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Prediction of DNA-binding proteins (DBPs) has become a popular research topic in protein science due to its crucial role in all
aspects of biological activities. Even though considerable efforts have been devoted to developing powerful computational
methods to solve this problem, it is still a challenging task in the field of bioinformatics. A hidden Markov model (HMM)
profile has been proved to provide important clues for improving the prediction performance of DBPs. In this paper, we
propose a method, called HMMPred, which extracts the features of amino acid composition and auto- and cross-covariance
transformation from the HMM profiles, to help train a machine learning model for identification of DBPs. Then, a feature
selection technique is performed based on the extreme gradient boosting (XGBoost) algorithm. Finally, the selected optimal
features are fed into a support vector machine (SVM) classifier to predict DBPs. The experimental results tested on two
benchmark datasets show that the proposed method is superior to most of the existing methods and could serve as an
alternative tool to identify DBPs.

1. Introduction

DNA-binding proteins (DBPs), which can bind to and interact
with DNA, play prominent roles in the structural composition
of DNA and the regulation of genes. These proteins have a vari-
ety of biochemical functions in the cell and molecular biology,
including the participation and regulation of various cellular
processes, such as transcription, DNA replication, recombina-
tion, modification, and repair [1, 2]. Besides, DBPs are key
components of steroids, antibiotics, and cancer drugs in the
pharmaceutical industry [3]. Hence, the prediction of DBPs
has become one of the research focuses in the field of protein
science due to its significance in the related biological activities.
In early studies, DBPs were normally identified by experimen-
tal techniques, such as filter binding assays, genetic analysis, X-
ray crystallography, ChIP-chip analysis, and nuclear magnetic
resonance (NMR) [4]. However, conventional experimental
methods are often time-consuming and laborious. With the
rapid increase of protein sequence data, there is a great need

to develop efficient computational methods to identify DBPs
solely based on their primary sequences.

From the machine learning perspective, identification of
DBPs is usually considered a binary classification problem.
In recent years, many computational methods have been
applied to solve this problem. These methods primarily focus
on the following two aspects: (1) the construction of encoding
schemes for protein sequences and (2) the application of clas-
sification algorithms. Many machine learning techniques
have been adopted to perform the prediction of DBPs, includ-
ing support vector machine (SVM) [5–7], random forest (RF)
[8–10], naive Bayes classifier [4], ensemble classifiers [11–13],
and deep learning [14–16]. Among these algorithms, SVM
and RF have been widely used because of their excellent per-
formance. The existing SVM-based predictive methods differ
in encoding schemes for protein sequences. A great number
of sequence features have been applied to represent protein
sequences into fixed-length numeric vectors, such as amino
acid composition (AAC) [17], dipeptide composition [18],
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pseudo-AAC [19–22], position-specific score matrix (PSSM)
profile [23–27], predicted secondary structure [28], and
hidden Markov model (HMM) profile [29].

Numerous researches have proved that evolutionary
information encoded in the PSSM profile is more informative
than protein sequence alone [30]. The PSSM profiles have
been widely used in bioinformatics, such as protein remote
homology detection [31], protein fold recognition [32], and
prediction of protein structural class [33]. Accordingly,
PSSM-based feature descriptors have successfully enhanced
the prediction accuracy of DBPs. For example, Kumar et al.
[24] first adopted the PSSM profile to identify DBPs and con-
structed an SVM model called DNAbinder. Waris et al. [25]
further developed a classifier by integrating the PSSM profile
and other two protein representations, i.e., dipeptide compo-
sition and split AAC. Besides, the method of Wang et al. [26]
applied the discrete cosine transform and the discrete wavelet
transform to compress the PSSM profile and achieved excel-
lent prediction performance. Wei et al. [9] proposed a power-
ful predictor called Local-DPP, which combined the local
pseudo-PSSM features with the RF classifier. Recently,
Zaman et al. [29] build a predictive model based on the
HMM profile instead of the PSSM profile for the detection
of DBPs and experimentally showed the effectiveness of the
HMM-based features by using the jackknife test on the
benchmark dataset. However, the method proposed by
Zaman et al. performed relatively poorly on the independent
dataset test [29]. It appears that evolutionary information in
the form of HMM profile has not been adequately explored
and there is still room for developing more effective feature
extraction techniques to improve the prediction performance
of DBPs.

