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Abstract: Beyond being aging-related diseases, atherosclerosis and osteoporosis share common
pathogenetic pathways implicated in bone and vascular mineralization. However, the contributory
role of dyslipidemia in this interplay is less documented. The purpose of this narrative review is to
provide epidemiological evidence regarding the prevalence of bone disease (osteoporosis, fracture
risk) in patients with dyslipidemias and to discuss potential common pathophysiological mechanisms
linking osteoporosis and atherosclerosis. The effect of hypolipidemic therapy on bone metabolism is
also discussed. Despite the high data heterogeneity and the variable quality of studies, dyslipidemia,
mainly elevated total and low-density lipoprotein cholesterol concentrations, is associated with low
bone mass and increased fracture risk. This effect may be mediated directly by the increased oxidative
stress and systemic inflammation associated with dyslipidemia, leading to increased osteoclastic
activity and reduced bone formation. Moreover, factors such as estrogen, vitamin D and K deficiency,
and increased concentrations of parathyroid hormone, homocysteine and lipid oxidation products,
can also contribute. Regarding the effect of hypolipidemic medications on bone metabolism, statins
may slightly increase BMD and reduce fracture risk, although the evidence is not robust, as it is
for omega-3 fatty acids. No evidence exists for the effects of ezetimibe, fibrates, and niacin. In any
case, more prospective studies are needed further to elucidate the association between lipids and
bone strength.
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1. Introduction

Dyslipidemias, which encompass a wide range of disorders in lipoprotein metabolism,
constitute one of the leading causes of atherosclerotic cardiovascular disease (ASCVD)
worldwide, mainly coronary heart disease (CHD) [1]. Osteoporosis is another common en-
tity characterized by deterioration of bone microarchitecture, compromising bone strength
and leading to increased risk of fractures [2]. Besides being age-dependent degenerative
processes, atherosclerosis and osteoporosis share common underlying pathogenetic mech-
anisms involving bone and vascular mineralization [3]. Briefly, these include estrogen,
vitamin D and K deficiency, increased concentrations of parathyroid hormone (PTH), ho-
mocysteine and lipid oxidation products, increased oxidative stress, and several other
metabolic pathways that promote both the atherosclerotic process and bone loss. However,
the role of dyslipidemias in skeletal health is less documented, with many studies yielding
inconsistent results.
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The purpose of this narrative review is to provide epidemiological and pathophys-
iological evidence regarding the association between dyslipidemia and bone mass and
fracture risk. The effect of available hypolipidemic agents on bone health is also discussed.

2. The Association between Dyslipidemia and Bone Mineral Density or Fracture Risk
2.1. Bone Mineral Density

In general, epidemiological data regarding the association between lipid profile and
bone mineral density (BMD) are inconsistent. Although some studies have shown no
association between dyslipidemia and BMD, others have reported either a negative or a
positive effect for each lipid parameter [4–24]. A summary of the highly cited studies is
presented in Table 1, illustrating their heterogeneity.

Table 1. Observational studies assessing the association between lipids and BMD in adults.

Author/Year n Country Gender Age (Years)
Association with BMD

TC/LDL-C HDL-C TG

Yamaguchi, 2002 [4] 214 Japan F 47–86 - + no

Poli, 2003 [5] 1303 Italy F 54.2 ± 4.3 - no N/A

Tankó, 2003 [6] 340 Denmark F 50–75 - N/A N/A

Adami, 2004 [7] 982 Italy M/F 35–82 + - +

Orozco, 2004 [8] 52 Spain F 55.2 ± 3.8 - - -

Samelson, 2004 [9] 1162 USA M/F 32–61 - - N/A

Cui, 2005 [10] 730 Korea F 19–80 - - -

Solomon, 2005 [11] 13,592 USA M/F >17 no no no

Hsu, 2006 [12] 13,970 China M/F 25–64 - no -

Dennison, 2007 [13] 513 UK M/F 64 no - N/A

Tang, 2007 [14] 368 Taiwan M 78 N/A N/A +

Makovey, 2009 [15] 497 Australia F 20–81 - - no

Sivas, 2009 [16] 107 Turkey F 45–79 no no no

Hernadez, 2010 [17] 289 Spain M 63.8 ± 8.4 + no no

Go, 2012 [18] 958 Korea F 58.6 ± 5.8 - + N/A

Pliatsika, 2012 [19] 591 Greece F 53.0 ± 5.65 no + no

Kim, 2013 [20] 6300 Korea M 19–85 - - -

Loke, 2018 [21] 1162 Taiwan M/F 59.9 ± 7.3 no + no

Panahi, 2019 [22] 2426 Iran M/F 69.1 ± 6.3 - - +

Chin, 2020 [23] 400 Malaysia M/F >40 N/A no no

Zhang, 2020 [24] 1116 China F 58.2 ± 13.9 no no no

Abbreviations: BMD—bone mineral density; F—females; HDL-C—high-density lipoprotein cholesterol; LDL-C—
low-density lipoprotein cholesterol; M—males; N/A—not available; no—no association; TC—total cholesterol;
TG—triglycerides. Notes: (+) indicates positive association; (-) indicates negative association.

