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Abstract
Purpose Autonomous systems in mechanical thrombectomy (MT) hold promise for reducing procedure times, minimizing
radiation exposure, and enhancing patient safety. However, current reinforcement learning (RL) methods only reach the
carotid arteries, are not generalizable to other patient vasculatures, and do not consider safety. We propose a safe dual-device
RL algorithm that can navigate beyond the carotid arteries to cerebral vessels.
Methods We used the Simulation Open Framework Architecture to represent the intricacies of cerebral vessels, and a
modified Soft Actor-Critic RL algorithm to learn, for the first time, the navigation of micro-catheters and micro-guidewires.
We incorporate patient safety metrics into our reward function by integrating guidewire tip forces. Inverse RL is used with
demonstrator data on 12 patient-specific vascular cases.
Results Our simulation demonstrates successful autonomous navigation within unseen cerebral vessels, achieving a 96%
success rate, 7.0 s procedure time, and 0.24 N mean forces, well below the proposed 1.5 N vessel rupture threshold.
Conclusion To the best of our knowledge, our proposed autonomous system for MT two-device navigation reaches cerebral
vessels, considers safety, and is generalizable to unseen patient-specific cases for the first time. We envisage future work will
extend the validation to vasculatures of different complexity and on in vitro models. While our contributions pave the way
toward deploying agents in clinical settings, safety and trustworthiness will be crucial elements to consider when proposing
new methodology.

Keywords Reinforcement learning · Mechanical thrombectomy · Machine learning · Artificial intelligence · Autonomous
navigation · Endovascular intervention

Introduction

Ischemic stroke causes 3.48 million global deaths annually
and accounts for $36.5 billion in direct medical costs in
the USA alone [1, 2]. Mechanical thrombectomy (MT) has
emerged as a standard treatment for acute ischemic stroke
resulting from large vessel occlusion, providing improved
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functional outcomes and lower mortality rates compared to
medical treatment alone [3, 4]. In MT, a guidewire is used
to navigate a guide catheter from the femoral or radial artery
to the internal carotid artery (ICA). An ‘access catheter’ is
then advanced ahead of the guide catheter for vessel branch
access. Once the access catheter is within the ICA, the guide
catheter is advanced tomake a stable platform. The guidewire
and access catheter are then retracted, and a micro-guidewire
within a micro-catheter is passed through the stable guide
catheter and navigated to the target thrombus site which is
typically within theM1 segment of themiddle cerebral artery
(MCA). The final step is to remove the micro-guidewire and
exchange it for a stent retriever to remove the thrombus,
thereby restoring blood flow to the brain.

MT ismost effective when performed early, ideally within
24hof strokeonset [4].However, only 3.1%of strokepatients
in theUK receiveMT, despite 10%being eligible [5, 6]. Lim-
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ited access to MT centers, long travel times, and procedural
risks like vessel damage and radiation exposure pose signifi-
cant challenges for the delivery ofMT [7, 8]. Robotic surgical
systems offer a potential solution by increasing access toMT
and reducing operator risks. Tele-operated MT could allow
centralized, highly trained specialists to perform the pro-
cedure remotely, improving access in underserved regions.
Alternatively, assistive robots in peripheral hospitals could
help less experienced operators performMT safely. In either
scenario, integrating AI into robotic systems may further
enhance procedural efficiency and safety, especially for less
experienced users (e.g., interventional radiologists who are
not used to performing neurointerventional procedures) [9,
10].

A recent reviewon the autonomous navigation of endovas-
cular interventions found that 71% (10/14) of studies per-
formed experiments in the blood vessels within or around
the heart [11]. More recently, a combined reward model
using demonstrator data in inverse reinforcement learning
(IRL) has been shown to provide improved success rates
over a traditional dense reward function in the autonomous
navigation of devices from the common iliac artery to the
ICA; however, this work was limited to training and testing
on exactly the same vasculature [12]. While reinforcement
learning (RL) models have been tested on unseen vessel
structures previously (for aortic arch navigation), these struc-
tures are typically simplified and computer generated [13,
14]. Furthermore, while 29% (4/14) of studies reviewed in
[11] measure the forces during navigation, there is no evi-
dence of excessive force penalization. This is important to
consider because (1) excessive vessel wall contact forces
can induce vasoconstriction and damage, leading to reac-
tive intimal proliferation chronically, or more importantly,
dissection-induced distal embolization and infarction in the
acute setting [15]; (2) it is known that robotic endovascular
manipulators can reduce vessel wall contact forces [16]; and
(3) patient and public involvement exercises on robotic MT
showed concern about micro-guidewire safety—AI assis-
tance was a potential solution for safety.