To this end, we propose a novel method, called
HMMPred, which utilizes features extracted solely from the
HMM profile to further improve the prediction accuracy of
DBPs. First, HMM profiles are transformed into fixed-
length feature vectors with the joint use of three feature
extraction methods including AAC, auto covariance trans-
formation (ACT), and cross-covariance transformation
(CCT). Next, the extreme gradient boosting (XGBoost) algo-
rithm is adopted as a feature selection technique to pick the
well-distinguished features. Finally, these selected optimal
features are fed into an SVM classifier to make predictions.
Validation results on two working datasets indicate that the
proposed method performs better than most of the other
existing predictors, especially the remarkably high accuracy
on the independent dataset.

2. Materials and Methods

This section illustrates all details about our proposed method
and the following flow chart (Figure 1) clearly presents the
process framework of the method. This process involves both
training and testing stages. For the training phase, the HMM
profiles of query proteins are generated by running the
HHblits program, which is an effective sequence alignment
tool with less running time but higher sensitivity and accu-
racy than PSI-BLAST [34]. Next, features are extracted from
the HMM profiles by fusing three techniques, i.e., AAC,

ACT, and CCT. Then, the optimal features are selected and
finally inputted into a classifier for the subsequent model
training and DBPs prediction. For the testing phase, a series
of procedures are similar to those in the previous part so that
the prediction result can be obtained after feeding selected
features into the training model, which is generated in the
training stage.

2.1. Datasets. Two benchmark datasets, PDB1075 [22] and
PDB186 [4], are used to measure the performance of the pro-
posed method. The PDB1075 dataset which contains 525
DBPs and 550 non-DBPs is first applied for model training
as well as testing by adopting cross-validation (CV) methods.
On the other hand, the PDB186 dataset is adopted for an
independent test to further evaluate the robustness and gen-
eralization ability of our predictor, which includes 93 DBPs
and 93 non-DBPs. These protein sequences in the two data-
sets are selected from the Protein Data Bank [35] through a
rigorous filtering procedure: (1) remove the sequences with
a length of less than 50 amino acids or unknown residues
such as “X”; and (2) cut off those sequences that have more
than 25% sequence similarity with any other sequences.

2.2. Protein Sequence Representation

2.2.1. HMM Profiles. A previous study has shown that HMM
profiles are more effective for DBPs prediction compared with
PSSM profiles [29]. In this study, the HMM profile is gener-
ated by performing four iterations of HHblits against the new-
est UniProt database [36] with an E-value threshold of 0.001.
Given a query protein of length L, the size of HMM profile
is L × 30. The values in HMM profile are converted to the
range of (0, 1) by using the function f ðxÞ = 2−x/1000, where x
is the original HMM value. Similar to the PSSM profile, we
only use the first 20 columns of HMM profile.

2.2.2. Feature Extraction from HMM Profiles. Three feature
extraction methods, i.e., AAC, ACT, and CCT, are adopted
to transform HMM profiles into fixed-length feature vec-
tors. It is well known that DNA-binding preference of a
protein is closely related to its AAC features [17]. To
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Figure 1: Framework of the proposed method for DBPs prediction.

2 Computational and Mathematical Methods in Medicine



compute AAC features from the HMM profile, the follow-
ing formula is used:

hj =
1
L
〠
L

i=1
hi,j  j = 1, 2,⋯,20ð Þ, ð1Þ

where L is the length of the protein sequence and hi,j repre-

sents the element at the ith row and jth column of the HMM
profile. In this way, 20 AAC features are obtained in total.

