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Abstract: Inhibiting starch hydrolysis into sugar could reduce postprandial blood glucose elevation
and contribute to diabetes prevention. Here, both buckwheat and wheat albumin that inhibited
mammalian α-amylase in vitro suppressed blood glucose level elevation after starch loading in vivo,
but it had no effect after glucose loading. In contrast to the non-competitive inhibition of wheat
α-amylase inhibitor, buckwheat albumin acted in a competitive manner. Although buckwheat
α-amylase inhibitor was readily hydrolysed by digestive enzymes, the hydrolysate retained inhibitory
activity. Together with its thermal stability, this suggests its potential use in functional foods that
prevent diabetes.
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1. Introduction

Diabetes mellitus (DM) has a major impact on health worldwide, with the number of patients
estimated to be 422 million in 2014 according to the latest survey that was conducted by World Health
Organization (WHO) [1] (p. 25). DM is called a “silent killer” because patients often experience no
obvious symptoms until they suddenly develop lesions, such as retinopathy, nephropathy, neuropathy,
and angiopathy [1] (p. 13). These complications sometimes lead to blindness, renal failure, and
food ulcer, which seriously affect health-related quality of life of patients. One factor contributing to
prevention of DM and its complications is controlling the elevation in postprandial blood glucose levels
by consuming an appropriate diet. Ingestion of a substance that inhibits polysaccharide hydrolysis is
an effective means to suppress the elevation of blood glucose levels [2]. Therefore, α-amylase inhibitor
(α-AI) has been attracting attention for its potential to prevent and treat DM.

Cereals often contain a high concentration of α-AI albumin proteins in seeds to resist against
animals, like insects [3], including well-studied examples in cereals, such as wheat (Triticum aestivum L.),
rice (Oryza sativa L.), barley (Hordeum vulgare L.), rye (Secale cereal L.), maize (Zea mays L.), and kidney
beans (Phaseolus vulgaris L.) [4–12]. In particular, α-AIs from wheat and kidney beans strongly inhibit
mammalian α-amylases and delay the hydrolysis of starch to reducing sugars [13–15]. Wheat α-AI
inhibits α-amylase from both insects and mammals, suppressing blood glucose elevation in rats,
dogs, and humans [16–18]. In addition, wheat α-AI shows considerable resistance to digestion
by pepsin and trypsin, as well as thermal stability [19], and is therefore expected to maintain its
inhibitory activity even after sterilization processes. Wheat α-AI has already been used as a functional
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component to suppress the elevation of blood glucose level in Food for Specified Health Uses (FoSHU)
in Japan [20]. On the other hand, rice α-AI has strong resistance to hydrolysis by digestive enzymes
and inhibits α-amylase from insects, but does not inhibit that from mammals [21]. However, we
have shown that rice α-AI suppresses blood glucose elevation even after glucose loading, indicating
a starch-independent mechanism, such as adsorbing glucose in the small intestine [21]. Both wheat
and rice α-AIs are water-soluble albumin proteins that are tasteless and odourless and can therefore
be included in almost any kind of food. Because rice α-AI suppresses postprandial hyperglycaemia
through a different mechanism than that of wheat α-AI, simultaneous intake of these α-AIs may show
a synergistic effect in suppressing blood glucose elevation. Furthermore, the different characteristics
of rice α-AI as compared with wheat α-AI motivated us to discover other cereal α-AI proteins for
anti-hyperglycaemic applications.

Buckwheat (Fagopyrum esculentum Moench) also contains a proteinaceous α-AI albumin fraction
that is known to inhibit porcine pancreatic α-amylase [22,23]. Buckwheat flour has been used as
an ingredient mainly for noodles and pancakes in Asian and European countries. Since many
people in these countries have experience of eating buckwheat, buckwheat α-AI is considered to
be acceptable as a food additive for anti-hyperglycaemia. However, the detailed characteristics of
buckwheat α-AI and its effect in vivo have not yet been investigated. Therefore, in this study, we
examined the suppressive effect of buckwheat α-AI on postprandial hyperglycaemia and characterised
its enzyme-inhibition mechanism, digestibility, and thermal stability, the latter being an important
property in food processing.

