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A B S T R A C T

Accurate segmentation of ground-glass opacity (GGO) is an important premise for doctors to judge COVID-19.
Aiming at the problem of mis-segmentation for GGO segmentation methods, especially the problem of adhesive
GGO connected with chest wall or blood vessel, this paper proposes an accurate segmentation of GGO based
on fuzzy c-means (FCM) clustering and improved random walk algorithm. The innovation of this paper is to
construct a Markov random field (MRF) with adaptive spatial information by using the spatial gravity Model
and the spatial structural characteristics, which is introduced into the FCM model to automatically balance the
insensitivity to noise and preserve the effectiveness of image edge details to improve the clustering accuracy
of image. Then, the coordinate values of nodes and seed points in the image are combined with the spatial
distance, and the geodesic distance is added to redefine the weight. According to the edge density of the
image, the weight of the grayscale and the spatial feature in the weight function is adaptively calculated. In
order to reduce the influence of edge noise on GGO segmentation, an adaptive snowfall model is proposed
to preprocess the image, which can suppress the noise without losing the edge information. In this paper, CT
images of different types of COVID-19 are selected for segmentation experiments, and the experimental results
are compared with the traditional segmentation methods and several SOTA methods. The results suggest that
the paper method can be used for the auxiliary diagnosis of COVID-19, so as to improve the work efficiency
of doctors.
1. Introduction

The pathological features of COVID-19 are complex and difficult to
distinguish, with a high speed of transmission, and the early symp-
toms are difficult to detect [1]. The GGO is a common lesion of
COVID-19 [2]. Doctors can diagnose the patient’s condition through
information such as the size, shape, and texture of the GGO, so as to
take treatment for patients in time [3]. In the actual diagnosis, due to
the diversity of GGO and the differences in the condition of patients, the
number, type, shape, size, density, location and other characteristics of
GGO are quite different [4]. Doctors are affected by unstable factors
such as the limitation of professional experience, distraction or fatigue,
which may lead to the wrong diagnosis for COVID-19 [5,6]. If GGO
can be accurately segmented from CT images in the early COVID-
19, and then the correct treatment and prognosis are adopted, the
infection rate can be reduced by 80% [7]. It can be seen that early and
accurate detection of GGO is important for the diagnosis and treatment
of COVID-19.
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At present, scholars have proposed various solutions for the seg-
mentation of GGO in CT images of COVID-19. Some researchers have
proposed a segmentation method that combines the watershed algo-
rithm and the FCM [8]. The center point of the pre-segmented area
obtained by FCM are mapped to the corresponding position in the CT
image, and the obtained mapping points are used as the seed points
to complete the segmentation of the GGO by using the watershed
algorithm. Some researchers use the rolling ball algorithm to segment
the GGO [9]. The algorithm first preprocesses the lung CT images,
then uses the rolling ball method to repair the lung mask, and finally
superimposes the images to complete the segmentation of GGO. Some
researchers have proposed an improved localized graph-cuts based mul-
tiphase active contour model and an improved fuzzy velocity function
based on active contour model to separate GGO and isolated GGO
respectively [10]. Some researchers use the GGO detection algorithm
based on the deep learning [11]. They use the improved convolution
neural network to train the dataset, and extract the features such as the
vailable online 12 September 2022
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size, shape, texture, and then establish a network model to complete the
detection and extraction of GGO.

However, these methods are only for the segmentation of specific
types of GGO. Since the lung area contains a large number of blood
vessels and cohesive GGO, and the pleura has approximately the same
gray level as the nodules and blood vessels, the watershed method will
mistake the blood vessels and the thorax as GGO, resulting in over-
segmentation and false segmentation. Due to the diversity of the size
and the shape of GGO, it is difficult to find the structural elements
with the same size in the process of rough segmentation caused by
blood vessels or nodules by rolling ball method, which reduces the
accuracy of segmentation. The segmentation method based on the ac-
tive contour model cannot achieve a good segmentation effect for GGO
due to its sensitivity to the initial contour, low segmentation accuracy
and over-reliance on gradient information. Although the detection and
segmentation of GGO based on the deep learning can achieve relatively
good result, the premise of this algorithm is that it needs to train a
large number of annotated datasets, and it takes a lot of time to collect
features and algorithm convergence. The algorithm is complex and its
calculation is too large.