Obviously, if only AAC features are used to represent the
protein, all the sequence-order information would be lost. To
solve this problem, we apply ACT and CCT to reflect the
local sequence-order effect. These two techniques have been
widely used to extract features from the PSSM profile [37–
39]. Thus, in this work, ACT and CCT are also adopted to
convert the HMM profile into two numerical vectors by
using the following equations:

Aj,g =
1

L − g
〠
L−g

i=1
hi,j − hj

� �
hi+g,j − hj

� �
,

Cj,k,g =
1

L − g
〠
L−g

i=1
hi,j − hj

� �
hi+g,k − hk

� �
,

ð2Þ

where 1 ≤ j, k ≤ 20, j ≠ k, and g is the lag. Hence, the number
of ACT features is 20 × G, and the number of CCT features is
20 × 19 ×G = 380 ×G, where G is the maximum of g. As a
result, each protein sequence can be represented as a
(20 + 400 × G)-dimensional vector by fusing the AAC,
ACT, and CCT features.

2.3. Feature Selection Algorithm. Feature selection plays a
vital role in machine learning and pattern recognition, which
can improve the performance of prediction models by
removing irrelevant, noisy, and redundant information from
the untreated features. In this study, we first obtain feature
importance scores by applying RF and XGBoost algorithms
individually. In the RF strategy, the importance of features
is calculated by a total decrease in tree-node impurities from
splitting off the predictor feature variable and is averaged
over all sub-trees [40, 41]. The XGBoost method calculates
an importance score for each feature based on its participa-
tion in making key decisions with boosted decision trees as
suggested in [42]. Then, all of the features are ranked accord-
ing to their importance scores. Finally, we select an optimal
feature subset based on the ranked features. To the best of
our knowledge, the XGBoost feature selection technique
has not been explored for DBPs prediction.

2.4. Classification Algorithm. Two robust machine learning
techniques, i.e., SVM and RF, are applied to perform the pre-
diction of DBPs, which have been widely used for many clas-
sification tasks in the field of computational biology [43–46].
SVM is an outstanding classification method that is used to
deal with a binary pattern recognition problem [47]. Its core
idea is to find an optimal hyperplane as a decision surface, by
maximizing the margin of separation between the two classes
in the data. With the help of kernel tricks, SVM not only can

classify the linearly separable samples but also can handle
classes with complex nonlinear decision boundaries. Popular
kernels used with SVMs include linear, polynomial, sigmoid,
and radial basis function (RBF). In this study, the RBF kernel
is adopted due to its excellent performance in the previous
tests and the values of parameters C and γ are optimized
between 2-10 and 210 based on the 10-fold CV using a grid
search strategy.

RF, as an ensemble learning algorithm, is not only
widely used in feature selection which is discussed before
but also applied in classification [48]. It is composed of
many decision trees, and each tree in the forest makes a
judgment on the sample to determine whether it belongs
to positive instances or negative ones. Then, all voting
results from each tree are collected to finally classify the
samples into the category with the maximum votes. The
SVM and RF algorithms were implemented using the
Python sklearn library [49]. All experiments in this study
were carried out in version 3.7 of Python.

2.5. Performance Evaluation. The performance of HMMPred
is evaluated by three commonly used tests: 10-fold CV and
jackknife CV implemented on the PDB1075 dataset, and an
independent test where the PDB1075 dataset is used to train
the model and testing is on the PDB186 dataset. All results
are reported using the following four performance metrics:
sensitivity (SN), specificity (SP), accuracy (ACC), and Mat-
thew’s correlation coefficient (MCC) [50, 51]. These metrics
are formulated as follows:

SN = TP
TP + FN

,

SP =
TN

TN + FP
,

ACC =
TP + TN

TP + FP + TN + FN
,

MCC =
TP × TN‐FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FNð Þ TP + FPð Þ TN + FPð Þ TN + FNð Þp ,

ð3Þ

where TN, FN, TP, FP, respectively, represent the number of
true negative, false negative, true positive, and false positive
samples predicted. In addition, we also compute the area
under the receiver operating characteristic (ROC) curve
(AUC), which is a preferred metric for evaluating the perfor-
mance of a binary classifier.