2. Materials and Methods

2.1. Materials

Buckwheat flour (Tomizawa Shoten Co., Ltd., Tokyo, Japan), wheat flour (Nisshin Flour Milling Inc.,
Tokyo, Japan), and mealworms were purchased from a local market. α-Amylases from the human
pancreas and saliva and porcine pancreas were obtained from Sigma-Aldrich (St. Louis, MO, USA),
and 2-chloro-4-nitrophenyl-α-D-maltotrioside (G3-CNP), the substrate for α-amylase, was from
Oriental Yeast (Tokyo, Japan). α-Amylase from mealworms was prepared, as described by Buonocore
and Poerio, with some modifications [24]. Pepsin from porcine stomach mucosa and trypsin from
bovine pancreas were obtained from Wako Pure Chemical Industries (Osaka, Japan). All other
chemicals used were of reagent grade.

2.2. Preparation of Buckwheat and Wheat α-AIs

Buckwheat and wheat α-AIs were prepared according to the method that was described by
Feng et al., with some modifications [7]. Buckwheat flour or wheat flour was mixed with 5 times
its weight of 25 mM 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) buffer at pH 6.9
for 3 h at 4 ◦C and then centrifuged at 15,000× g for 15 min at 4 ◦C. The supernatant was heated
at 80 ◦C for 20 min to denature non-heat-stable proteins and centrifuged at 15,000× g for 15 min at
4 ◦C. The clear supernatant was subjected to ammonium sulphate fractionation; the protein fraction
precipitating at 40% (NH4)2SO4 was collected by centrifugation at 15,000× g for 60 min at 4 ◦C.
The precipitate was dialysed against distilled water to re-solubilise the protein and centrifuged at
15,000× g for 15 min at 4 ◦C. After lyophilisation of the supernatant, about 15 mg of protein dissolved
in 20 mL of distilled water was applied to a Sephadex G-50 column (ϕ2.5 × 100 cm) (GE Healthcare
UK Ltd., Buckinghamshire, UK) and equilibrated and eluted with distilled water at a flow rate of
0.2 mL/min, the absorbance of the eluate being measured continuously at 280 nm. Fractions (5 mL)
were collected and the α-amylase inhibitory activity in each fraction was measured (see Section 2.3
below). The fractions showing more than 90% inhibitory activity against α-amylase from porcine
pancreas were collected and lyophilised. α-AI powder was stored at −20 ◦C until use.
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2.3. Measurement of α-Amylase Inhibitor Activity

The α-amylase inhibitory activity was measured, as described by Foo and Bais, with some
modifications [25]. The inhibitory activity against α-amylase from mammals was determined by
measuring the absorbance of 2-chloro-nitrophenol (CNP) at 405 nm produced from the cleavage of
G3-CNP by α-amylase in the presence or absence of α-AI. The standard α-amylase inhibition assay
was carried out by preincubating 25 µL of 1.6 U/µL α-amylase solution with 25 µL of 1 µg/µL cereal
α-AI solution for 30 min at 37 ◦C in 20 mM HEPES buffer at pH 6.9 containing 50 mM NaCl and 3
mM CaCl2. The reaction was initiated by the addition of 50 µL of G3-CNP and incubated for 10 min
at 37 ◦C. The enzyme reaction was terminated by the addition of 100 µL of 10% (v/v) Tris solution,
after which the absorbance at 405 nm of the 2-chloro-4-nitrophenol that was produced by the reaction
was measured. The control mixture was prepared by replacing the α-AI solution with 20 mM HEPES
buffer at pH 6.9 containing 50 mM NaCl and 3 mM CaCl2. The inhibitory activity against α-amylase
from mealworms was measured by the same procedure except that the buffer used was 20 mM acetate
buffer at pH 5.4 containing 100 mM NaCl and the incubating temperature was 25 ◦C. The α-amylase
inhibitory activity was expressed as percent inhibition relative to control using the following equation.

Inhibition percent (%) = (Ac − Ai)/Ac × 100 (1)

where Ai and Ac are enzyme activities with and without an inhibitor, respectively.

2.4. Animals

Male Wistar rats seven weeks of age were purchased from Japan SLC (Shizuoka, Japan). The rats
were acclimatised for a period of 7 days. Throughout the acclimatisation and subsequent study
periods, rats were maintained in controlled environment of 23 ± 1 ◦C and 55% humidity under a 12-h
light/dark cycle with light from 8:00 to 20:00. All rat experiments were performed in accordance with
the Guidelines for Animal Experiments of the College of Bioresource Science of Nihon University
(Approval numbers: AP11B012 and AP12B059).

