0 + 27.77 21.87 * 26.26 0.76 * 0.25 0.55 * 0.22 18.55 =+ 0.02
Schmidt et al. (2019) 68.66 *+ 35.26 31.89 = 36.10 0.62 *= 0.34 0.40 =+ 0.25 7.58 =+ 0.03

(b) Followup T2-w (c)

(a) Baseline T2-w

) SimLearnedDFs ) NDFs

) DemonsDFs g) SepLearnedDFs

Fig. 3. Example of new MS lesion detection in a 12-month longitudinal analysis. (a) and (b) show one axial slice of the T2-w image at baseline and follow-up,
respectively. (c) shows the new MS lesion annotations performed by an expert (GT). (d), (e), (f), and (g) show the segmentation of SimLearnedDFs, NDFs, DemonsDFs,
and SepLearnedDFs approaches, respectively. The GT and the segmentations are overlaid in green and red, respectively, on the follow-up T2-w image. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

while the other state-of-the-art methods (Cabezas et al., 2016; Salem
et al., 2018), that are based on DFs obtained using classic nonrigid
registration approaches, took on average 18.36 and 18.55 minutes,
respectively.

Fig. 3 shows a visual example of the performance of our SimLear-
nedDFs model, where each column corresponds to the baseline T2-w
image, follow-up T2-w image, GT annotated lesions, and the segmen-
tation of SimLearnedDFs, NDFs, DemonsDFs, and SepLearnedDFs ap-
proaches. Fig. 4 shows the relationship between baseline, follow-up, the
learned DF, GT, and the segmentation of the SimLearnedDFs model in
the four input modalities.

Regarding false negatives, the SimLearnedDFs model missed about
17% of the total number of lesions being distributed as 48% small le-
sions, 38% medium lesions, and 14% large lesions. Fig. 5 shows two
examples of false positive detections using the SimLearnedDFs model.
Some of the false positives were due to inflammation areas that were
not marked as new lesions by the experts and the remainder were
mainly due to image artifacts.

Analyzing the results per patient, Fig. 6 shows a box plot summar-
izing the performance of the SimLearnedDFs, the three variants (Se-
pLearnedDFs, DemonsDFs, NDFs), and the state-of-the-art methods on
the four metrics used in the evaluation. When this analysis was carried
out on a per-patient basis, we observed that the proposed model
(SimLearnedDFs) also provided better sensitivity for the cases that
present few new lesions (i.e. 1, 2 or 3). For instance, for the 8 cases
containing only one new lesion, our approach achieved a (TPF, FPF) =
(100%, 0%), while the models used by Sweeney et al. (2013),
Cabezas et al. (2016), Salem et al. (2018), and Schmidt et al. (2019)
only achieved (71.43%, 25%), (85.71%, 0%), (85.71%,14.29%), and

(71.43%, 38.33%), respectively.

Fig. 7(a) shows the correlation between the number of new lesions
manually annotated and those automatically detected (Pearson corre-
lation coefficient: R = 0.97; p,,,, = 2.7445¢?!; confidence band =
95%). Fig. 7(b) shows the correlation between lesion volume in the GT
and the automatically segmented (Pearson correlation coefficient:
R = 0.98; p,gue = 5.0233¢7%*; confidence band = 95%). Regarding the
number of the data points used, all the MS patients with lesion pro-
gression were used for this correlation (36 data points - 36 patients).
However, several patients had the same number of GT and auto-
matically-detected lesions and therefore some points are overlapping in
the plot.

Fig. 8 shows the performance of the new T2-w lesion detection
method when analyzed according to its location in the brain. Note that
here the TPF and FPF were computed per-lesion type and not per-pa-
tient. The dataset had a total of 191 lesions (periventricular = 25,
juxtacortical = 34, infratentorial = 12, and deep white matter = 120).
In addition, we evaluated the behavior of the SimLearnedDFs model
trained with all 36 patients when tested with the set of 24 patients with
no new T2-w lesions. The results showed only 2 cases with one FP
detection in each, and these results were better than those obtained
with the other approaches.