The aim of this study was to train an RL model capable
of autonomously navigating a micro-guidewire and micro-
catheter from the ICA to the MCA in unseen patient vas-
culatures while incorporating device tip forces. The primary
objective was to demonstrate in an MT environment that RL
can successfully perform this navigation in complex, unseen
patient vasculatures. The secondary objectives were: (1) to
assess whether adding force feedback in the reward function
improves surrogate measures of patient safety and/or affects
navigation performance and (2) to validate previous findings
that a combined reward model enhances navigation perfor-
mance. This study used two-dimensional Cartesian tracking
coordinates as inputs to the RL agent. Using this proposed
method, it is plausible that effective clinical translationwould

be enacted using image-tracking to obtain the guidewire
and catheter tip points from live fluoroscopic images during
MT [17]. This would then provide the inputs (i.e., two-
dimensional coordinates) needed for theRL agent to navigate
the vasculature. Furthermore, as tip forces are only required
during training as part of the reward function, there would
be no need to measure forces during the intervention. As the
trained RL agent does not need a reward input, no additional
equipment or software would be required in the clinic.

Our contributions are as follows: (1) We applied RL to
train autonomousnavigationmodels formicro-guidewire and
micro-catheter in cerebral vessels, specifically targeting MT,
for the first time, (2) we tested the model on realistic, unseen
patient vasculatures, and (3) we introduced penalization for
instrument forces in the RL model to enhance patient safety.

Methods

Navigation task

ThefirstMT stage of navigating a large guide catheter to form
a stable platform has recently been achieved autonomously
using RL [12]. This study simulates the second stage, navi-
gating the micro-guidewire and micro-catheter to the target
site (Fig. 1). When these devices are manipulated toward the
MCA, navigation challenges include overcoming tortuous
anatomy of the ICA and avoiding catheterization of incorrect
branches such as the ipsilateral anterior cerebral artery. Rota-
tion of the micro-guidewire (whose tip is curved) is required
to avoid catheterization of incorrect branches, while both the
tortuous anatomy and rotation cause the devices to interact
with one another.

A target location was randomly sampled from ten cen-
terline points in the right MCA (RMCA) or the left MCA
(LMCA), starting from a stable guide catheter platform in
the right ICA (RICA) or the left ICA (LICA) cervical seg-
ments [18]. Targets in the RMCA could only be navigated
from the RICA and vice-versa for the left side. For each nav-
igation attempt, the target location and the vasculature were
changed.

The device position was described by three points equally
spaced 2mm apart along the device. These were denoted
as (x ′, y′)i=1,2,3, with (x ′, y′)1 representing the Euclidean
instrument tip coordinates. The target location was specified
by the target’s (x ′, y′) coordinates. Observations comprised
current and previous device positions, target location, and the
previous action taken.

Simulation environment

The in silico environment for the navigation task builds on
previous work from [10, 12, 13] and utilized the stEVE
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Fig. 1 Example navigation path taken for a entire MT navigation path and b micro-guidewire and micro-catheter component of navigation path

framework [19]. The BeamAdapter plugin for Simulation
OpenFrameworkArchitecture (SOFA)wasused tomodel the
Echelon 10 (1.7 F) micro-catheter (Medtronic, Minnesota,
USA) and the Synchro 14 micro-guidewire (Stryker Neu-
roVascular, Cork, Ireland), characterized by Young’s moduli
of 47 and 43MPa, respectively [20, 21]. To represent the rigid
distal ICA and the inflexible M1, the simulation assumed
rigid vessel walls (with an empty lumen). The simulation’s
fidelity to real-world guidewire behavior was ensured by uti-
lizing a tensile testingmachine tomeasure the tensile strength
of the devices, which facilitated the calculation of its stiff-
ness, while friction between wall and guidewire has been
iteratively tuned to mimic guidewire behavior in a test-bench
setup. This is based on previous methodology which has pre-
viously allowed in silico to ex vivo translation of autonomous
endovascular navigation designs using models of porcine
liver vasculature [22].