In brief, 712 women and 450 men (aged 32–61 years at baseline) in the seminal Fram-
ingham cohort were studied with serum lipid measurements every 2 years until 1988–1989,
when bone densitometry was performed. No association was found between averaged
total cholesterol (TC) and BMD at any of the assessed skeletal sites [total hip (TH), lumbar
spine (LS), and distal radius] [9]. Survival bias is a possible reason for the absence of
association since individuals with hyperlipidemia are at a higher risk of death compared
to those with normal lipid profiles. This was also the case with another study, including
958 postmenopausal Korean women, which found no association between LS or femoral
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neck (FN) BMD with TC, low-density lipoprotein cholesterol (LDL-C), triglyceride (TG),
or high-density lipoprotein cholesterol (HDL-C) concentrations, either at the beginning or
at the end of follow-up (7.1 years). The study, however, could not account for the use of
anti-osteoporotic medication, which may have influenced the results [18]. The absence of
association between these lipid parameters with BMD was also supported by a Greek cross-
sectional study (n = 591 postmenopausal women) [19]. Interestingly, the authors found a
negative association with LS BMD only for lipoprotein (a) (Lp(a)) in women ≥53 years and
for HDL-C for those <53 years [19]. As this study was based on a convenience sample of
women attending a menopause clinic in a tertiary care hospital, selections biases cannot
be excluded. A negative association between Lp(a) concentrations and LS or FN BMD
was also shown in a cross-sectional study, including 52 overweight early postmenopausal
women [8]. However, a post-hoc analysis from the Women’s Health Initiative (WHI) study
(n = 9698 postmenopausal women) showed no association between Lp(a) concentrations
and hip BMD [25].

Another study investigated the association between lipid profile and BMD in two
different cohorts, one from the general population (n = 265 males, 481 females) and one from
patients attending an osteoporosis clinic (n = 236 pre- and postmenopausal women) [7]. In
both groups, TH BMD was positively associated with LDL-C (p < 0.05) and TG (p < 0.05) and
negatively with HDL-C concentrations (p < 0.05) in both genders, even after adjustment
for body weight, height, and fat mass. Total body and LS BMD were also positively
associated with LDL-C and TG and negatively with HDL-C concentrations in the general
population and the clinic cohort, respectively [7]. The positive association of TH BMD
with TC/LDL-C and the inverse association with HDL-C was replicated in a large US
cohort (n = 13,592 participants of the National Health and Nutritional Examination Survey
(NHANES) III). Nevertheless, after correction for potential confounders, such as age, sex,
body mass index (BMI), and statin use, the association between lipid profile and BMD lost
significance [11].

In contrast, another cross-sectional study (n = 1303 postmenopausal women who
attended a menopause clinic) showed a higher prevalence of low LS BMD in those with
high LDL-C concentrations (>160 mg/dL) compared with those with LDL-C <160 mg/dL
(47.9% vs. 21.2%, respectively) [5]. A Japanese study in postmenopausal women referred to
a tertiary care clinic for the evaluation of osteoporosis also showed an inverse association
between LDL-C and forearm BMD, including 214 postmenopausal women. LS BMD was
marginally not associated with LDL-C (p = 0.051). On the other hand, HDL-C concentrations
were positively correlated with BMD values in these sites [4].

Aiming to overcome these discrepancies, some meta-analyses were conducted. One
meta-analysis that included ten studies [26] compared the lipid profile between post-
menopausal women with osteoporosis and normal BMD. HDL-C and TC concentrations
were higher in the osteoporosis compared with the normal BMD group [HDL-C: mean dif-
ference (MD) 2.63, 95% confidence interval (CI) 0.43–4.84; TC: MD 14.82, 95% CI 2.84–26.80].
LDL-C concentrations also tended to be higher in the osteoporosis group (LDL-C: MD 9.67,
95% CI from −0.10 to 19.44). No difference in TG concentrations between groups was
observed.

Another recent meta-analysis [27] included data from 12 case-control studies in pa-
tients with osteopenia or osteoporosis (n = 12,395). It investigated the difference in lipid
profile in comparison with individuals with normal BMD. Regarding TC, there was no
difference between patients with low bone mass (osteopenia or osteoporosis) and controls,
irrespective of gender or hypolipidemic medication. This was also the case regarding
LDL-C and TG concentrations. LDL-C concentrations were higher only in the osteoporo-
sis subgroup, which was not prescribed any lipid-lowering medication, compared with
controls [(mean difference (MD) 0.16 mmol/L, confidence interval (CI) 0.02–0.31]. More-
over, TG concentrations were slightly higher in patients with osteopenia compared with
controls only in the subgroup prescribed hypolipidemic treatment (MD 0.07 mmol/L,
95% CI 0.03–0.12). Concerning HDL-C concentrations, these were higher in patients with
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osteoporosis compared with those with normal BMD (MD 0.05 mmol/L, 95% CI 0.03–0.07),
whereas there was no difference between osteopenia and control groups in this regard.

