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Abstract
Pain is an important non-motor symptom in Parkinson’s disease (PD), but its underlying pathophysiological mechanisms 
are still unclear. Research has shown that functional connectivity during the resting-state may be involved in persistent 
pain in PD. In the present cross-sectional study, 24 PD patients (both during on and off medication phase) and 27 controls 
participated. We assessed pain with the colored analogue scale and the McGill pain questionnaire. We examined a possible 
pathophysiological mechanism with resting-state fMRI using functional network topology, i.e., the architecture of functional 
connections. We took betweenness centrality (BC) to assess hubness, and global efficiency (GE) to assess integration of 
the network. We aimed to (1) assess the differences between PD patients and controls with respect to pain and resting-state 
network topology, and (2) investigate how resting-state network topology (BC and GE) is associated with clinical pain in 
both PD patients and controls. Results show that PD patients experienced more pain than controls. GE of the whole brain 
was higher in PD patients (on as well as off medication) compared to healthy controls. GE of the specialized pain network 
was also higher in PD patients compared to controls, but only when patients were on medication. BC of the pain network 
was lower in PD patients off medication compared to controls. We found a positive association between pain and GE of the 
pain network in PD patients off medication. For healthy controls, a negative association was found between pain and GE of 
the pain network, and also between pain and BC of the pain network. Our results suggest that functional network topology 
differs between PD patients and healthy controls, and that this topology can be used to investigate the underlying neural 
mechanisms of pain symptoms in PD.
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Introduction

Parkinson’s disease (PD) was for a long time mainly consid-
ered a motor disease, with rigidity, bradykinesia and resting 
tremor as its cardinal symptoms. In recent decades, however, 
there has been growing interest in the non-motor symptoms 
of PD (Postuma et al. 2015), which may be equally or more 
incapacitating than the motor symptoms themselves (Chaud-
huri et al. 2006). Pain is one such non-motor symptom that 
is present in about two-thirds of PD patients (Defazio et al. 
2008; Broen et al. 2012), and puts an additional burden on 
patients’ quality of life (Quittenbaum and Grahn 2004; Shi-
bley et al. 2008; Buhmann et al. 2017). It has been linked to 
several clinical factors, such as disease progression (Mylius 
et al. 2011), dopaminergic fluctuation (Brefel-Courbon et al. 
2005; Nègre-pagès et al. 2008; Silva et al. 2008), depressed 
mood, and dyskinesias (Rodríguez-Violante 2017).

 *	 Gwenda Engels 
	 g.engels@vu.nl

1	 Department of Clinical, Neuro‑ and Developmental 
Psychology, Faculty of Behavior‑ and Movement 
Sciences, VU University, Van der Boechorststraat 1, 
1081 BT Amsterdam, The Netherlands

2	 Department of Experimental and Applied Psychology 
& Institute of Brain and Behavior Amsterdam, Faculty 
of Behavior‑ and Movement Sciences, VU University, Van 
der Boechorststraat 1, Amsterdam, The Netherlands

3	 Department of Neurology, OLVG West, Amsterdam, 
The Netherlands

4	 Department of Anatomy and Neurosciences, VU University 
Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, 
The Netherlands

5	 Department of Radiology, Athinoula A. Martinos Center 
for Biomedical Imaging, Massachusetts General Hospital, 
149 13th St, Charlestown, MA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00702-018-1916-y&domain=pdf


1450	 G. Engels et al.

1 3

During the past few decades, possible neural substrates 
of pain have been studied extensively, resulting in a poten-
tial network of connected brain areas that is thought to 
underlie the processing and experience of pain (Tracey and 
Mantyh 2007). There is no definite consensus on all areas 
involved in such a pain network; nonetheless, pain-related 
regions consistently found across studies include the thala-
mus, anterior cingulate cortex (ACC), posterior and ante-
rior insula, amygdala, prefrontal cortex (PFC), second-
ary somatosensory cortex (SII) and the periaqueductal 
grey (PAG) (Scherder et al. 2003). Wager and colleagues 
employed a machine-learning-based regression technique 
(LASSO-PCR) to identify such a network, attempted to 
predict the presence of physical pain (Wager et al. 2013). 
The result, a so-called neural pain signature (NPS), was 
found to predict physical pain with high sensitivity and 
high specificity. Many of the areas involved in this NPS 
are congruent with areas previously associated with pain, 
such as the insula, ACC, PFC, thalamus and SII (Tracey 
and Mantyh 2007).