2.5. Oral Starch and Glucose Tolerance Tests

The oral starch tolerance test (OSTT) and oral glucose tolerance test (OGTT) were conducted
according to the methods described by Ina et al. [21] with some modifications. The OSTT and OGTT
were carried out under non-anaesthesia conditions. After seven rats in each group were fasted
overnight for 14 h, 300 mg/kg of buckwheat α-AI or wheat α-AI was orally administered as a mixture
with phosphate-buffered saline containing 1 g/kg body weight soluble starch or glucose. Then, blood
was taken from the tail vein at 0, 15, 30, 45, and 90 min. Blood glucose levels were measured with the
Dexter-ZII meter (Bayer, Osaka, Japan) and plasma insulin was measured by ELISA (Rat Insulin ELISA
Kit (U-E type); Shibayagi, Gunma, Japan). The area under the curve (AUC) was calculated for blood
glucose and plasma insulin according to the methods that were described by Wolever and Jenkins [26].

2.6. Analysis of In Vitro Digestibility by Digestive Enzymes

Hydrolysates were prepared in vitro by pepsin and trypsin, as described by Ma and Xiong and
Iwami et al., with some modifications [27,28]. First, 10 mg of α-AI suspended in 1 mL of 0.1 mg/mL
pepsin in HCl adjusted to pH 2.0 was incubated at 37 ◦C for 2 h. After the pepsin was inactivated by
neutralisation with 1 mL of 4% (w/v) NaHCO3, 1 mL of 1 mg/mL trypsin in 50 mM Tricine buffer at
pH 8.0 was added and the mixture was incubated at 37 ◦C for 2, 4, or 6 h. The enzymatic hydrolysis was
stopped by heating the sample solution at 100 ◦C for 5 min. The degree of hydrolysis was evaluated
by the analysis of residual amylase inhibitory activity (see Section 2.3 above) and sodium dodecyl
sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). SDS-PAGE was carried out by the method
of Laemmli [29]. After electrophoresis, the gels were stained for protein with 0.025% (w/v) Coomassie
Brilliant Blue R-250 solution (Wako Pure Chemical Industries, Osaka, Japan).
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2.7. Glycoprotein Staining

After SDS-PAGE, the fractionated protein was transferred electrophoretically to a polyvinylidene
fluoride (PVDF) membrane (ProBlott, Applied Biosystem, Foster City, CA, USA). The membrane was
washed three times with TPBS (phosphate-buffered saline containing 0.05% Tween 20) and immersed
in a periodic-acid solution (TPBS containing 0.05% periodic acid). After washing three times with TPBS,
the membrane was immersed in a biotin-hydrazide solution (25 µg/mL (+)-Biotin hydrazide (B7639,
SIGMA-ALDRICH JAPAN, Tokyo, Japan)) dissolved in dimethyl sulfoxide. Then, the membrane was
washed three times with TPBS and it was immersed in a horseradish peroxidase (HRP)-conjugated
streptavidin solution (HRP-conjugated streptavidin (Funakoshi Co., Ltd., Tokyo, Japan) diluted with
TPBS. The membrane was washed three times again with TPBS. To detect sugar chain bound to
buckwheat α-AI, chemiluminescent reagent (Amersham™ ECL™ Western Blotting Analysis System,
RPN2109, GE Healthcare UK Ltd., Buckinghamshire, UK) was used. The resulting light emission was
detected using a gel imaging system (ChemiDoc MP, BioRad, Hercules, CA, USA).

2.8. Kinetic Analysis of α-Amylase Inhibition

The inhibitory activity of buckwheat α-AI against α-amylase from porcine pancreas was measured,
as described by Seri et al. with some modifications [30] and compared with that of wheat α-AI.
The α-amylase inhibitory activities of 0.05, 0.15, 0.25, and 0.35 mg/mL buckwheat and wheat α-AI
were measured and the data were plotted according to the Lineweaver-Burk method [31].

2.9. Thermal Stability Analysis

The thermal stability ofα-AI was evaluated by measuring the inhibitory activity againstα-amylase
from porcine pancreas after heating. α-AI was dissolved in 1 mL of distilled water to 0.1% (w/w) and
boiled at 100 ◦C for 10, 30, 60, or 120 min. After cooling to room temperature, α-amylase inhibitory
activity was measured as previously described in Section 2.3. The percent of unheated α-AI inhibitory
activity remaining after heat treatment was defined as thermal stability, and was calculated as follows.