Input parameters, including guidewire rotation and trans-
lation speed, were applied at the proximal device end. The
rotational and translational speed was constrained to a max-
imum of 180 ◦s−1 and 40mms−1, respectively. Similar to
a clinical scenario with fluoroscopy, feedback during the
navigation was given as two-dimensional (x ′, y′) track-

ing coordinates of three points along each device’s tip; no
visual information showing the geometry of the patient vas-
culature was given. Experiments were performed using a
dual-tracking (combined wire and catheter tracking) method
[12].

Dataset

Twelve computed tomography angiography (CTA) scans
which encompassed the aortic arch and extended to the cere-
bral vessels (obtained with UK Research Ethics Committee
20/ES/0005) were processed into three-dimensional surface
meshes using the vascularmodeling toolkit and segmentation
tools in 3D Slicer [23, 24]. Characteristics of each vascula-
ture can be found in Table 3, andCTA scan parameter settings
can be found in Appendix B. These were loaded into SOFA,
which allowed augmentation to be applied during training via
random scaling (0.7 to 1.3 for height and width) to enhance
generalization.

Demonstrator data were collected in silico for two ran-
dom targets in the RMCA and LMCA across ten patient
vasculatures, with four navigation’s per vasculature using
inputs from a keyboard. The demonstrator was a robotics
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engineer with 2-years’ experience using in silico navigation
environments and in vitro endovascular robots, with 2 years
of tuition from an expert interventional neuroradiologist (UK
consultant;USattending equivalent).Data collected included
actions (rotation and translation), device tracking, and target
location. Data were split by left or right target navigation.

Controller architecture

All RL models in this study were trained using a Soft
Actor-Critic (SAC) controller, implemented using PyTorch
[25]. This is shown in Fig. 2 and is adapted from previous
work [12, 13]. The architecture includes a Long Short-Term
Memory layer for learning trajectory-dependent state repre-
sentations, which has been shown to allow probing of the
correct vessel when the target branch is not unambiguously
located from the target coordinates [13]. The architecture also
includes feedforward layers for controlling the guidewire.
The controller takes observations as input, and a Gaussian
policy network outputs mean (μ) and standard deviation (σ )
for expected actions, representing the micro-catheter’s and
micro-guidewire’s rotation and translation. During training,
actions are sampled from the σ , but for evaluation, μ is used
directly for deterministic behavior.

Maximum entropy IRL was employed to learn reward
functions from demonstrations for navigating vascular
branches, aiming to replicate expert behavior while maxi-
mizing entropy to account for variability [26]. This method,
suited for complex environments like endovascular naviga-
tion, can outperform methods such as behavioral cloning
and standard RL, which may overfit or struggle with sparse
rewards and has provided improvements over the state of the
art in autonomous endovascular interventions [12]. A feed-
forward neural network with four fully connected layers was
used in the IRLmodel, trainedwith expert trajectories. Train-
ing of the IRL model involved 1 million iterations with a
learning rate of 1 × 10−2, entropy regularization (α = 0.1),
and a 0.01 length penalty. Separate IRL models were trained
for each vascular branch, with the ipsilateral model returning
reward values for the current observations.

Reward functions

Six reward functions were used to assess whether adding
micro-guidewire tip force feedback improved in silico
results. Each reward functionwas calculated in every simula-
tion step based on the agent’s actions. Therefore, actions led
to different reward quantities across reward functions and,
hence, a variation in the final model. The first three reward
functions followed prior work [12]:

• R1 (Eq. 1): Dense reward, where pathlength is the dis-
tance between the guidewire tip and the target, and
�pathlength is the change from the previous step.

R1 = −0.005 − 0.001 · �pathlength +
{
1.0 if target reached

0 else

(1)

• R2 (Eq. 2): IRL-derived reward, where RRIC A or RLIC A

is calculated based on the carotid artery the target is in.

R2 =
{
RRIC A if target in RICA

RLIC A if target in LICA
(2)

• R3 (Eq. 3): A combined reward model of R1 and R2,
scaled by α = 0.001.