Connectivity analysis of the resting-state, during which 
no specific task is performed, is based on patterns of co-
activation of brain regions, providing insight into how the 
brain is functionally connected. The characteristics of such 
resting-state connectivity can be employed to study clini-
cally relevant symptoms, such as cognitive functioning in 
PD (Olde Dubbelink et al. 2014) or pain in chronic back-pain 
patients (Tagliazucchi et al. 2010). Using magnetoencepha-
lography (MEG), an increase in functional connectivity in 
PD was found to be associated with the duration and sever-
ity of the disease (Stoffers et al. 2008). A recent MRI study, 
investigating both structural and functional mechanisms of 
persistent pain in PD, found that resting-state connectivity 
between the right nucleus accumbens and the left hippocam-
pus was reduced in PD patients with pain, compared to PD 
patients without pain (Polli et al. 2016; Antonini et al. 2018).

In addition to studying increases and decreases of func-
tional connectivity, modern network science has provided 
an alternative method of investigating the brain, namely by 
studying specific characteristics of complex networks. Here, 
the brain (network) is comprised of brain regions (nodes), 
which have connections of varying strength between them 
(edges). In functional connectivity, these edges are based 
on the extent of co-activation of pairs of brain regions. A 
consensus in modern network science is that the brain is a 
cost-effective small-world network, which is both locally 
integrated (i.e., local clusters of connected nodes), and well 
connected on a global scale (i.e., connected nodes over 
longer distances) (see Stam for a review 2014). A number of 
measures of network topology, i.e., the architecture of con-
nections, have been proposed (for an overview see Rubinov 
and Sporns 2010). Investigating the brain via functional net-
work topology, as opposed to standard activation or simple 

functional connectivity measures, can provide further insight 
into the pathological mechanism of pain in PD.

A large body of literature in this field has examined 
the default mode network (DMN) (Raichle et al. 2001). 
Alterations of the DMN and its relationship with cognitive 
functioning have also been linked to disease (e.g., Alzhei-
mer’s disease, epilepsy) (Broyd et al. 2009; Anticevic et al. 
2012). Previous research has shown deviant functioning of 
the DMN at an early stage of PD (van Eimeren et al. 2009; 
Rektorova 2014), as well as in chronic pain patients (Baliki 
et al. 2014).

In this study, we investigated how both clinical pain and 
functional network topology [whole brain, the pain network 
(NPS) and DMN] differ between PD patients and controls. 
Furthermore, we examined the relationship between the 
amount of clinical pain and functional pain network topol-
ogy during resting-state within each group. We hypothesized 
that subjective pain is related to functional topology of the 
pain network both in PD patients and in controls. Since 
dopamine is thought to affect both pain (Jääskeläinen et al. 
2001) and resting-state functional connectivity (Kelly et al. 
2009), PD patients were assessed both during an ON phase, 
in which dopaminergic medication was taken as usual, as 
well as an OFF phase, in which dopamine levels were low. 
We hypothesized differences between the ON and OFF 
phase with respect to both pain and resting-state functional 
connectivity.

Materials and methods

For healthy controls, inclusion criteria were (1) aged 
40–75 years, (2) provision of written informed consent, (3) 
normal or corrected-to-normal vision, and additionally for 
patients, (4) a diagnosis of PD following UK Brain Bank 
criteria. Exclusion criteria for all participants were (1) cur-
rent use of psychotropic medication other than levodopa, 
dopamine-agonists or other Parkinson-medication, (2) major 
somatic disorder, (3) current psychiatric diagnosis as estab-
lished by a psychiatrist, (4) presence of dementia, history 
of stroke or other neurological diseases (as established by 
neurologist). An additional screening for dementia was per-
formed using the montreal cognitive assessment (MoCA), a 
screening tool for cognitive dysfunction (Nasreddine et al. 
2005), with a cutoff for dementia according to Biundo and 
colleagues (2014). Patients were recruited through outpatient 
clinics. Healthy controls were recruited through advertise-
ment in local newspapers, online advertisement and through 
participating patients (e.g., spouses, relatives, etc.).
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Procedure

The study was approved by the medical ethical committee 
of the VU Medical Center, Amsterdam. Informed consent 
was obtained from all individual participants included in 
the study. All methods were carried out accordance with 
relevant guidelines and regulations.