Few studies exist in children and adolescents concerning the association between
lipid profile and BMD, yielding inconsistent results. In a cross-sectional study from China
(n = 14,303; 49.9% boys; mean age 11.4 ± 3.3 years), an inverse association was observed
in both sexes between serum TG concentrations and calcaneus BMD [28]. Similar results
were shown in a cross-sectional study from Spain (n = 188 overweight/obese children;
mean age 10.4 ± 1.2 years), in which metabolically unhealthy children with metabolic
syndrome (including high TG and low HDL-C concentrations) presented lower areal
BMD compared with metabolically healthy ones [29]. In contrast, a cross-sectional study
from the UK (n = 2305; 47.7% males; mean age 15.5 years) showed a positive association
between serum TG and total body BMD, bone mineral content, and bone area. HDL-C
was inversely associated with these parameters [30]. Moreover, in a small, cross-sectional
study (n = 47 Caucasian male adolescents; mean age 16.9 years), a positive association was
observed between serum Lp(a) concentrations and femoral neck BMD [31]. However, in a
cross-sectional study (n = 306 girls; mean age 10.8 ± 1.1 years), there was no association
between lipid profile (TG, HDL-C, LDL-C) and total or areal BMD [32].

2.2. Dyslipidemia and Fractures

In general, little data exist concerning the association between dyslipidemia and
fractures. According to a recent meta-analysis, which included ten studies (six prospective,
three cross-sectional, and one case-control; 3–20 years of follow-up; n = 60,484 individuals;
mean age >25 years), a 50 mg/dL increase in TC concentrations was associated with 15%
higher risk of fractures (combined effect size 1.15, 95% CI 1.02–1.30). Concerning HDL-C,
although there was no association with fractures, subgroup analysis from prospective
studies showed an 18% lower risk of fractures in those with HDL-C < 40 mg/dL compared
with individuals with HDL-C > 40 mg/dL (combined effect size: 0.82, 95% CI 0.71–0.96).
Finally, no association between either TG or LDL concentrations and fracture risk was
documented [33]. Similarly, no association exists between Lp(a) concentrations and fracture
risk [25].

2.3. Critical Review of Available Data

The abovementioned data point towards a positive association between dyslipidemia
(especially high TC and LDL-C concentrations) and low bone mass or fractures, although
firm conclusions cannot be drawn. Most of these studies were cross-sectional in design
or used a convenience sample. Furthermore, many confounders, such as dietary habits of
calcium intake, alcohol or caffeine consumption, smoking, socioeconomic status, ethnicity,
gender, exercise and physical activity, or comorbidities such as diabetes, which intervene
with the association between lipid profile and bone mass, should be acknowledged. Another
shortcoming of these studies is excluding patients with ASCVD prescribed lipid-lowering
medication or at high risk of fracture prescribed anti-osteoporotic medication.

3. Pathogenetic Mechanisms Linking Dyslipidemia and Atherosclerosis with
Impaired Bone Metabolism
3.1. Direct Effect of Dyslipidemia on Bones

Several, though not all, lines of evidence have shown an inverse association of BMD
with TC and LDL-C [34]. It has been suggested that increased cholesterol inhibits osteoblast
differentiation, preventing bone formation [35]. Enhanced osteoclastogenesis may also be
involved [35]. A differential effect of serum cholesterol on BMD at various skeletal sites
has been suggested [34], explaining the inconsistency among studies. Furthermore, low
HDL-C concentrations have been associated with the development of an inflammatory
microenvironment and increased bone marrow adiposity, which restrains the differentiation
and function of osteoblasts, leading to reduced bone mass [36].
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Bones and vascular tissue share similar pathological features. As with atherosclero-
sis, increased lipids accumulate beneath the vascular intima and perivascular space in
bones [37]. Furthermore, inflammatory bioactive lipids, which promote atherosclerosis, also
induce bone loss [37], whereas oxidized LDL-C appears to play a major role in bone loss [38].
Lipid oxidation products, such as minimally oxidized LDL-C, promote arterial calcification,
possibly by activating osteoblasts in the arterial pool, while their accumulation in the
subendothelial space of skeletal bone arteries inhibits bone formation [39]. Dyslipidemias
are also associated with impaired nitric oxide (NO) and enhanced endothelin production,
leading to endothelial cell dysfunction and increased thrombotic risk [40]. Additionally,
isoprostanes, present in atherosclerotic plaques, enhance vasoconstriction and endothelin-1
release in endothelium and modulate platelet aggregation [41]. Isoprostanes also inhibit
osteoblastic differentiation of pre-osteoblasts and enhance osteoclastic differentiation and
activity [41]. Overall, lipids appear to be involved in bone remodeling and atherosclerosis
progression in opposite directions, explaining the simultaneous existence of osteoporosis
and atherosclerosis in people with dyslipidemia [42].

Other mechanisms involve fat accumulation in the femoral head, which increases bone
marrow microcirculation pressure and reduces bone vascularization, resulting in ischemia
and hypoxia [43]. Moreover, increased blood viscosity also compromises bones’ blood
supply [43]. All these phenomena may lead to bone necrosis and fractures [43]. A summary
of the direct and indirect mechanisms linking dyslipidemia with bone loss is provided in
Table 2.

Table 2. Pathogenetic mechanisms linking dyslipidemia and atherosclerosis with impaired bone
metabolism.