To analyze the generalization and the performance of the proposed
approach when tested on images from a different scanner and image-
acquisition protocol, we performed a new experiment with data from
another collaborating Hospital (Dr. Josep Trueta Hospital, so we refer
to this dataset as the Trueta dataset). This dataset consisted of 17 MS
patients, 9 of them with new T2-w lesions and 8 with no new T2-w
lesions. The baseline and follow-up scans for all patients were obtained
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Baseline Followup DF GT SimLearnedDFs

T1l-w

T2-w

PD-w

FLAIR

Fig. 4. Relationship between baseline, follow-up, the learned DFs, GT, and the segmentation of SimLearnedDFs in the four input modalities. All images are from the
same patient and the same slice. The DFs are displayed in RGB (third column) and their magnitudes (fourth column) using a hot color map. The GT and the
segmentation of SimLearnedDFs are overlaid in green and red, respectively, on the follow-up image. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

T2-w PD-w FLAIR

Baseline Followup Baseline Followup Baseline Followup

Fig. 5. False positive detection example. Some false positives (the first row) were due to inflammation areas that were not marked as new lesions by the experts and
the others were mainly due to artifacts.
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Fig. 6. Box plot summarizing the performance of the SimLearnedDFs, the three variants (SepLearnedDFs, DemonsDFs, NDFs), and the state-of-the-art methods on the

four metrics used in the evaluation.

in a 1.5T magnet Philips scanner. The MRI protocol included the fol-
lowing sequences: 1) transverse proton density (PD)- and T2-weighted
fast spin-echo (voxel size = 1.0 X 1.0 x 3.0 mm?), 2) transverse fast
FLAIR (voxel size = 1.0 x 1.0 x 3.0 mm®), and 3) sagittal T1-
weighted 3D magnetization-prepared rapid acquisition of gradient echo
(voxel size = 1.0 x 1.0 x 1.0 mm®). The dataset was preprocessed in
the same way as the VH dataset mentioned in Section 3.1. The ex-
periment consisted in applying the SimLearnedDFs model and the ap-
proach of Salem et al. (2018) trained with the 36 cases from the VH
dataset and then testing them on the unseen Trueta dataset. The results
obtained for the 9 cases with new lesions showed that the

Correlation between the number of lesions for the ground truth (GT) and our proposal

(R=0.97028, p-value = 2.7445¢-21)
100 T T

* Number of lesions
[—Fitted curve
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SimLearnedDFs obtained a TPF of 72.1% and a FPF of 34.97%, while
Salem et al. (2018) obtained a TPF of 54.81% and a FPF of 62.34%,
respectively. Regarding the cases with no new lesions, the SimLear-
nedDFs model did not find any FP, while Salem et al. (2018) obtained at
least 1 FP in each case of the 8 cases.

5. Discussion and future work

The proposed method is a fully convolutional neural network for
detecting new T2-w lesions in longitudinal brain MR images. The model
is trained end-to-end and simultaneously learns both the DFs and the

Correlation between the volume (number of voxels) for the ground truth (GT) and our proposal
(R=0.98005, p-value = 5.0233e-24)
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Fig. 7. Correlation between (a) the number of GT lesions and the number of automatically detected ones using the proposed SimLearnedDFs model (Pearson
correlation coefficient: R = 0.97; p,,,. = 2.7445¢72!) and (b) the volume (the number of voxels) of GT lesions and the volume of automatically detected ones using the
proposed SimLearnedDFs model (Pearson correlation coefficient: R = 0.98; p, . = 5.0233¢72#). All the MS patients with lesion progression were used for this cor-
relation (36 data points - 36 patients). Notice that different patients have the same combination of number of GT lesions and the SimLearnedDFs model detections.