This study was part of a larger cross-sectional case–con-
trol study investigating visual attention, reward and pain 
in PD. Study size was based on expected learning and 
attention differences between groups. Note that only pro-
cedures concerning this project will be described. Patients 
visited the hospital twice: on the first visit, the MoCA was 
administered, and the questionnaires were handed in (filled 
out just prior to visit). During the second and third visit, 
the MRI was performed in either the ON or OFF phase. 
The same procedure was completed for the controls, with 
the exception that they underwent only one MRI session. 
The MRI was planned in the same week as the clinical 
assessment in almost all patients, but as a rule no later 
than 60 days after the clinical assessment. For the MRI, 
patients were invited to the hospital in the afternoon for 
the ON phase, and in the morning for the OFF phase. ON 
and OFF phase as the first or second MRI session was 
counter-balanced across participants. The OFF phase was 
defined as at least 12 h of dopaminergic medication over-
night withdrawal. One patient took their medication 8.5 h 
before the resting-state scan to relieve symptoms.

Pain

Here, we define clinical pain as naturally occurring pain 
that is not experimentally induced, regardless of origin 
or type. Ultimately, all pain processing is a neurophysi-
ological phenomenon, irrespective of origin (Garland 
2012). Pain was measured during the ON and OFF phase 
by means of the colored analogue scale (CAS) for intensity 
as well as for pain affect: subjects were asked to indicate 
the intensity of their pain (CAS intensity) and how much 
they were bothered by their pain (CAS affect) both on a 
scale ranging from ‘None’ (light pink, 0) to ‘Maximal’ 
(dark red, 100) (McGrath et al. 1996). The Dutch version 
of the McGill Pain Questionnaire was administered dur-
ing the first visit to inquire about pain during the previous 
month (Melzack 1975). We utilized the total score on the 
number of words chosen (NWC) part of the McGill pain 
questionnaire. The NWC consists of three major classes 
of pain descriptors, which were used by the subjects to 
specify their pain experience. These classes are of sensory, 
affective or evaluative nature (van der Kloot et al. 1995). 
Total score on the NWC was used as score for each sub-
ject’s clinical pain experience.

MRI

Imaging data were collected with a 3T GE Signa HDxT 
(General Electric, Milwaukee, WI, USA) at the VU Uni-
versity Medical Center (Amsterdam, The Netherlands). 
Structural images were acquired with a 3D T1-weighted MP 
RAGE sequence with the following acquisition parameters: 
voxel size = 1 mm isotropic, 176 slices, 256 × 256 matrix, 
repetition time (TR) = 8.2 ms, echo time (TE) = 3.2 ms, flip 
angle (FA) = 12°, inversion time (TI) = 450 ms. Resting-
state data were acquired using a T2*-weighted echo-planar 
functional scan: number of volumes = 202, 42 slices, slice 
thickness = 3.2 mm, matrix size = 64 × 64, TR = 2150 ms, 
TE = 35 ms, FA = 80°, field of view = 240 mm, total dura-
tion 7:12 min, voxel size was 3 mm with 0.3 mm spacing. 
For the resting-state scan, subjects were instructed to close 
their eyes, lie still and avoid falling asleep. Participants’ 
heads were immobilized using foam pads to reduce motion 
artifacts.

Processing of fMRI data

Data were analyzed using FSL FMRIB software library 
v5.0.9 (Jenkinson et al. 2012) and custom-built scripts in 
bash and Matlab, version 2015a (Mathworks, Natick, MA, 
USA). The following pre-processing steps were taken: (1) 
images were corrected for head motion (using MCFLIRT), 
(2) slice-timing correction was applied, (3) non-brain tissue 
was removed (using Brain Extraction Tool, BET), (4) func-
tional images were registered to subject-space (T1-weighted 
structural image) using BBR, (5) this image was registered 
to MNI152 standard space (FLIRT for linear registration 
with 12 DOF), (6) high-pass filtering above 0.01 Hz was 
applied, (7) spatial smoothing was performed at 5 mm full-
width half maximum (FWHM), (8) segmentation of gray 
and white matter was performed using FAST and SIENAX, 
(9) the first three volumes of each resting-state scan were 
discarded to achieve field equilibrium, (10) average motion 
was calculated as the mean of the absolute head movement 
over all time series for 6 DOF per individual (three transla-
tions and three rotations).