R3 = R1 + αR2 (3)

Three additional reward functions (R4, R5, and R6) were
created by adding force feedback to R1, R2, and R3, achieved
by implementing a collision monitor on the micro-guidewire
tip, to give Px,y,z at each simulation step. Analysis of demon-
strator data guidewire tip forces showed that ‖P‖ values
remained at 0.80N or less; therefore, if ‖P‖was greater than
a threshold value of 0.85N, a negative reward was given.
This was added to R1, R2, and R3, to give R4, R5, and R6,
as shown in Eq.4. The reward functions were fine-tuned iter-
atively through RL training by systematically adjusting the
rewardweights andα,with each adjustment followedbyeval-
uation on key metrics of success rate, procedure time, and tip
force reduction. As guidewire tip forces are only used in the
reward function during training, the agent does not require
a force input during in silico evaluation or any experimental
stages beyond this (e.g., in vitro evaluation).

R j = R j−3 − 0.01 ·
{
P − 0.85 if ‖P‖ > 0.85

0 if ‖P‖ ≤ 0.85
for j = 4, 5, 6

(4)

Implementation

Training consisted of 1 × 107 exploration steps, with each
navigation task (or episode) considered complete when the
targetwas reachedwithin a 5 mmthreshold,which is suitable
to cover the entire cross section of the vessel. A timeout of
200 steps (approximately 27s)was set for computational effi-
ciency. Training was performed on an NVIDIA DGX A100
node (Santa Clara, California, USA) with 8 GPUs and took
approximately 48h per model.
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Fig. 2 Architecture of the proposed controller based on a SAC design. Reward and action input for the Q-networks are not included in this diagram.
Adapted from [13]

Experimental design and evaluation

Two experiments were conducted. First, a single patient vas-
culaturewas used for both training and testing to replicate and
confirm that a combined reward model provides improved
success rates over a traditional dense reward function, as in
[12], for the second stage ofMT. Second, ten different patient
vasculatures were used during training with augmentation
applied, while two were reserved for testing only (Fig. 3).
This created a train/test split of approximately 80/20 [27].

For the first experiment, five targets per branch were used
for training and five different targets for evaluation. For
the second experiment, all ten targets in each branch were
utilized for evaluation. Evaluations were conducted every
2.5 × 105 exploration steps for 80 episodes, recording the
success rate, procedure time, and path ratio [12]. The models
with the highest success rate for each reward function were
compared against one another for path ratio, procedure time,
mean forces, and exploration steps. Comparative statistical
analyses were conducted using two-tailed paired Student’s t

tests and analysis of variance, with a predetermined signifi-
cance threshold set at p = 0.05.

Results

Training and testing on the same patient vasculature

Table 1 presents the results of training and testingwith reward
functions R1−6 on the same patient vasculature. Both R1

(dense without force feedback) and R3 (combined model
without force feedback) reach success rates of 100%, while
R4 (dense with force feedback) and R6 (combined model
with force feedback) reach 97% and 96%, respectively (R1,4:
p = 0.157, R3,6: p = 0.081). Both R2 (IRL without force
feedback) and R5 (IRL with force feedback) had a 44% suc-
cess rate. The addition of force feedback was associated with
significantly longer procedure times for R2 to R5 (8.1 s to
15.7 s [p = 0.001]) and R3 to R6 (5.0 s to 6.9 s [p < 0.001])
and significantly lower mean forces for R1 to R4 (0.29 N
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Fig. 3 Patient vasculatures used
for training (10 cases) and
testing (2 cases). The dashed
box represents the single
vasculature used for training and
testing in the first experiment
(Sect. 2.7)

Table 1 Results of testing and training on the same patient vasculature

Reward function Success rate (%) Procedure time (s) Path ratio (%) Mean force (N) Exploration steps