Direct effects

• ↑ Cholesterol→ ↓ osteoblast differentiation, ↑ osteoclastogenesis
• ↓ HDL-C→ ↓ osteoblast differentiation and function
• Oxidized LDL-C→ ↑ bone loss
• ↑ Fat accumulation in the femoral head→ ischemia and hypoxia
• ↑ Blood viscosity, which compromises bones’ blood supply

Estrogens

• ↓ Estrogens→ ↓ osteoblast differentiation, ↑ osteoclastogenesis, ↓ bone mass,
atherogenic dyslipidemia→ ↑ atherosclerosis and fracture risk

• Inverse association between estrogen and serum homocysteine and oxidized
LDL-C concentrations

Vitamin D, PTH • Low vitamin D status→ secondary hyperparathyroidism→ ↓ bone mass,
dyslipidemia, ↑ cardiovascular risk

Inflammation • Dyslipidemia→ systemic inflammation (↑ TNF-α, IL-1, IL-6, IL-17, C-reactive
protein)→ ↑ osteoclastogenesis, osteoporosis

Gla proteins (MGP and osteocalcin) • Involvement in mineralization of bones and arteries

Vitamin K • Essential co-factor for the formation of Gla proteins
• Protects against osteocalcin-induced calcification

Osteopontin • ↑ Osteoclast activity, bone resorption
• ↑ Systemic inflammation, atherosclerosis, and plaque calcification

BMPs • Involved in osteoblast differentiation and proliferation
• Vascular calcification promotion

Homocysteine
• ↑ Osteoclastogenesis, osteoclast activity, bone resorption
• ↓ Blood supply and impairment of bone biomechanical properties
• Association with premature atherosclerosis and thromboembolism
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Table 2. Cont.

Nitric oxide
• ↑ Vascular smooth muscle relaxation, ↓ LDL-C oxidation, platelet aggregation, and

adhesion
• ↑ Bone formation and fracture healing

RANK/RANKL/OPG axis • ↑ Osteoclastogenesis, osteoclast activity, bone resorption
• Association with arterial and valve calcification

Wnt pathway • Involved in intracellular cholesterol trafficking
• Regulation of osteoblastogenesis and bone formation

Abbreviations: BMPs—bone morphogenetic proteins; Gla—carboxyglutamic acid; HDL-C—high-density lipopro-
tein cholesterol; IL—interleukin; LDL-C—low-density lipoprotein cholesterol; MGP—matrix Gla protein,
PTH—parathyroid hormone; RANK/RANKL/OPG—receptor activator of nuclear factor kappa-B//RANK
ligand/osteoprotegerin; TNF-α—tumor necrosis factor-α; Wnt—Wingless-related integration site; ↑: increased; ↓
decreased.

3.2. Indirect Mechanisms
3.2.1. Estrogens

Bone and coronary arteries are target organs for estrogens. Indeed, estrogen receptors
have been detected on osteoblasts, osteoclasts, and coronary artery smooth muscle cells [44].
Estrogen loss during the transition to menopause leads both to bone loss [45] and athero-
genic dyslipidemia [46,47]. Reduced estrogen concentrations have also been associated
with increased PTH secretion [48] and, subsequently, accelerated bone loss and soft tissue
calcium deposition, including vascular and myocardial calcification [49]. Moreover, an
inverse association between estrogen and serum homocysteine concentrations, as well as
oxidized LDL-C, has been reported [3], which may partly explain the increased risk for
both osteoporosis and atherosclerosis in menopause.

3.2.2. Vitamin D and PTH

Vitamin D and PTH are associated with the regulation of phosphorus metabolism,
and dysregulated phosphorus metabolism is associated with bone mineral disorders and
vascular calcification [50]. Vitamin D deficiency leads to decreased calcium absorption
from the intestine and calcium release from bones to maintain normal serum calcium
concentrations [51]. Moreover, low vitamin D status increases fracture risk via secondary
hyperparathyroidism, leading to bone demineralization and the development of osteoma-
lacia and osteoporosis [51]. On the other hand, vitamin D receptors (VDR) are present in
endothelial and smooth muscle cells of the arterial wall [3,52]. Some, but not all, studies
suggest that polymorphisms of VDR may be involved in the mutual risk between osteo-
porosis and atherosclerosis [3,52]. Moreover, increased PTH concentrations are associated
with an increased risk of ASCVD [53].

3.2.3. Systemic Inflammation

Inflammation is an important component in the pathogenesis of atherosclerosis and
osteoporosis, and inflammatory rheumatic diseases have been associated with secondary
atherosclerosis and increased bone loss [54]. Several inflammatory mediators are involved
in both clinical entities. Furthermore, high concentrations of some inflammatory mediators
[e.g., tumor necrosis factor α (TNF-α), interleukin (IL)-1, IL-6, IL-17, and C-reactive protein]
have been associated with increased risk of myocardial infarction and non-traumatic
fragility fractures [53].