This means that several points are overlapping in the plot.
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Fig. 8. Results of the new T2-w lesion detection for the 4 brain regions. The dataset had a total of 191 lesions (periventricular = 25, juxtacortical = 34, infratentorial
= 12, and deep white matter = 120). TPF and FPF were computed per lesion type and not per patient.

new T2-w lesions. As the DFs are learned inside the network and not
computed separately using classic nonrigid registration methods, the
execution time of the network on a testing image is reduced compared
to the time required by the state-of-the-art methods (Cabezas et al.,
2016; Salem et al., 2018). Moreover, the proposed model is fully au-
tomated, simple, and does not require hand-crafting feature vectors to
extract appearance information similar to (Salem et al., 2018) because
the convolutional neural networks (CNNs) learn a set of features that
are specifically optimized for the task, directly from the image data. The
inputs to our model are only the four image modalities (T1-w, T2-w,
PD-w, and FLAIR) in both baseline and follow-up.

To analyze the effect of the end-to-end training, we trained the
proposed model (SimLearnedDFs) and the other three variants
(SepLearnedDFs, DemonsDFs, and NDFs). In terms of TPF, the
SimLearnedDFs model was significantly better than all the other
methods except Salem et al. (2018) method (p < 0.05). The TPF did
improve by 3%. In terms of FPF, the SimLearnedDFs model was not
significantly better than the SepLearnedDFs (4.31% improvement) and
the DemonsDFs (2.62% improvement), but it was significantly better
than the other methods (p < 0.05). Note that the model trained without
any DFs (NDFs) detected new lesions with a TPF of 53.99% and an FPF
of 17.20%. This result shows, as previously discussed in
Cabezas et al. (2016); Salem et al. (2018), that the addition of DFs helps
to increase the detection of new T2-w lesions while maintaining a low
number of false positives. However, the results also show that training
the model end-to-end, simultaneously learning both the DFs and the
new T2-w lesions (SimLearnedDFs), performs better than either
learning the DFs separately (SepLearnedDFs) or using DFs computed by
classic ~deformable registration methods such as Demons
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(Thirion, 1998) (DemonsDFs). The increase in performance using si-
multaneous learning compared to the variants that compute the DF
separately could be explained by the use of the combined loss function
during the training process. The simultaneously learning model trained
the two connected networks (registration and segmentation) end-to-
end. That means, in each training epoch, the weights of the registration
networks which compute the DFs were updated during the back-
propagation to minimize the summation of the cross-entropy function
(segmentation part) and the similarity function (registration part).
These DFs (computed using the updated weights) were then used as
inputs together with the intensity images to the segmentation network
in the forward pass to compute the new lesion segmentation. Thus, the
DFs were computed in a guided way that improved the new lesion
segmentation. Note that the other variants did not include the con-
nection between the registration and segmentation part, so DFs were
computed blindly and independently from the segmentation. Moreover,
our proposed model (SimLearnedDFs) improved the results over those
of other unsupervised methods due to the use of a supervised classifi-
cation model instead of an unsupervised rule-based approach (Cabezas
et al., 2016; Schmidt et al., 2019). Compared with the state-of-the-art
approaches, the proposed model (SimLearnedDFs) had better results
than all the state-of-the-art approaches in terms of all the evaluation
measures. It also operated orders of magnitude faster than (Cabezas
et al., 2016; Salem et al., 2018) during testing time due to the use of
learning-based nonrigid registration. Regarding the analysis of the re-
sults when applied to the 24 patients with no new lesions, the proposed
model (SimLearnedDFs) had high specificity, with no lesions found in
22 cases (only 2 patients had 1 FP).