After preprocessing, a resting-state adjacency matrix 
(representing an undirected weighted network) was recon-
structed per subject as follows. First, time series were 
scrubbed for motion outliers: time points with frame-to-
frame displacement > 1.5 mm (6 DOF) were excluded from 
further analyses. The remaining time series of chosen atlas 
regions (see below) were used to calculate the connectiv-
ity matrix using Pearson’s correlation coefficients between 
time series of each pair of regions included. A Fisher trans-
formation on these correlation coefficients was used to get 
normally distributed correlation values. Atlas regions were 
based on the atlas of Power et al. (2011). The default mode 
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network (DMN) was constructed from 58 of these nodes (see 
Power et al. 2011 for all atlas regions and specification of 
the DMN). To form a pain network, we additionally used a 
subdivision of the NPS of Wager et al. (2013). In their paper, 
Wager and colleagues based their NPS on 32 areas (Wager 
et al. 2013). Sixteen of these areas had positive predictive 
weights for physical pain, and the other 16 had negative 
predictive weight. For the current study, only the areas of the 
NPS with positive predictive weights were used to form a 
pain network because the interpretation of a network of posi-
tive predictive weights is most straightforward, particularly 
when making comparisons between patient/control groups 
and medication sessions. See Fig. 1 for a visual overview of 
this 16-node pain network.

Network analysis

The resting-state adjacency matrix was used to calculate net-
work topology. We calculated betweenness centrality (BC) 
and global efficiency (GE) of the resting-state adjacency 
matrix. BC measures how central a node lies with respect to 
the rest of the network, and is based on how many shortest 
paths pass through it. Nodes with high BC represent hubs of 
the network (Fornito et al. 2016). GE represents efficiency of 
the underlying network and is a measure of integration. The 
Brain Connectivity Toolbox (brain-connectivity-toolbox.
net) was used to calculate GE per network, and BC of all 
nodes in the network (with Matlab scripts: efficiency_wei.m 
and betweenness_wei.m, respectively) (Rubinov and Sporns 
2010). BC was then normalized (z-scored) per participant, 
and averaged per network. GE and average BC for all 16 
pain nodes represented the pain network, GE and BC for the 
58 DMN nodes represented the DMN. For the whole brain 

(264 nodes), only GE was calculated, since calculating BC 
(or ‘hubness’) of the whole brain is essentially meaningless.

Statistical analyses

Mann–Whitney U test was performed to investigate the 
difference between PD and controls on all pain measures, 
as they were not normally distributed. To investigate the 
differences in pain and network topology, the independent 
variable ‘group’ (patients ON and OFF, and controls) and 
dependent variables BC and GE measures, were entered in 
multivariate analyses of covariance (MANCOVAs), with 
average motion during the scan as a covariate. Only differ-
ences between patients and controls were considered. To 
investigate the relationship between pain and network topol-
ogy, a hierarchical stepwise linear regression was performed 
per group (controls, PD ON, PD OFF), with the BC and 
GE of the pain network as independent variables, and clini-
cal pain as dependent variable. In each analysis’ first block, 
average movement during the scan was added as a covariate 
to account for motion in the scanner, and a forward stepwise 
method was utilized to investigate the contribution of each 
separate independent variable. Scores on the NWC served 
as a dependent variable. The alpha level was set at 0.05, and 
tested two-sided.

Data availability

The datasets generated and analyzed during the current 
study are available from the corresponding author on rea-
sonable request.