Thermal stability (%) = IAh/IAn × 100 (2)

where IAh and IAn are α-amylase inhibitor activity of heated α-AI and that of non-heated
α-AI, respectively.

2.10. Statistical Analysis

The data were represented as mean ± standard error (S.E.) The values were evaluated by one-way
analysis of variance followed by the post-hoc Tukey-Kramer multiple range test.

3. Results

3.1. α-Amylase Inhibitory Activity

The inhibitory activity of buckwheat and wheat α-AI against α-amylase from several sources
is shown in Figure 1. Wheat α-AI strongly inhibited α-amylase from human saliva (99.5%), human
pancreas (99.3%), porcine pancreas (99.4%), and mealworm (97.6%). On the other hand, buckwheat
α-AI also strongly inhibited α-amylase from porcine pancreas (97.9%) and mealworm (93.2%), but it
showed somewhat decreased inhibition of α-amylase from human pancreas (68.7%) and only very
weak inhibition of that from human saliva (10.2%).
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Figure 1. α-Amylase inhibitory activity of wheat and buckwheat α-AIs. Each value is the mean of 
three experiments with standard error (S.E.) shown as a vertical bar. 

3.2. Oral Starch and Glucose Tolerance Test 

The effect of buckwheat and wheat α-AIs on blood glucose and plasma insulin levels after 
starch loading was examined in normal rats. The postprandial blood glucose levels 15 min after 
starch loading of rats administered buckwheat and wheat α-AIs were 12% and 15% lower, 
respectively, than those of the rats used as a control group (Figure 2). At the same time point after 
starch loading, the postprandial plasma insulin levels of rats that were administered buckwheat and 
wheat α-AIs were 85% and 70% lower, respectively, than those of control rats (Figure 3). When the 
same experiment was conducted with glucose loading rather than starch loading, buckwheat, and 
wheat α-AIs did not suppress postprandial blood glucose elevation (Figure 4) or plasma insulin 
level (Figure 5). 
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Figure 2. Effect of wheat and buckwheat α-amylase inhibitors (α-AIs) on (A) blood glucose level and 
(B) glucose area under the curve (AUC) after oral starch tolerance test using Wistar rats. Each value 
is the mean of 6–7 experiments with S.E. shown as a vertical bar. Values with different letters are 
significantly different at p < 0.05. 

Figure 1. α-Amylase inhibitory activity of wheat and buckwheat α-AIs. Each value is the mean of
three experiments with standard error (S.E.) shown as a vertical bar.

3.2. Oral Starch and Glucose Tolerance Test

The effect of buckwheat and wheat α-AIs on blood glucose and plasma insulin levels after starch
loading was examined in normal rats. The postprandial blood glucose levels 15 min after starch
loading of rats administered buckwheat and wheat α-AIs were 12% and 15% lower, respectively, than
those of the rats used as a control group (Figure 2). At the same time point after starch loading, the
postprandial plasma insulin levels of rats that were administered buckwheat and wheat α-AIs were
85% and 70% lower, respectively, than those of control rats (Figure 3). When the same experiment
was conducted with glucose loading rather than starch loading, buckwheat, and wheat α-AIs did not
suppress postprandial blood glucose elevation (Figure 4) or plasma insulin level (Figure 5).
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Figure 2. Effect of wheat and buckwheat α-amylase inhibitors (α-AIs) on (A) blood glucose level and
(B) glucose area under the curve (AUC) after oral starch tolerance test using Wistar rats. Each value
is the mean of 6–7 experiments with S.E. shown as a vertical bar. Values with different letters are
significantly different at p < 0.05.
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Figure 3. Effect of wheat and buckwheat α-AIs on (A) plasma insulin level and (B) insulin AUC after
oral starch tolerance test using Wistar rats. Each value is the mean of seven experiments with S.E.
shown as a vertical bar. Values with different letters are significantly different at p < 0.05.
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3.3. In Vitro Digestibility and Glycoprotein Staining

The in vitro protein digestibility of α-AI was examined using sequential digestion by pepsin
and trypsin. The 14-kDa wheat protein showed high resistance to digestion (Figure 6A), whereas
the buckwheat protein was mostly hydrolysed to peptides that were smaller than 6.5 kDa, indicating
that buckwheat α-AI is not resistant to digestive enzymes. The remaining α-amylase inhibitory
activity of buckwheat and wheat α-AIs was examined after treatment by digestive enzymes (Figure 7).
Although buckwheat α-AI was hydrolysed by digestive enzymes, it retained high inhibitory activity
against α-amylase (91.4%). On the other hand, the α-amylase inhibitory activity of wheat α-AI
decreased to 55.9% of its original level after treatment by pepsin and trypsin in spite of its resistance
to digestion.