3. Results and Discussion

3.1. The Impact of the Parameter g on Prediction
Performance. The ACT and CCT features represent the aver-
age correlation of two amino acids separated by g positions
along the query protein sequence. To investigate the impact
of parameter g on the prediction performance, we compare
the prediction results by increasing the value of g from 1 to
10 with an increment value of 1, using the RF classifier and
the SVM classifier under two different evaluation methods
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individually. Given that the accuracy rate is used as a crucial
evaluation criterion in the model assessment (Figure 2), some
insights into the selection of optimal g value and classifier are
summarized below.

The following figures exhibit two striking traits. Firstly,
the accuracy rate dwindles with the gradual increases of
parameter g. Secondly, the accuracies of the SVM classifier
are consistently better than those of the RF classifier. Refer-
ring to Figure 2(a), when the value of g is greater than 7, both
SVM and RF classifiers show relatively poor performance. In

addition, the accuracies remain relatively stable with g rang-
ing from 5 to 7. A similar conclusion could be drawn from
Figure 2(b). On the other hand, the increment of G (i.e., the
maximum of g) followed by the growth of feature dimension
could cause issues of feature redundancy, additional compu-
tational cost, and extra time consumption. Hence, to make a
trade-off between the accuracy rate and the number of fea-
ture dimension, keeping the maximum of g to 5 is recom-
mended. Accordingly, the number of ACT features is 100
and the number of CCT features is 1900.
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Figure 2: This shows how different g values affect the accuracies based on two CV methods. (a) The prediction results by using the 10-fold
CV method. (b) The prediction results by using the jackknife CV method.
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3.2. Comparative Analysis of Different Classifiers with
Different CV Methods. In this section, we further compare
the performance between SVM and RF classifiers combined
with four different feature extraction techniques including
AAC, ACT, CCT, and AAC+ACT+CCT, respectively.
Results on the PDB1075 dataset by using two CV tests are
listed in Tables 1 and 2.

As shown in Table 1, the combination of SVM classifier
with AAC+CCT+CCT features achieves the highest accuracy
rate (0.8034) compared with others using the same classifier
but with different features. Both MCC and AUC measures
also give similar results. Meanwhile, the AAC feature and
CCT feature obtain the highest SN and SP, respectively, sug-
gesting that these two features are crucial to the identification
of DBPs. For the RF classifier, AAC+ACT+CCT is also
deemed to be the most appropriate method. Except for SP
and AUC, the results of AAC+ACT+CCT consistently out-
perform the other three feature extraction methods. Appar-
ently, the SVM classifier is more superior to the RF
classifier in this experiment.

According to Table 2, similar conclusions can be reached
by using the jackknife CV. For the SVM classifier, AAC
+ACT+CCT is considered the optimal method with an accu-
racy rate of 0.8015. The RF classifier provides the accuracy
rate of 0.7706 by using AAC+ACT+CCT features, which is
higher than the cases with ACT and CCT features but is
lower than the case with AAC features (0.7930). This suggests
that multifeature fusion could generate irrelevant noise infor-
mation and feature selection is necessary to enhance the pre-
diction of DBPs in the next step.

Therefore, after analysing the data obtained from the
examinations above, the combination of the SVM classifier
with the joint use of the AAC+ACT+CCT features is adopted
in the subsequent analysis due to its finest achievement.

3.3. Performance Analysis of Feature Selection. By combining
AAC+ACT+CCT features, we firstly obtain a 2020-
dimensional vector for each protein. Then, these features
are ranked according to their importance by applying RF
and XGBoost techniques, respectively. To further determine
the optimal feature subset, we calculate the accuracies for
top K features by using the 10-fold CV and the jackknife
CV, respectively, where K = 10, 20, 30,…, 650. The results
on the PDB1075 dataset are illustrated in Figure 3. As can
be observed from Figure 3(a), feature subsets ranked by the
XGBoost method could obtain higher accuracies compared
with the RF feature ranking technique. When K = 270, the
highest accuracy of 0.8371 is achieved by using the 10-fold
CV. Considering that Figure 3(b) also shows similar results,
it is appropriate to pick the top 270 ranked features for the
following analyses.