Fig. 1   The pain network, based on the positive predictive weights of 
the NPS (Wager et  al. 2013). Areas shown are: 1 = vermis cerebel-
lum; 2 = anterior/mid insula (right); 3 = superior temporal gyrus; 
4 = calcarine gyrus; 5 = ventrolateral thalamus (right); 6 = mid insula 
(left); 7 = hypothalamus; 8 = ventrolateral thalamus (left); 9 = fron-
tal operculum/temporal pole; 10 = dorsal posterior insula/second-

ary somatosensory area (left); 11 = dorsal posterior insula (right); 
12 = somatosensory area (right); 13 = temporoparietal junction; 
14 = dorsal anterior cingulate cortex; 15 = supramarginal gyrus; 
16 = inferior parietal lobule. BrainNet Viewer version 1.6 was used 
for visualization (http://www.nitrc​.org/proje​cts/bnv/) (Xia et al. 2013)

http://www.nitrc.org/projects/bnv/
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Results

Subjects

Twenty-four patients and 27 healthy controls participated 
in this study. See Fig. 2 for an overview of the inclusion 
process. Patients and controls were matched for age and 
gender. Education was measured by means of the Verhage-
system, ranging from 1 (unfinished lower education) to 
7 (finished scientific education) (Verhage 1964). Patients 
had a lower level of education (U = 174.50, p = 0.003). 
Though not significantly different, patients had a slightly 
lower score on the MoCA [t = 1.9 (49), p = 0.063]. Patients 
had a higher score on the Beck’s Depression Inventory 
(BDI) (Beck et al. 1996), indicating more severe symptoms 
of depression in patients than in controls (t = − 5.107(48), 
p < 0.01). None of the patients experienced dyskinesia dur-
ing scanning. All participant characteristics are shown in 
Table 1. Details per patient are shown in Table 2.

Pain measures

An overview of types of pain present in patients and controls 
is shown in Table 3. Pain types are based on classification 
according to Ford (2010), with ‘Headache’ as an added cat-
egory. Scores on pain measures were higher in PD patients 
than in controls (see Table 4). PD patients experienced more 
chronic pain than controls: 75% of patients had chronic 
pain compared to 40.7% of healthy controls [Pearson’s 
χ2(1) = 6.080, p = 0.014]. Scores on the NWC were higher in 
patients (M = 11.92, SD = 11.77) than in controls (M = 4.83, 
SD = 6.03, Mann–Whitney U = 412.00, p = 0.010).

Network topology

Next, we investigated the difference between PD patients 
(PD ON or PD OFF) and controls on network topology (see 
Table 5). An overview of the findings for each brain network 
is provided below. GE of the whole-brain network was sig-
nificantly higher in PD ON versus controls, and showed a 
trend for higher GE in PD OFF versus controls. BC of the 
pain network was lower in PD OFF than in controls. GE of 
the pain network was higher in PD ON than in controls. No 
differences were found for the DMN, nor were there any dif-
ferences between patients’ ON and OFF phases.

Relationship between pain and network topology

We performed three regression analyses to investigate the 
relationship between pain and topology of the pain network, 
i.e., one within each group. As a control analysis, we inves-
tigated whether LEDD and functional topology of the pain 
network were related. During ON, neither BC (r = − 0.081, 
p = 0.707), nor GE (r = 0.298, p = 0.158) were related to 
LEDD. Additionally, during OFF, neither BC (r = − 0.067, 
p = 0.754), nor GE (r = − 0.213, p = 0.318) were related to 
LEDD. Scores on the NWC were also not related to LEDD 
(r = 0.102, p = 0.634). Table 6 lists the parameters of all 
three regression analyses. Since we used a forward stepwise 

Initial screening of 
medical statuses: 85

Phone interviews for 
checking in- and 
exclusion criteria: 25

Drop-out due to 
exacerbation of 
symptoms (1 patient): 24
included patients 

Interested through local 
advertisement: 46 

Phone interviews for 
checking in- and 
exclusion criteria: 32

Problems with magnet (3 
controls) & claustrophobia 
(2 controls): 27 included 
healthy controls 

Parkinson’s patients Healthy controls 

Fig. 2   Flowchart of inclusion process

Table 1   Subject characteristics

LEDD Levodopa equivalent daily dose, UPDRS United Parkinson’s disease rating scale, MoCA montreal 
cognitive assessment, BDI Beck’s depression inventory