R1 100 ± 0 3.8 ± 0.3 100 ± 0 0.29 ± 0.37 325 × 106

R2 44 ± 50 8.1 ± 8.6 75.1 ± 23.8 0.30 ± 0.37 125 × 106

R3 100 ± 0 5.0 ± 2.1 100 ± 0 0.25 ± 0.36 300 × 106

R4 97 ± 16 3.8 ± 1.0 96 ± 4.5 0.25 ± 0.36 175 × 106

R5 44 ± 50 15.6 ± 9.4 80.0 ± 18.9 0.28 ± 0.36 75 × 106

R6 96 ± 19 6.9 ± 2.4 94.6 ± 7.3 0.24 ± 0.35 350 × 106

Values are reported as mean ± standard deviation. Success Rate: percentage of evaluation episodes where target is reached. Path Ratio: percentage
distance navigated to target in unsuccessful episodes, calculated by dividing the total distance navigated toward the target by the initial distance.
Procedure Time: time from the start of navigation to the target location for successful episodes. Mean Force: mean magnitude of tip forces during
evaluation. Exploration Steps: number of training steps taken to reach the point at which the results are provided. The reported values are mean ±
standard deviation (standard deviation values may exceed logical bounds (0–100%) due to the statistical calculation)

to 0.25 N [p < 0.001]) and R2 to R5 (0.30 N to 0.28 N
[p = 0.044]). Procedural time for R1 to R4 (3.8 s to 3.8 s
[p = 0.794]) and mean force for R3 to R6 (0.25 N to 0.24 N
[p = 0.249]) were both not significantly different. The max-
imum force reported across all evaluations was 1.0 N or less.

Testing on unseen patient vasculatures

Table 2 shows the results of testing reward functions R1,
R3, R4, and R6 on two unseen patient vasculatures. Over-
all, there was slight degradation in outcomes except for
mean force when compared to the initial ‘single vascula-
ture training/testing’ outcomes. A notable exception was R6,
which showed that when testing on unseen vasculatures was
compared to the initial ‘single vasculature training/testing’
scenario, results remained consistent across success rate
(96% to 96% [p = 0.987]), procedure time (6.9 s to 7.0 s
[p = 0.754]), path ratio (94.6% to 93.5% [p = 0.463]), and
mean force (0.24 N to 0.24 N [p = 0.947]). R6 achieved
the highest success rate of 96%, followed by 93% for R1

(p = 0.306). In contrast to the initial ‘single vasculature
training/testing’ scenario, force feedback led to decreased
procedure times for both R1 to R4 (8.1 s to 4.5 s, p = 0.004)

and R3 to R6 (13.6 s to 7.0 s, p < 0.001). Mean forces
decreased significantly when force feedback was included
for R1 to R4 (0.29 N to 0.24 N [p < 0.001]) and R3 to R6

(0.27 N to 0.24 N [p = 0.017]). Illustrative differences in
tip forces during navigation for R1 and R6 can be seen in
Fig. 4. The maximum force reported across all evaluations
was 1.0 N or less.

Discussion

This study is the first to achieve autonomous navigation of
both micro-guidewire and micro-catheter during the second
stage of MT, from the ICA to the MCA. It builds upon previ-
ous research by evaluating the reward function used by [12],
while testing on unseen patient vasculatures. This proof-of-
concept in silico study also demonstrated that incorporating
tip force feedback into the reward function is feasible in
the MT second stage scenario shown here and may reduce
mean forces on vasculature. Furthermore, when force feed-
back is incorporated into a combined reward model and
tested on unseen vasculatures, improved success rates and
reduced procedure times are seen. The same model appeared
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Table 2 Results of testing on two unseen vasculatures after training on ten different vasculatures

Reward function Success rate (%) Procedure time (s) Path ratio (%) Mean force (N) Exploration steps

R1 93 ± 27 8.1 ± 8.8 89.6 ± 23.8 0.29 ± 0.37 400 × 106

R3 88 ± 33 13.6 ± 10.4 88.1 ± 23.6 0.27 ± 0.36 625 × 106

R4 78 ± 42 4.5 ± 3.0 84.1 ± 28.7 0.24 ± 0.35 200 × 106

R6 96 ± 19 7.0 ± 3.9 93.5 ± 15.1 0.24 ± 0.35 700 × 106

Table 1 concludes IRL’s ineffectiveness compared to other reward functions, and hence, R2,5 were omitted when testing on unseen vasculatures

Fig. 4 Navigation path to RMCA for R1 (dense without force feedback), R3 (combined model without force feedback), R4 (dense with force
feedback), and R6 (combined model with force feedback), with example regions of higher tip forces indicated

generalizable with no domain shift when transitioning from
training/testing on a single vasculature to training onmultiple
vasculatures and testing on unseen ones. While the current
autonomous MT navigation system is at technology readi-
ness level (TRL) 3 [28], the first successful autonomous
navigation of the second stage of MT on unseen real patient
anatomiesmight contribute toward increasing theTRL, a step
forward to realizing the benefits of fully autonomous MT.