3.2.4. Carboxyglutamic Acid (Gla) Proteins

Gla proteins, including matrix Gla protein (MGP) and osteocalcin, encompass a part
of a family of mineral-binding proteins. Gla residues bind and incorporate calcium into
hydroxyapatite crystals [55]. MGP is a secretory protein with widespread tissue expression,
including bones and vascular walls, inhibiting the osteoid formation and mineraliza-
tion [56,57]. Osteocalcin, an abundant protein in bones, also inhibits calcification. Data
from animal studies suggest that depletion or dysregulation of these proteins leads to
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abnormal mineralization of bones and arteries [56]. Regarding humans, MGP is integrally
expressed in the normal aorta, while it is up-regulated in atherosclerotic plaques [58],
probably to limit vascular osteogenesis. Osteocalcin resembles MGP expression in normal
and atherosclerotic human vessels [59]. Indeed, increased serum osteocalcin concentrations
have been observed in women with both atherosclerosis and osteoporosis [60,61].

3.2.5. Vitamin K

Vitamin K is an essential co-factor for the formation of Gla proteins. Accordingly,
reduced availability of vitamin K has been associated with functionally defective Gla
proteins, which cannot properly form the matrix in which calcium and phosphorus bind
together to make solid, well-mineralized bone; thus, low BMD ensues [62]. On the other
hand, impaired vitamin K status has been associated with the presence of atherosclerotic
calcification [3]. A possible underlying mechanism is that, by increasing MGP in the arterial
wall, vitamin K protects against the calcification induced by osteocalcin [62].

3.2.6. Osteopontin

Osteopontin (OPN) is an extracellular, non-collagenous bone matrix glycoprotein,
which binds to integrins, especially the αvβ3 one. Integrins are transmembrane proteins
that facilitate cell–cell and cell–extracellular matrix adhesion [63]. In bone, upon OPN
binding, integrin αvβ3 activates signal transduction pathways that mediate osteoclast
attachment to resorption sites [55,64], subsequently promoting bone resorption [64–66].
Apart from bones, OPN appears to be involved in vascular inflammation and atheroscle-
rosis [67]. Several lines of evidence suggest that OPN promotes atherosclerotic plaque
formation, leading to artery calcification [68–70]. In patients with CHD, OPN was found
to be localized in calcified atherosclerotic lesions [59] and calcified cardiac valves [71].
Several possible underlying mechanisms regarding the association of OPN expression
with increased atherosclerotic risk have been proposed, such as enhanced endothelial
cell migration via αvβ3 ligand, increased macrophage activation, and cytokine release by
OPN [72,73].

3.2.7. Bone Morphogenetic Proteins

Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β

(TGF-β) superfamily. TGF-β exerts a fundamental role in regulating osteoblast differ-
entiation and proliferation [74,75]. Among BMPs, BMP-2 and BMP-7 promote collagen
synthesis and are involved in bone and cartilage formation [76]. Besides its role in bone
homeostasis, BMP signaling has also been well described in endothelial cells [77]. Further-
more, megakaryocytes and platelets also contain BMP-2 and BMP-4 [78], the latter being a
mediator of vascular inflammation in early atherosclerosis and restenosis [79].

Considering that BMPs induce bone formation and that BMP-2 is expressed by vascu-
lar endothelial and smooth muscle cells, it may be assumed that the vascular expression of
BMPs could favor calcification. Indeed, increased BMP-2 and Cbfa-1 have been demon-
strated in human atherosclerotic lesions, whereas this does not occur in normal arteries [80].
Furthermore, BMP-2 expression in the arterial wall is regulated by proinflammatory stimuli,
such as TNF-α and oxidized lipids, hyperglycemia, and maybe a feature of atherosclerotic
calcification [81].

3.2.8. Homocysteine

Homocysteine is involved in bone metabolism via several mechanisms. Overall, it
fosters osteoclastogenesis and increases osteoclast activity, subsequently enhancing bone
resorption, while it decreases osteoblast activity and delays the synthesis of complex cross-
links in collagen [82]. Of note, hyperhomocysteinemia appears to be a marker for increased
risk of osteoporosis and osteoporotic fractures, as it reduces blood supply in the bone
and may influence the biomechanical properties of bones [83]. However, data regarding
the link between homocysteine and osteoporosis are inconsistent [84–86]. On the other
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hand, hyperhomocysteinemia has also been associated with premature atherosclerosis
and thromboembolism. Several underlying mechanisms have been proposed, such as
endothelial dysfunction, diminished NO bioavailability, lipid peroxidation, smooth muscle
cell proliferation, and increased platelet aggregation [87,88]. Of note, dyslipidemia (mainly
hypertriglyceridemia and low HDL-C concentrations) is positively associated with serum
homocysteine concentrations [89].

3.2.9. Nitric Oxide

NO has atheroprotective properties. Briefly, endothelial NO promotes vascular smooth
muscle relaxation and inhibits platelet aggregation and adhesion, as well as LDL-C ox-
idation [90–92]. NO is also produced in bone cells by all three NO synthase (NOS) iso-
forms, i.e., endothelial, neural, and inducible NOS [93]. Concerning bone metabolism, low
physiological NO concentrations stimulate bone formation and fracture healing, whereas
pathologically, high NO concentrations inhibit these processes [94]. Consistently, animal
studies suggest that the biological response to NO is dose-dependent in bone and vascular
tissue, with NOS accentuating bone loss and NOS deficiency accelerating atherosclerosis
and osteoporosis [42].