Controls (n = 27) Patients (n = 24) Difference

Age in years (M, SD) 59.37 (8.54) 63.42 (7.93) ns
Education level (M, SD) 6.15 (0.86) 5.25 (1.11) U = 174.5, p = 0.003
Gender 11 females 7 females ns
Disease duration in years (M, SD) – 4.08 (3.13) –
LEDD in mg (M, SD) – 796.29 (616.44) –
UPDRS during ON phase (M, SD) – 17.67 (7.66) –
MoCA (M, SD) 27.89 (1.89) 26.88 (1.92) ns
BDI 22.96 (2.24) 30.46 (7.12) U = 82.5, p < 0.001
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method, only significant predictors in addition to the entered 
covariate are shown. In controls, the final model (Step 3) 
contained BC and GE of the pain network as predictors for 
the NWC-scores [R2 = 0.29, F(3) = 3.14, p = 0.045]. In PD 
OFF, the final model (Step 2) contained GE of the pain net-
work as a predictor for NWC-scores [R2 = 0.29, F(2) = 4.22, 
p = 0.029]. In PD ON, none of the predictors were significant 
predictors for scores on the NWC. For clarity, plots of the 
regression slopes are shown in Fig. 3, one for each signifi-
cant predictor.

Table 3   Overview of types of pain according to the pain categories of 
Ford  (2010), ‘Headache’ was added as a category

Multiple types of pain for a single subject were possible

Type of pain Patients (%) Controls (%)

Musculoskeletal 16 (66.7%) 9 (33.3%)
Dystonic 3 (12.5%) 0
Neuropathic/radicular 5 (20.8%) 0
Central 0 0
Akathisia 0 0
Headache 0 2 (7.4%)

Table 4   Differences on pain scores between PD (ON and OFF phase) and healthy controls, tested with Mann–Whitney’s U test

PD Parkinson’s disease, HC Healthy controls, CAS colored analogue scale

HC versus PD OFF HC versus PD ON

HC (M, SD) PD OFF (M, SD) Difference Controls (M, SD) PD ON (M, SD) Difference

CAS intensity 4.35 (9.38) 15.87 (22.09) U = 413.00, p = 0.010 4.35 (9.38) 15.91 (18.77) U = 405.00, p = 0.037
CAS affect 2.81 (6.89) 15.74 (22.49) U = 425.00, p = 0.004 2.81 (6.89) 16.78 (20.28) U = 416.00, p = 0.019

Table 5   Network measures for all groups and networks

MANCOVAs were performed, with average motion during the scan as a covariate
BC betweenness centrality, GE global efficiency, DMN default mode network, PD Parkinson’s disease, HC healthy controls, ns not significant

Network HC versus PD OFF HC versus PD ON

HC (M, SD) PD OFF (M, SD) Difference HC PD ON Difference

Whole brain
 GE 125.31 (60.26) 159.38 (44.05) F(1, 48) = 3.80; p = 0.057 125.31 (60.26) 175.86 (72.24) F(1, 48) = 8.93; p = 0.004

DMN
 BC 0.02 (0.12) − 0.01 (0.15) ns 0.02 (0.12) − 0.001 (0.13) ns
 GE 0.30 (0.33) 0.37 (0.34) ns 0.30 (0.33) 0.38 (0.25) ns

Pain
 BC 0.11 (0.23) − 0.04 (0.26) F(1, 48) = 4.70; p = 0.035 0.11 (0.23) 0.02 (0.30) ns
 GE 11.40 (10.61) 23.74 (37.63) ns 11.40 (10.61) 20.81 (21.30) F(1, 48) = 4.40; p = 0.041

Table 6   One linear hierarchical 
regression was performed for 
each group (controls, PD ON 
and PD OFF medication)

To control for motion, average motion during scanning was entered at Step 1 as a covariate, after which a 
forward stepwise method was used to add significant independent variables to the model
BC betweenness centrality, GE global efficiency, ns not significant

Group Step Independent variables Unstandardized B Std. error of B Standardized B p value

HC Step 1 Average motion − 0.055 18.62 − 0.001 ns
Step 2 Average motion 0.203 17.50 0.002 ns

BC of pain network − 10.17 4.89 − 0.39 0.049
Step 3 Average motion − 8.65 16.88 − 0.09 ns

BC of pain network − 9.99 4.57 − 0.38 0.039
GE of pain network − 0.218 0.10 − 0.38 0.046