Table 3 further examines the effectiveness of the feature
selection by comparing the prediction performance of the
case without using feature selection, the case using RF feature
ranking, and the case using XGBoost feature ranking. Two
CV methods, i.e., 10-fold and jackknife, are tested on the
PDB1075 dataset by running the SVM classifier, respectively.
From Table 3, two main results emerge: (i) the feature selec-
tion technique can indeed help to effectively improve the
performance of DBPs prediction; and (ii) the XGBoost

Table 1: Prediction results of SVM and RF classifiers based on the 10-fold CV.

Classifier Feature extraction method ACC SN SP MCC AUC

SVM

AAC 0.7893 0.8224 0.7582 0.5810 0.8586

ACT 0.7004 0.6795 0.7200 0.3999 0.7492

CCT 0.7678 0.7336 0.8000 0.5352 0.8309

AAC+ACT+CCT 0.8034 0.8147 0.7927 0.6071 0.8717

RF

AAC 0.7772 0.8147 0.7418 0.5571 0.8600

ACT 0.7369 0.7394 0.7345 0.4737 0.8022

CCT 0.7566 0.7896 0.7255 0.5154 0.8232

AAC+ACT+CCT 0.7781 0.8205 0.7382 0.5596 0.8437

Table 2: Prediction results of SVM and RF classifiers based on the jackknife CV.

Classifier Feature extraction method ACC SN SP MCC AUC

SVM

AAC 0.7912 0.8185 0.7655 0.5841 0.8663

ACT 0.7004 0.6795 0.7200 0.3999 0.7641

CCT 0.7650 0.7297 0.7982 0.5296 0.8373

AAC+ACT+CCT 0.8015 0.8127 0.7909 0.6034 0.8806

RF

AAC 0.7930 0.8161 0.7618 0.5885 0.8705

ACT 0.7369 0.7413 0.7327 0.4738 0.8125

CCT 0.7547 0.7761 0.7345 0.5106 0.8299

AAC+ACT+CCT 0.7706 0.8050 0.7382 0.5437 0.8539
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Figure 3: This illustrates how different feature subsets affect the accuracies by using two different feature selection methods. (a) The
prediction accuracy of SVM based on the 10-fold CV test. (b) The prediction accuracy of SVM based on the jackknife CV test.

Table 3: Performance comparison before and after feature selection.

Feature selection CV methods ACC SN SP MCC AUC

Before 10-fold 0.8034 0.8147 0.7927 0.6071 0.8720

Jackknife 0.8015 0.8127 0.7909 0.6034 0.8805

RF 10-fold 0.8221 0.8243 0.8200 0.6441 0.8819

Jackknife 0.8267 0.8262 0.8272 0.6533 0.8946

XGBoost 10-fold 0.8371 0.8301 0.8436 0.6738 0.8896

Jackknife 0.8390 0.8398 0.8382 0.6778 0.9018
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algorithm may be able to provide better feature ranking
than the RF method. We also plot the ROC curves for
these experiments in Figure 4, which demonstrates the
remarkably consistent findings.

3.4. Comparison with Existing Predictors. To objectively eval-
uate the effectiveness of the proposed method, we make com-
parisons with some existing predictors on the same datasets.
These methods include DNAbinder [24], DNA-Prot [8],

iDNA-Prot [10], iDNA-Prot|dis [22], Kmer1+ACC [52],
iDNAPro-PseAAC [27], PseDNA-Pro [19], Local-DPP [9],
and HMMBinder [29]. The results of jackknife tests on the
PDB1075 dataset are listed in Table 4. In addition, Table 5
illustrates five performance measures of various algorithms
tested on the PDB186 independent dataset.