3.2.10. RANK/RANKL/OPG System

The receptor activator of nuclear factor kappa-B (RANK)/RANK ligand (RANKL)/
osteoprotegerin (OPG) system plays a major role in maintaining the coupling between
bone resorption by osteoclasts and bone formation by osteoblasts [95]. RANKL is released
by osteoblast lineage cells and binds to RANK, leading to the differentiation of osteoclast
precursor cells into mature osteoclasts [96]. OPG is a soluble glycoprotein, largely expressed
in osteoblast lineage cells and various other cell types, including vascular endothelial
cells [97]. OPG, as a decoy receptor for RANKL, inhibits RANK–RANKL interactions
and subsequently osteoclastogenesis and bone resorption [98]. On the other hand, the
upregulation of the RANK/RANKL/OPG axis has been associated with arterial and valve
calcification [99].

3.2.11. Wnt Pathway

The Wingless-related integration site (Wnt) pathway, which comprises a large fam-
ily of 19 secreted signaling glycoproteins and 10 frizzled receptors [100], is involved in
regulating osteoblastogenesis and bone formation. These glycoproteins bind to receptor
complexes, such as LDL receptor-related proteins (LRP)-5 and LRP-6 [101], and stimulate
gene expression associated with bone development [102]. Accumulating evidence sug-
gests that Wnt signaling improves intracellular cholesterol trafficking through mechanisms
other than the classical LDL receptor pathway. Of note, Wnts have been demonstrated to
protect against atherosclerosis and coronary artery occlusion [103]. Furthermore, Wnt lig-
ands appear to regulate the pathologic calcification in the vasculature and the osteoblastic
trans-differentiation of smooth vascular cells in vitro [104]. Wnt signaling antagonism by
oxidative stress may be one of the underlying mechanisms associated both with osteoporo-
sis and atherosclerosis, as well as impaired glucose and lipid metabolism [105].

Sclerostin, an inhibitor of Wnt-mediated osteoblast activation and bone formation, is
also involved in bone resorption and subsequent BMD reduction [106] and is associated
with early atherosclerosis [107].

3.2.12. Cbfa1 and Runx-2 Transcription Factors

The transcription factors core-binding factor alpha 1 (Cbfa1) and runt-related transcrip-
tional factor-2 (Runx-2) promote osteoblastic differentiation at the early stage but inhibit it
at the late stage [3,108]. These factors enhance the expression of bone matrix protein genes
and the mineralization in immature mesenchymal and osteoblastic cells in vitro [3,108].
Moreover, Runx-2 expression has been identified in atherosclerotic human vascular tissue
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specimens. Specifically, oxidative stress likely induces vascular smooth cell calcification by
modulating Runx-2 [109].

4. The Effect of Hypolipidemic Medications on Bone Metabolism
4.1. Statins

The 3-hydroxy-3-methylglutarylo-CoA (HMG-CoA) reductase inhibitors (statins) are
the most widely prescribed lipid-lowering agents, constituting the mainstay of treatment
both in adults and children with hypercholesterolemia [110,111]. Preclinical and clinical
data suggest a potential beneficial effect on bone metabolism. In particular, statins may
inhibit osteoclastic activity since HMG-CoA blockade reduces the production of down-
stream products in the mevalonate pathway, such as farnesyl pyrophosphate (FPP) and
geranylgeranyl pyrophosphate (GGPP) [112]. The same pathway is also shared by nitrogen-
containing bisphosphonates, thus preventing the prenylation of guanosine triphosphate
(GTP)-ases, such as Ras, Rho, and Rac, which are essential for the survival and function of
osteoclasts [113]. Another mechanism could be the inhibition of RANKL, which is essential
for osteoclast differentiation by averting the production of reactive oxygen species [114].
Statins may also increase 25-hydroxy-vitamin D concentrations [52].

Statins also exert osteoanabolic properties, inhibiting osteoblast apoptosis and foster-
ing osteoblast activity. This mechanism is mediated through increased expression of the
BMP-2 gene, which promotes osteoblast differentiation [115]. The latter is also induced
by the depletion of FPP and GGPP, as mentioned above [116]. Statins may also promote
embryonic stem cell differentiation towards the osteogenic lineage, through activation of
increased mRNA expression of runt-related gene 2 (Runx2), osterix (OSX), and osteocalcin
(OCN), as osteogenic transcription factors [117].

However, data in humans regarding the effect of statins on bone mass and, more
importantly, fracture risk are not robust and consistent. A meta-analysis of randomized
controlled trials (RCTs), published in 2016, including seven studies involving a total of
27,900 subjects, showed an increase in BMD by 0.03 g/cm2 (95% CI 0.006–0.053; I2 99.2%;
p < 0.001) with statins. Concerning the skeletal site, four studies assessed BMD in LS,
one in the distal radius and two in any of multiple skeletal sites. Regarding fracture
risk, no association with statin use was observed [pooled hazard ratio (HR) 1.00, 95% CI
0.87–1.15; I2 0; p = 0.396]. These findings remained consistent and significant in sensitivity
analysis [118].