IRL reward function

Results from training and testing on the same vasculature
aligned with previous work [12] and showed high success
rates for R1,4 and R3,6, while R2,5 had a lower success rate.
These initial results concluded IRL’s ineffectiveness com-
pared to the other reward functions, leading to the omission
of R2 and R5 in subsequent testing on unseen vasculatures.
This ineffectiveness may stem from the inherent difficulty in
capturing the nuances of expert decision making in highly
dynamic environments like endovascular navigation, where
factors such as subtle anatomical differences and force feed-
back cues play a role.

Training RL models, particularly in IRL settings, remains
a considerable challenge. The dual task of learning a reward
function from demonstrations and optimizing a policy intro-
duces additional complexity. Our findings highlight the
sensitivity of RL approaches to the reward function, which
impact convergence speed as exploration steps increasedwith

the addition of IRL when moving from R1 to R3 (400× 106

to 625 × 106) and from R4 to R6 (200 × 106 to 700 × 106).
Despite this, expert demonstrator data could plausibly

still be useful in enhancing autonomous endovascular nav-
igation, whether this is through a different form of IRL
or alternative RL algorithms. Nevertheless, the addition of
demonstrator data has been shown to improve RL in dif-
ferent scenarios, while enhancing sample efficiency, helping
with sparse rewards, and potentially enabling safer explo-
ration [29], and has effectively been utilized in previous
autonomous endovascular navigation work [30].

Force feedback

A decrease in success rate, and path ratio, as well as an
increase in procedure time, and training time, was observed
when moving from testing and training on the same vascu-
lature to testing on unseen vasculatures. While this overall
slight degradation in outcomes is expected due to the dif-
ficult task of navigating a completely unseen vasculature,
there were two exceptions. First, mean forces were lower
demonstrating safety. Second, a maximum success rate of
96% is promising for the combined model. While the addi-
tion of guidewire tip force feedback in the reward function
decreased success rate for the dense reward function (93%
to 78%), the addition improved the success rate for the com-
bined model (88% to 96%). As there are multiple reward
signals for all reward functions examined (tip force, steps
taken, path length), the reason for this difference may be that
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R6 provides the optimal balance of these signals. By fine-
tuning the scaling factors for each reward function, it may be
possible to further improve training results. Force feedback
also significantly reduced procedure time for unseen vas-
culatures (R1,4: 8.1s to 4.5s, R3,6: 13.6s to 7.0s)—a result
not seen when testing and training on the same vasculature.
Plausibly, the addition of forces may discourage the tip from
applying significant force to the vessel wall which can occur
when the tip is caught within the lumen preventing it from
moving; the net result might be an increase in overall veloc-
ity due to decreased friction and subsequently decrease in
procedure time.

Our motivation for including force feedback was to
decrease mean forces as a patient safety feature. While its
addition decreased the mean forces on the guidewire tip, we
acknowledge that the mean forces across all experiments in
unseen vasculature were low in any case with a maximum
of 0.29 N, well below the vessel rupture threshold of 1.5 N
proposed by [10]. Although no study has analyzed instru-
ment forces during RL training as a method for increasing
safety during the procedure, previous studies have measured
instrument and vessel wall forces as part of their experiments
[31], which suggests that our approach could be translated to
in vitro environments.

Limitations

Similar to previous methods [10, 12, 13], in silico work
cannot measure fluoroscopy time (a surrogate of radiation
exposure) which has been included in some clinical studies
[32]. Additionally, using a keypad-operated controller for
data collection may not fully reflect the actions of an expe-
rienced neurointerventional radiologist. The small dataset of
patient vasculatures used for training and testing limits gen-
eralizability. Although augmentation introduced a degree of
variability, this dataset is not able to replicate the different
configurations of the Circle of Willis or branching patterns
of the cerebral arteries found in the population, and a larger,
more diverse, dataset may be required to ensure effective in
vitro translation. As the current work focuses entirely in sil-
ico, physical characteristics of guidewires, especially force
transmission, may not be fully captured. Hence, future work
should aim to understand the impact that training with in
silico force feedback has on in vitro models, while provid-
ing in vitro validation of the proposed methods. While this
work incorporated real-world mechanical data to enhance
the accuracy of force models, future work could improve
simulation-to-real transfer by modeling vessels as elastic
bodies to reflect the behavior of real vessels—however, any
added benefit may be imperceptible during the second MT
stage used in the current scenario, as the distal ICA is rigid
and the M1 is somewhat inflexible. Future work may also
compare tracking- and visual-based RL algorithms, to inves-

tigatewhether the samebenefits canbegained fromproviding
the entire image frame at each simulation step.