PD OFF Step 1 Average motion − 5.43 65.11 − 0.02 ns
Step 2 Average motion − 38.30 57.43 − 0.13 ns

GE of pain network 0.171 0.059 0.55 0.009
PD ON Step 1 Average motion 27.32 36.34 0.158 ns
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Discussion

This study investigated both pain and functional network 
topology, as well as their interrelatedness in PD. Pain as a 
symptom of PD has been investigated before, and our results 
corroborate the increased pain experience in PD compared 
to controls (Broen et al. 2012; Fil et al. 2013). Pain scores in 
our patient group were not different when they were on or off 
medication. Although dopamine could have an ameliorating 
effect on subjective pain experience (Hagelberg et al. 2004; 
Brefel-Courbon et al. 2005), this effect has not consistently 
been found (Flores et al. 2004; Dellapina et al. 2011; Polli 
et al. 2016).

Our results on functional network topology indicate that 
PD patients had a higher efficiency of the whole brain off 
medication (trend-level) as well as on medication (signifi-
cance-level) compared to healthy controls. Global efficiency 
of the pain network was also higher compared to controls, 
but only when PD patients were on medication. Compared 
to controls, PD patients’ pain network had a lower hubness 
(BC) when off medication. These results are not in line with 
previous findings relating to topology of resting-state net-
works: a decrease in global efficiency of the whole brain 
network (Skidmore et al. 2011) and a decrease in efficiency 
of the cortico-basal ganglia motor circuit (Wei et al. 2014) 
in PD patients off medication has been reported using fMRI. 
Olde Dubbelink and colleagues show that global efficiency 
of the functional network assessed with MEG is dynamic 

across the disease course: de novo patients have global effi-
ciency similar to controls, but global efficiency and local 
integration decrease with disease progression (Olde Dub-
belink et al. 2014). Our results suggest an increase, not a 
decrease in (whole brain) efficiency in PD. This could point 
towards a dynamic mechanism of hub-overload: brain dis-
orders, such as AD and schizophrenia, have recently been 
shown to preferentially affect highly connected hub regions. 
Certain hubs appear to become overloaded, after which a 
neural traffic rerouting occurs from the overloaded (provin-
cial) hubs towards connector hubs (Stam 2014). This process 
of shifting loads in the hierarchy continues until the most 
centrally situated hubs are overloaded and the disease has 
reached a chronic phase. This theory was partly confirmed 
in Alzheimer’s disease (AD) (Jones et al. 2016), where hub-
overload was found before any clinical symptoms became 
apparent. Similar results were found in glioma and multiple 
sclerosis patients, where connectivity between hubs and non-
hubs was higher in patients at diagnosis than in controls 
(Derks et al. 2017; Meijer et al. 2017). Hub-overload could, 
therefore, be a central issue in these brain disorders. Apply-
ing this theory to PD as a dynamic, progressive disease, our 
current findings might be understood as follows: patients 
were in a relatively early stage of the disease, with relatively 
few symptoms. The reported increase in global efficiency 
could, therefore, reflect the early relaying of information. 
As the disease progresses, such rerouting of connectivity 
may lead to an overload of the hubs of the brain, which will 

Fig. 3   Plots of separate significant effects of the regression analyses. 
Left panel (blue): a negative linear association of GE of the pain net-
work with NWC-scores for HC. Middle panel (blue): a negative lin-
ear association of BC of the pain network with NWC-scores for HC. 

Right panel (green): A positive linear association of GE of the pain 
network with NWC-scores for PD OFF. GE global efficiency, NWC 
number of words chosen, BC betweenness centrality, PD Parkinson’s 
disease, HC healthy controls, PD OFF PD patients during OFF phase
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hypothetically be accompanied by increasing symptom bur-
den. Subsequently, a breakdown of the system could result 
in further progression of the disease.