As shown in Table 4, the proposed method achieves the
values of “ACC” (83.90%), “SP” (83.82%), “MCC” (0.68),
and “AUC” (0.9018), which rank second on the benchmark
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Figure 4: ROC curves of the SVM classifier before and after feature selection. (a) ROC curves based on the 10-fold CV. (b) ROC curves based
on the jackknife CV.
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dataset and are merely below those of HMMBinder. The
Local-DPP algorithm, which explored local evolutionary
information from the PSSM profile, gets the comparable SN
of 84% to our method. This indicates that the PSSM profile
indeed can provide important clues for predicting DBPs. It
is worth mentioning that the Kmer1+ACC method applied
the same strategy to extract AAC, ACT, and CCT features
from the PSSM profile instead of the HMM profile. Judging
from the results of performance comparison, the HMM pro-
file could serve as a better source of information for the iden-
tification of DBPs. From the values reported in Table 5, the
proposed method obtains the highest ACC, SN, MCC, and
AUC among these methods by using the independent dataset
test. It should be noted that the HMMBinder method could
not provide desired optimal results on the testing set despite
achieving the best SP value. This might lead us to believe that
there is a risk of overfitting in the HMMBinder method.

In summary, the proposed method shows substantial
improvements for identifying DBPs particularly on the inde-
pendent test, which are attributed to the powerful feature
fusion method from the HMM profile and the efficient fea-
ture selection by using the XGBoost technique.

4. Conclusion

In this paper, we propose a method called HMMPred, which
makes an effective improvement on the existing HMM
profile-based method to predict DBPs by integrating three

feature extraction techniques (i.e., AAC, ACT, and CCT)
and adding the application of a prominent feature selection
method called XGBoost. Then, the top 270-dimensional fea-
tures are fed into the SVM classifier to train the model. Based
on the comprehensive assessment, using the 10-fold CV, the
jackknife CV, and the independent test, it is noteworthy that
our method performs well compared to other existing
methods and even achieves superior performance on the
independent test. In our future work, we would like to
develop a web server for the public use and continue to
enhance the existing methods for achieving more precise
identification of DBPs.

Data Availability

The datasets and source codes for this study are freely avail-
able to the academic community at: https://github.com/
taigangliu/HMMPred.
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Table 4: Performance comparison on the PDB1075 dataset.

Methods ACC SN SP MCC AUC

DNAbinder 0.7395 0.6857 0.7909 0.48 0.8140

DNA-Prot 0.7255 0.8267 0.5976 0.44 0.7890

iDNA-Prot 0.7540 0.8381 0.6473 0.50 0.7610

iDNA-Prot|dis 0.7730 0.7940 0.7527 0.54 0.8260

Kmer1+ACC 0.7523 0.7676 0.7376 0.50 0.8280

iDNAPro-PseAAC 0.7656 0.7562 0.7745 0.53 0.8392

PseDNA-Pro 0.7655 0.7961 0.7363 0.53 —

Local-DPP 0.7920 0.8400 0.7450 0.59 —

HMMBinder 0.8633 0.8707 0.8555 0.72 0.9026

Our method 0.8390 0.8398 0.8382 0.68 0.9018

Table 5: Performance comparison on the independent dataset.

Methods ACC SN SP MCC AUC

DNAbinder 0.6080 0.5700 0.6450 0.216 0.6070

DNA-Prot 0.6180 0.6990 0.5380 0.240 —

iDNA-Prot 0.6720 0.6770 0.6670 0.344 —

iDNA-Prot|dis 0.7200 0.7950 0.6450 0.445 0.7860

Kmer1+ACC 0.7096 0.8279 0.5913 0.431 0.7520

iDNAPro-PseAAC 0.7150 0.8276 0.6022 0.442 0.7780

Local-DPP 0.7900 0.9250 0.6560 0.625 —

HMMBinder 0.6902 0.6153 0.7634 0.394 0.6324

Our method 0.8118 0.9462 0.6774 0.648 0.8715
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