Buckwheat α-AI of higher molecular weight (> 29 kDa) was stained with glycoprotein-staining
reagent. On the other hand, glycoprotein was hardly detected in bovine serum albumin, which was
used as a negative control.
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Figure 6. SDS-PAGE of wheat and buckwheat α-AIs before and after treatment with digestive
enzymes and glycoprotein staining. (A) Wheat α-AI; (B) Buckwheat α-AI. (M) Marker; (1) Undigested;
(2) Digested by pepsin for 2 h; (3) Digested by pepsin for 2 h followed by digestion with trypsin for 2 h;
(4) Digested by pepsin for 2 h followed by digestion with trypsin for 4 h; and, (5) Digested by pepsin for
2 h followed by digestion with trypsin for 6 h; (1S) Undigested and stained with glycoprotein-staining
reagent; (C) Bovine serum albumin stained with glycoprotein-staining reagent.
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3.4. Kinetic Analysis of α-Amylase Inhibition

Lineweaver-Burk plots were generated to assess the enzyme kinetics of wheat (Figure 8A) and
buckwheat (Figure 8B) α-AIs. The plots of wheat α-AI intersected on the same abscissa section. On the
other hand, the plots of buckwheat α-AI intersected on the same ordinate section.Nutrients 2018, 10, x FOR PEER REVIEW  9 of 13 
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3.5. Thermal Stability

To characterise the heat stability of buckwheat and wheat α-AIs, the inhibitory activity against
porcine pancreatic α-amylase was measured after heating at 100 ◦C for 10–120 min (Figure 9).
Both wheat and buckwheat α-AIs maintained high inhibitory activity even after heating at 100 ◦C for
120 min (98.2% and 75.4%, respectively).
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4. Discussion

This study demonstrated for the first time that buckwheat α-AI suppressed postprandial blood
glucose elevation in rats. Wheat α-AI has already been reported to inhibit α-amylase from both
insects and mammals [4–6,19], and it has a suppressive effect on blood glucose elevation [16–18]. As a
result of its thermal stability [19], which allows it to retain activity even after sterilisation, wheat α-AI
has already been used as a functional component in FoSHU in Japan [20]. In the present study, the
α-amylase inhibitory activity and suppressive effect on postprandial hyperglycaemia of buckwheat
α-AI were compared with those of wheat α-AI. In addition, the thermal stability of buckwheat α-AI
was evaluated as a means to predict its stability during the sterilisation and cooking processes necessary
to produce food products.

Various cereals contain α-AIs, some of which inhibit α-amylase from mammals and others that
from insects only. As shown in Figure 1, wheat α-AI inhibited α-amylase from human saliva, human
pancreas, porcine pancreas, and mealworms. We have reported that rice α-AI inhibits α-amylase
from mealworms, but it does not inhibit α-amylase from human saliva, human pancreas, and porcine
pancreas [21]. α-AI from barley, rye, maize, and kidney bean are also reported to inhibit α-amylase
from mealworms [8–12]. On the other hand, buckwheat α-AI inhibited α-amylase from human
pancreas, porcine pancreas, and mealworms, but did not inhibit that from human saliva (Figure 1),
which is similar to the results of Feng et al., Ikeda et al., and Buonocore et al. [7,23,24]. These results
imply that the mechanisms of substrate recognition of α-amylases from human saliva and pancreas
are different and the structures of buckwheat and wheat α-AIs are not identical. Although the in vitro
α-amylase inhibitory activity of buckwheat α-AI was about 30% less than that of wheat, these results
encouraged us to investigate the suppressive effect of buckwheat α-AI on hyperglycaemia in vivo.

In OSTT, buckwheat α-AI suppressed the elevation in blood glucose and plasma insulin levels
slightly more strongly than wheat α-AI (Figures 2 and 3), while neither α-AI suppressed the elevation
upon OGTT (Figures 4 and 5). The results for wheat α-AI were similar to those of Puls and Keup [16].
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We have reported that rice α-AI suppresses blood glucose elevation both on OSTT and OGTT.
Because rice α-AI does not inhibit α-amylase from mammals but is not hydrolysed by digestive
enzymes, its suppressive effect on blood glucose elevation after glucose loading is assumed to be
due to the adsorption of glucose molecules onto its indigestible structure in the small intestine in a
similar action as that of dietary fibre [21]. Because buckwheat α-AI inhibited α-amylase from mammals
in vitro, as shown in Figure 1, its effect on postprandial hyperglycaemia after starch loading can likely
be attributed to inhibiting the hydrolysis of starch to reducing sugars, similar to the mechanism of
wheat α-AI.