We found that higher global efficiency of the pain net-
work was associated with more clinical pain in PD patients 
off medication. Global efficiency and betweenness centrality 
were associated with less pain in healthy controls. These 
findings may indicate group differences as to how pain 
is reflected in the pain network. Higher global efficiency 
could indicate a more integrated network (Stam 2014), or a 
network in which information can be processed in parallel 
(Skidmore et al. 2011). Regarding our results on the group 
of healthy controls this would signify a quickly transferred 
signal within the pain network, which reflects little clini-
cal pain over the last month. Additionally, when hubness of 
the pain network is higher, controls experience less clinical 
pain. Alternatively, it could suggest an ongoing pathological 
process: increased efficiency advocates spreading of seizures 
in epilepsy patients (DeSalvo et al. 2014). Higher efficiency 
of the pain network in PD could, therefore, also be seen 
as pathological, with pain as a clinical manifestation in PD 
patients. More research is needed to replicate our results 
and investigate causality of either increased or decreased 
efficiency and centrality. It should be noted that two of our 
included patients had an exceptionally high GE of the pain 
network. One patient had painful polyneuropathy, the other 
had dystonia, which caused pain. After careful considera-
tion, we chose to keep these patients in the dataset, as we 
could not determine that these high values of GE were due 
to artifacts or other technical issues. Instead, we conclude 
that these subjects represent variation of GE in PD patients 
with pain.

Even though this study provides insight into a possible 
underlying mechanism of pain in PD, several issues should 
be considered. Our study focused on neural processing of 
pain, and did not take any other clinical factors into account 
that might influence pain. One such factor is the presence 
of symptoms of depression, which is known to influence 
pain experience (Rana et al. 2017). Other examples are 
age, gender, disease duration, and severity of motor symp-
toms, as well as a possible effect of wearing-off, the loss of 
response to dopaminergic medication over time. The effect 
of wearing-off is the quick re-emergence of symptoms after 
medication-intake. Even though our patients had relatively 
short disease duration, more than half experienced wear-
ing off (see Table 2). In addition, the effect of pharmaco-
logical subclasses of PD medication could be of influence. 
Due to the complexity of dopamine-receptor binding for the 
various subclasses of dopamine medication, this could not 
be analyzed within the small sample of the current study. 
Another issue regarding PD medication is the time from 
last medication-intake until MRI-scanning, specifically dur-
ing the ON phase: an average of 2.9 h remained between 

medication-intake and the resting-state scan. Since the half-
life of levodopa-medication is 1–2 h, this could have influ-
enced our results, and we can, therefore, not be absolutely 
certain that patients were truly in the ON phase. To find 
independent contributions of all aforementioned factors in 
the context of pain and the functional brain network, a larger 
group of patients is needed, preferably representing both 
low and high pain phenotypes. Future research that includes 
patients with high pain intensity could also reinforce our 
results. In this study, we investigated pain as a continuous 
variable, including subjects with a score of 0. A continu-
ous scale was chosen, as we cannot be sure at which point 
pain becomes a pathological symptom of PD. A score of 0 
might, therefore, also represent a pathological processing 
of pain. Moreover, the pain network as we included it might 
not explain all of patients’ pain experience: we chose to 
include only positive predictive weights of the NPS (Wager 
et al. 2013), and might, therefore, have missed information 
coming from the subdivision of the NPS of the negative 
predictive weights. In addition to this, our pain network did 
not include any areas typical of the brainstem descending 
modulatory network (including the periaqueductal gray and 
the rostral ventral medulla), which modulates pain further 
by facilitation or inhibition at the spinal level (Vanegas and 
Schaible 2004; Tracey and Mantyh 2007). Finally, most 
neural activation studies into pain are based on groups of 
healthy and relatively young volunteers, who receive acute 
pain stimuli. The generalization towards clinical pain in a 
patient group might, therefore, reflect a different mechanism 
as compared to other studies into clinical pain.

To our knowledge, this is the first study that investigates 
resting-state functional connectivity-derived network meas-
ures in PD to study pain. Our main findings are a higher inte-
gration of the whole brain in PD patients compared to con-
trols, a higher integration of the pain network in PD patients 
(on medication) compared to controls, and a lower hubness 
of the pain network in patients (off medication) compared 
to controls. Additionally, a positive association was found 
between clinical pain and hubness of the pain network in 
patients off medication, but because of low sample size and 
statistical outliers, these results should be interpreted cau-
tiously. Further (replication) studies are needed to substan-
tiate the nuances of network measures, and to investigate 
other symptoms to gain insight in the entirety of the disease.
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