These results were replicated by another meta-analysis published in 2017, including
33 studies (23 observational and ten RCTs) with 314,473 patients on statin therapy and
1,349,192 controls [119]. In particular, statins increased LS BMD (standardized MD (SMD)
0.20, 95% CI 0.07–0.32; p = 0.002; I2 43%), as well as TH BMD (SMD 0.18, 95% CI 0.00–0.36;
p < 0.05; I2 62%). In subgroup analyses, these associations remained significant only
for data derived from cohort studies but not for RCTs. Notably, there was no gender
difference regarding TH, but LS BMD increased only in males. Concerning FN BMD, no
association with statin use was found. Regarding fracture risk, statins decreased the risk
of overall (odds ratio (OR) 0.81, 95% CI 0.73–0.89; p < 0.0001; I2 87.5%) and hip fractures
(OR 0.75, 95% CI 0.60–0.92; p = 0.007; I2 77.2%), however, with no effect on vertebral and
upper extremity fractures (data from 16 cohort and case-control studies). The authors also
assessed the effect of statins on markers of bone turnover, showing a positive effect on
osteocalcin concentrations (SMD 0.21, 95% CI 0.00–0.42; p = 0.04; I2 = 0%), but no effect on
bone-specific alkaline phosphatase (bALP) and serum C-terminal peptide of type I collagen
(CTX) concentrations [119].

Interestingly, a recent Mendelian randomization (MR) study showed that the effect
of statins on BMD was dependent on the degree of their LDL-C-lowering action. MR
explained this by utilizing 400 single nucleotide polymorphisms, which provided evidence
for a causal effect of LDL-C on BMD [120].

Another recent meta-analysis assessed the effect of statin use exclusively on frac-
ture risk in older adults [121]. The authors included 21 observational studies and two
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RCTs (n= 1,783,123 participants). Data from the observational studies showed an overall
decreased fracture risk with statin use [pooled relative risk (RR) 0.80, 95% CI 0.72–0.88;
I2 93.1%]. In subgroup analysis, this association was more evident in men (RR 0.75,
95% CI 0.59–0.95) than in women (RR 0.87, 95% CI 0.76–0.99) and only for hip (RR 0.73,
95% CI 0.64–0.82) and low extremity fractures (RR 0.69, 95% CI 0.54–0.88). In terms of
statin type, only atorvastatin was associated with a reduction in fracture risk (RR 0.77,
95% CI 0.71–0.84) compared to other statins. Interestingly, this beneficial effect was shown
only for a short duration of statin use (<1 year) (RR 0.66, 95% CI 0.47–0.93), but not for a
higher duration (1–3 or >3 years). Of note, it must be emphasized that the evidence for an
anti-fracture efficacy for statins was based only on data derived from observational studies.
In the two RCTs, there was no evidence for reducing fracture risk with statin use (RR 1.00,
95% CI 0.87–1.15; I2 0%) [121].

4.2. Ezetimibe

Ezetimibe acts by blocking the cholesterol transport protein Nieman-Pick C1-like 1
(NPC1L1) protein, inhibiting the intestinal absorption of cholesterol. This increases the
expression of the LDL-C receptor in hepatocytes, resulting in reductions in serum LDL-C
concentrations by 20% [122]. However, due to the concomitant upregulation of cholesterol
biosynthesis, mevalonate concentrations may increase. Scarce data exist concerning its
effect on bone metabolism. In particular, the inhibition of NPC1L1 protein has raised
the hypothesis of reduced vitamin D absorption since NPC1L1 is an important sterol
transporter [123]. Although experimental data have shown a decrease in 25(OH)D concen-
trations [124], this has not been shown in human studies [125]. Moreover, in an open-label
study (n = 54 patients with hypercholesterolemia), no effect in LS and TH BMD, as well as
in bone turnover markers (bALP and CTX), was observed with ezetimibe [126].

4.3. PCSK-9 Inhibitors

No data concerning the effect of proprotein convertase subtilisin/kexin type 9 (PCSK-9)
inhibitors on bone metabolism are currently available.

4.4. Fibrates

Fibrates are proliferator-activated receptor (PPAR)-α agonists, mostly used in patients
with hypertriglyceridemia. They are moderately effective agents in reducing plasma TG (by
50%) and, to a lesser extent, LDL-C (≤20%), as well as in increasing HDL-C concentrations
(≥20%) [127].

Concerning bone metabolism, preclinical data have demonstrated that fibrates and,
in particular, fenofibrate promote BMP-2 gene expression, thus, stimulating the osteoblast
differentiation [128]. Fenofibrate has been shown to maintain FN and whole-body BMD
and bone architecture in ovariectomized rats, compared with pioglitazone [129]. However,
others have shown a detrimental effect on bone quality in mice with diabetes mellitus,
through decreased collagen I and osteocalcin secretion, due to down-regulation of Runx2
gene expression [130].

The evidence for any clinical effect of fibrates on bone health is generally poor. In a
case-control study, including 124,655 fracture cases and 373,962 age- and gender-matched
controls, an increased risk for non-statin lipid-lowering agents (mainly cholestyramine
and fibrates) was demonstrated. In contrast to statins, the use of these non-statin drugs
was associated with an increased crude risk of vertebral (OR 2.25; 95% CI 1.22–4.16) and
total fractures (OR 1.14, 95% CI 1.00–1.30). However, this association lost significance after
adjustment for potential confounders [131].