Although the in vitro α-amylase inhibitory activity of buckwheat α-AI was less than that of
wheat α-AI (Figure 1), the in vivo anti-hyperglycemic effect of buckwheat α-AI was higher than
that of wheat α-AI (Figures 2 and 3). To explain these contradictory phenomena, we evaluated the
α-amylase inhibitory activity after digestion in vitro. The α-amylase inhibitory activity of wheat α-AI
decreased to 60% after treatment with pepsin followed by trypsin (Figure 7), though the protein showed
resistance to digestion (Figure 6). On the other hand, although buckwheat α-AI was hydrolysed to
low-molecular-weight peptides by digestive enzymes (Figure 6), it retained almost 100% α-amylase
inhibitory activity even after digestion (Figure 7). These results suggest that the wheat α-AI was
partially digested in vivo, reducing the suppressive effect on hyperglycaemia, while the hydrolysate
of buckwheat α-AI possessed high α-amylase inhibitory activity. This may explain why buckwheat
α-AI showed a more potent suppressive effect on hyperglycaemia in spite of its weaker α-amylase
inhibitory activity in vitro when compared with wheat α-AI.

There are two hypotheses that explain the phenomenon of buckwheat α-AI hydrolysate having
α-amylase inhibitory activity: (1) a certain peptide sequence shows α-amylase inhibitory activity, or
(2) sugar chain covalently bound to some peptide shows α-amylase inhibitory activity. To explore
these two possibilities, we investigated the enzyme-inhibition mechanism of wheat and buckwheat
α-AIs. In Figure 8, the Lineweaver-Burk plots of wheat α-AI intersected at the same point on the
abscissa, indicating that wheat α-AI inhibited the activity of α-amylase from porcine pancreas in a
non-competitive manner, as previously reported [32]. On the other hand, the plots of buckwheat α-AI
intersected at the same point on the ordinate, indicating that buckwheat α-AI inhibited α-amylase
activity in a competitive manner. Because sugars commonly fit the active site of α-amylase and
peptides are unlikely to be recognised as a substrate, glycopeptides produced from buckwheat α-AI
would be the competitive inhibitors. Some researchers reported glycoproteins that were obtained
from plants inhibit α-amylase in a competitive manner [33–35]. In addition, glycoproteins larger
than 29 kDa were detected in undigested buckwheat α-AI (Figure 6B). Considering that free sugars
should have been removed during the preparation of buckwheat α-AI and most buckwheat albumin
was hydrolysed to be peptides smaller than 6.5 kDa, glycopeptides that were produced by digestive
enzymes from glycoproteins present in buckwheat α-AI might have exhibited α-amylase inhibitory
activity. Therefore, as the mechanisms of α-amylase inhibitory activity of buckwheat and wheat α-AIs
differed with each other, these would be proteins of different structure and molecular weight.

Both wheat and buckwheat α-AIs maintained high α-amylase inhibitory activity after heating, as
shown in Figure 9. Oneda et al. reported that wheat α-AI showed high thermal stability [19], consistent
with our results showing that it retained more than 98% of α-amylase inhibitory activity even after
heating at 100 ◦C for 120 min, probably due to intramolecular disulphide bonds. The α-amylase
inhibitory activity of buckwheat α-AI gradually decreased but it was still 75% after heating at
100 ◦C for 120 min. This result is consistent with our assumption that sugar chain in buckwheat
α-AI shows α-amylase inhibitory activity and thus retained the activity, even after denaturation by
heating. The thermal stability of buckwheat α-AI is high enough to be used in food products that
undergo sterilisation.
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5. Conclusions

In conclusion, buckwheat α-AI suppressed postprandial hyperglycaemia after starch loading by
inhibiting α-amylase activity in a competitive manner. Buckwheat α-AI retained its inhibitory activity
against α-amylase, even after digestion and heating. Therefore, it is a good candidate for use as a
functional component in FoSHU, such as foods to suppress the elevation of blood glucose levels and
prevent diabetes.
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