Regarding the evaluation according to lesion location, the proposed
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model (SimLearnedDFs) appeared to learn well from most of the brain
regions, and it had the highest sensitivity everywhere. When compared
with the rest of the pipelines, there was a relevant increase in the
performance in the juxtacortical lesions when both the deformation
fields and brain lesions were learned jointly. The SimLearnedDFs model
had a TPF of 91.18% (31 lesions out of 34) and FPF of 26.19% (11 FPs
out of 42 candidates) with DCSd of 0.82 and DCSs of 0.65. The NDFs
model also had a high TPF of 82.35% but with a high FPF of 51.02%
(DSCd = 0.64 and DSCs = 0.57). In the periventricular region, the
lesions were easily observed, which may be explained by the good
contrast between ventricular and the new MS lesions. The difference in
TPF of all CNN-based methods was not as high. The proposed method
(SimLearnedDFs) showed the highest sensitivity while still maintaining
some false positives (2 FPs out of 24 candidates, 8.33%) compared to
the SepLearnedDFs and DemonsDFsmodels that had no FPs in the
periventricular region. Regarding the deep white matter lesions, the
SimLearnedDFs model detected the highest number of lesions (97 out of
120, 80.83%), which may be explained by the high number of lesions in
this particular region (63% of the total number of lesions). The differ-
ence between the three variants in terms of FPs was very low. In con-
trast, the sensitivity of CNN methods was remarkably lower in the in-
fratentorial region due to a lack of training data (infratentorial lesions
were only 6% of the total number of lesions). Furthermore, this may
also be one reason for the worse performances of both methods where
DF were learned. In these methods, the learned DFs did not efficiently
distinguish the complexity of the cerebellum, increasing the number of
noninfratentorial lesion activations. The SimLearnedDFs model had
only three FPs detected, and these FPs were only detected in one pa-
tient. All of the subtraction-based methods like (Cabezas et al., 2016;
Salem et al., 2018; Sweeney et al., 2013) had higher FP lesions in this
region, which may be explained by the poor contrast between tissues in
the infratentorial region and therefore, a noisy subtraction. We believe
that more training data or the use of synthetic MS data as in
(Salem et al., 2019) with more infratentorial lesions, may increase the
sensitivity of all CNN-based methods while reducing FP lesions. The
method of Schmidt et al. (2019) had high TPF in the periventricular,
juxtacortical, and deep white matter regions but also a high FPF. It had
(DSCd, DSCs) of (0.68, 0.49), (0.7, 0.51), and (0.54, 0.34) for the
periventricular, juxtacortical, and deep white matter regions, respec-
tively. We also observed that in the infratentorial region, it had better
performance than the SepLearnedDFs and DemonsDFs models. How-
ever, these results should be further investigated using more cases
containing periventricular and infratentorial lesions in order have a
more robust analysis.

We also studied the use of conventional data augmentation methods
like geometric transformations such as image translation, rotation, or
flip. However, the performance did not increase. One reason might be
due to the fact that the generated samples did not represent image
appearances in real data, or that the generated samples were very si-
milar to the existing images in the training dataset. Working on the
development of a framework for generating new longitudinal synthetic
MS lesions on patients or healthy MR images, could allow the creation
of more data samples for particular lesion locations where few samples
are available (i.e, the infratentorial region), helping to improve the
trained models.

Regarding the experiment in which the proposed model
(SimLearnedDFs) was applied to images from a different hospital, as
expected, the TPF and FPF detection values were worse due to the
change of domain (change in scanner and MRI protocol). Note however,
that the SimLearnedDFs model provided a better generalization than
the one not based on deep learning (Salem et al., 2018). Moreover, the
obtained results with the SimLearnedDFs model in the Trueta dataset
were also better than those of the unsupervised approaches (Cabezas
et al., 2016; Schmidt et al., 2019), using the parameter configuration
optimized for the VH Hospital. The performance without parameter
tuning was actually poor, while the optimum configuration provided
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similar results to those shown on the VH dataset.

In conclusion, the obtained results indicate that the proposed end-
to-end training model increases the accuracy of the new T2-w lesion
detection. Given the sensitivity and limited number of false positives,
we strongly believe that the proposed method may be used in clinical
studies to monitor the progression of the disease.
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