4.5. Omega-3 Fatty Acids

The omega-3 fatty acids (FA) and, in particular, docosahexaenoic (DHA) and eicos-
apentaenoic acid (EPA) are essential polyunsaturated FA, derived mainly from fish oil [127].
They are moderately efficacious in lowering serum TG concentrations in a dose-dependent
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manner, with usual doses of 2–4 g/day, although their effect on other lipoproteins is triv-
ial [127]. A cardiovascular benefit has been shown in patients at very high CVD risk with
high doses (2 g of EPA twice a day) [127].

Preclinical data suggest a protective effect of omega-3 FA on bone metabolism since a
high dietary intake increases the rate of bone formation [132]. They also reduce osteoclastic
activity and the ensuing bone resorption by 80%, as shown in rats fed with a purified diet
rich in omega-3 FA [133]. Furthermore, fat-1 transgenic mice, which can convert omega-6 to
omega-3 FAs, demonstrate significant acceleration in callus formation and fracture healing
compared with controls [134].

Epidemiological data in humans regarding the effect of omega-3 FA on musculoske-
letal outcomes have provided inconsistent results. A meta-analysis of observational stu-
dies (including seven prospective and three case-control studies; n = 292,657 participants)
showed an inverse association between fish consumption and the risk of hip fractures
(pooled effect size 0.88, 95% CI 0.79–0.98, for the highest compared with the lowest quar-
tile) [33]. However, in subgroup analysis, this association was evident only in case-control
studies and in prospective studies with a sample size of ≥ 10,000 participants. Moreover,
an inverse association between omega-3 FA intake and the risk of hip fracture was observed
(pooled effect size: 0.89, 95% CI 0.80–0.99) [33].

In a systematic review and meta-analysis of ten RCTs published in 2012, a favorable
effect of omega-3 FA on BMD or bone turnover markers was demonstrated in four studies,
but only when co-supplemented with calcium, whereas three studies showed no effect.
No data on fractures were available [135]. Another meta-analysis of 28 RCTs (23 studies
on omega-3 FA; 0.4–5.8 g/day of EPA and/or DHA, 3.5–9.1 g/day of alpha-linoleic acid)
showed no effect on LS (mean difference 0.03 g/cm2, 95% CI from −0.02 to 0.07) or FN
BMD (mean difference 0.04 g/cm2, 95% CI from −0.00 to 0.07) (low or very low quality of
evidence, respectively) [136]. A high omega-3 dose induced a slight increase in osteocalcin
concentrations, but no effect was observed on other bone formation or bone resorption
markers [136]. No data on fractures were available from both meta-analyses [135,136].

4.6. Niacin

Niacin (nicotinic acid) is effective in reducing serum TG concentrations by inhibiting
the secretion of very-low-density lipoprotein (VLDL) particles from the liver [127]. It also
increases HDL-C concentrations due to increased production of apolipoprotein-A1 in the
liver [127]. However, its cardiovascular benefit has not been proven, and therefore, it is
currently not available in Europe [127].

Very little data exist concerning the effect of niacin on skeletal outcomes. A prospe-
ctive community-based study, the Cardiovascular Health Study (CHS), including 5187 men
and women ≥ 65 years, showed a U-shaped association between dietary niacin consump-
tion with hip fracture risk. In particular, both lowest (3.6–21.8 mg/day) and highest
(41.0–102.4 mg/day) consumption were associated with increased risk of hip fracture [HR
1.31 (95% CI 1.04–1.66) and 1.53 (95% CI 1.20–1.95), respectively] compared with daily
intakes of 21.9–40.9 mg. A trend for an inverse association with hip BMD was also found
(p = 0.06) [137]. However, the latter was not confirmed in another study in 243 pre- and
137 postmenopausal Japanese women, showing a positive association between dietary
niacin intake and calcaneus BMD [138].

4.7. Bile Acid Sequestrants

Very few data exist with regard to the effect of bile acid sequestrants, such as cholestyra-
mine, colestipol, or colesevelam, on bone metabolism. In a prospective study, cholestyra-
mine 24 g/day, administered either as monotherapy or in combination with pravastatin,
had no effect on PTH, 25-hydroxy-vitamin D, and 1,25-dihydroxy-vitamin D concentra-
tions [139].
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5. Conclusions

Despite the high heterogeneity and the variable quality of evidence, dyslipidemia,
mainly high TC and LDL-C and, to a lesser extent, TG concentrations, seems to be asso-
ciated with low bone mass and increased fracture risk. This detrimental effect may be
mediated directly through the increased oxidative stress and systemic inflammation that
dyslipidemia is associated with, leading to increased osteoclastic activity and reduced bone
formation, or through the atherosclerotic process, which affects bone’s vascularization.
Other mechanisms, such as low estrogen, vitamin D and K status, and increased concen-
trations of PTH, homocysteine, and lipid oxidation products, may also contribute to this
interplay. Regarding the effect of lipid-lowering therapy on bone metabolism, statins may
slightly increase BMD, with a tendency to reduce fracture risk as shown in case-control and
cohort studies, although available RCTs have not shown any effect of statins on fracture
risk. This is also the case for omega-3 FA, whereas inconsistent or insufficient evidence
exists for other commonly used lipid-lowering medications, such as ezetimibe, fibrates,
and niacin. There is an exigent need for prospective, well-designed studies in males and
females to elaborate on the putative association between lipids and bone strength.
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