Conclusion

In conclusion, this study proposes an offline RL algo-
rithm that autonomously navigates (micro-guidewires and
micro-catheters) to cerebral vessels in unseen patients while
considering the amount of force applied to the device tip,
representing the first demonstration of autonomous naviga-
tion in both cerebral vessels and unseen patient vasculatures.
We evaluated various reward functions and confirmed the
superior performance of a combined reward model with
force feedback (R6), which maintained a 96% success rate
in patient vasculatures the model had not seen previously.
The addition of force feedback not only reduced procedure
times but also decreased the mean forces exerted, plausibly
enhancing patient safety by decreasing both time to treat-
ment and the likelihood of iatrogenic vessel damage. Future
work should focus on translating the proposed method to in
vitro experiments and extending the dataset to integrate more
diverse patient vasculatures.

Appendix A Vasculature characteristics

Table 3 Characteristics of vasculatures used during the study [33]. Tortuosity is
computed as the ratio between two distances: (1) the geodesic length along the
centerline of the artery and (2) the Euclidean distance between the two end-points
of the artery segment. This index lies in [1,+∞): the closer to 1 the less tortuous.
Radius was calculated as the origin

Vasculature
no.

Train/
test

RICA
tortuosity

LICA
tortuosity

RICA
radius
(mm)

RMCA
radius
(mm)

LICA
radius
(mm)

LMCA
radius
(mm)

1 Train 1.16 1.14 2.05 1.21 1.51 2.18

2 Train 1.25 1.18 2.13 1.28 2.48 1.15

3 Train 1.35 1.42 3.46 1.00 3.30 0.77

4 Train 1.16 1.13 0.99 1.19 3.66 1.19

5 Train 1.10 1.24 3.80 1.66 2.49 1.58

6 Train 1.19 1.27 3.10 1.40 1.33 1.02

7 Train 1.47 1.60 2.87 1.78 3.56 1.59

8 Train 1.41 1.33 3.27 1.13 2.83 1.10

9 Train 1.39 1.23 2.36 1.61 4.26 1.51

10 Train 1.27 1.42 3.51 1.64 3.52 1.44

11 Test 1.15 1.11 5.80 0.98 5.35 0.93

12 Test 1.21 1.21 3.33 0.98 3.20 0.84
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Appendix B CTA scan parameter settings

B.1 Scan Protocol

• Scanner Type: Multi-detector CT (Optima 660 GE
Healthcare, 64 section)

B.2 Acquisition parameters

• Slice Thickness: 0.625 mm
• Detector Collimation: 40.0 mm
• Pitch: 0.984 mm
• Rotation Time: 0.3−0.5 s (faster for reducingmotion arti-
facts)

• Field of View (FOV): 500mm

B.3 Contrast injection

• The acute stroke imaging protocol consisted of craniocer-
vical arterial phase acquisition after intravenous injection
of 50mL of iohexol, 647 mgmL−1(5mLs−1) (Omni-
paque 300; GE Healthcare)

• Saline Flush: 40mL (saline bolus)
• Bolus Tracking: Self-triggered—observe contrast and
scanwhen suitable contrast in ascending aorta and carotid
artery plus auto-minimum delay setting (15–20s post-
injection for optimal arterial phase)

B.4 Radiation dose parameters

• Tube Voltage (kVp): 100 kVp
• Tube Current (mA): 315 mAwith dose reduction on 40%
• DLP (Dose Length Product): Toward 600 mGy cm

B.5 Reconstruction parameters

• Reconstruction Algorithm: Standard kernel for arteries
• Post-processing:2/5Maximumintensity projection (MIP)

B.6 Patient positioning

• Supine position, head immobilized, and neck slightly
extended to avoid venous overlap with arteries
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