Recently, the random walk algorithm has achieved a good result
in medical image processing [12]. The random walk algorithm based
on the graph theory can better identify the weak boundaries while
minimizing the risk of the leaking boundaries with simple calculation
and fast segmentation [13]. However, the traditional random walk
algorithm needs to set a large number of seed points manually, and
its application is limited. In view of the above problems, this paper
proposes a segmentation of GGO based on FCM clustering and an
improved random walk algorithm. The highlights of this paper are as
following: (1) the spatial gravity model and the edge coefficient are
introduced into the FCM algorithm, and the adaptive spatial informa-
tion MRF based FCM remote CT image clustering algorithm is proposed.
The fuzzy membership degree of FCM is redefined to suppress the
gray value of the blood vessel area adhering to the GGO and the
edge area, which enhances the contrast between the GGO and the
edge. It lays the foundation for the subsequent accurate segmentation.
(2) The geodesic distance is added to redefine the weight function
of the random walk algorithm, and the shortest weighted distance
between the point pairs is used as one of the metrics for segmenting
the target area, so as to avoid mis-segmentation caused by the image
intensity information. (3) According to the edge density of the image,
the proportion of the gray feature and the spatial information in the
weight function is adaptively calculated, which is used to replace
the weight between adjacent nodes in the traditional random walk
algorithm. The gray value and spatial information are effectively fused
to realize the adaptive image segmentation. (4) In order to reduce the
adverse effect of noise on the image segmentation results, a simulated
snowfall algorithm is introduced to preprocess the image. The digital
adaptive Gaussian kernel is used to realize the simple snowfall model,
and the size, direction and shape of the kernel function are continuously
adjusted according to the characteristic information of the image, so as
to achieve the purpose of noise suppression without losing rich edge
information.

The organization and the structure of this paper are as following:
in Sections 2.1 and 2.2, for the initial GGO CT image, the adaptive
snowfall model and the improved FCM clustering is proposed for pre-
segmentation to enhance the contrast of GGO with high gray value.
It reduces the gray level of interference areas such as blood vessels,
and then it obtains the coordinates for the GGO pixels. In Sections 2.3
and 2.4, combined with nonlinear anisotropic diffusion filtering and
morphological method, the image is filtered and denoised. Under the
premise of ensuring a good outline, the irrelevant areas such as noise
points and small blood vessels in the lung are removed. In Section 2.5,
the seed points required by the random walk algorithm are selected.
The spatial geodesic distance between the pixel points and the seed
2

points in the image is added to the random walk algorithm. The
shortest geodesic distance between the pixels and seed points in the
GGO area is calculated according to the coordinate information, and
this distance is used as the measurement basis of the random walk
algorithm segmentation, which is used to classify the pixels and realize
the accurate segmentation of GGO.

2. GGO segmentation algorithm

2.1. Snowfall model

In the analysis of snowfall model [14], the characteristics of surface
are quantified by gradient. In the process of extracting the image seg-
mentation line, the snowfall process is simulated, and the segmentation
line is extracted according to the continuous change of the surface
curve to realize the image segmentation. The snowfall model simulates
the image as the undulating ground, and it simulates the changes of the
landmark surface similar to the snowfall process. Because the snowfall
model is an adaptive model formed based on the surface conditions, it
can be well applied to image segmentation, and it effectively reduces
the edge noise and ensure the smoothness of edge segmentation. The
snowfall model only optimizes the edge of image segmentation, but
it also needs to combine the random walk algorithm to complete the
image segmentation. According to the shape and location of GGO,
COVID-19 often presents isolated GGO, cohesive GGO attached to the
chest wall and pure GGO [15]. Different types of GGO are shown in
Fig. 1. The flow chart of the GGO segmentation algorithm proposed in
this paper is shown in Fig. 2.

2.1.1. The effect of snow surface
The effect of the snow surface directly affects the vision, and the

snow on the object will change the image information of the object
in varying degrees. Firstly, the snow will cover some details on the
surface of the object. If the image of the object is extracted from the
whole, the difficulty of extracting the edge of the object will be reduced,
and the entire outline of the object will be highlighted. Secondly, the
snow effect can effectively weaken the contrast between the objects.
It eliminates unnecessary shadow occlusion and effectively removes
noise. Finally, the snowfall not only blurs the details, but also highlights
the outline of the large targets.

The surface effect of the snowfall model has a certain relationship
with the length of the snowfall time. In the process of setting the
snowfall coefficient, it is necessary to not only ensure the snowfall
time and suppress the noise as much as possible, but also prevent the
snowfall time from being too long to cover useful information. The
coefficient of the snowfall is limited by the number of snowfalls.

2.1.2. The contour extraction of lesion based on the snowfall model
The snowfall effect can change the surface profile and simulate the

adaptive surface. In this paper, the Gaussian kernel function is used to
quantify the surface change of snowfall.

Then, the basic algorithm of Gaussian kernel function will be im-
proved accordingly to better meet the actual image segmentation pro-
cessing. In order to describe the problem more intuitively, a diagram is
used to describe the core idea of the algorithm, as shown in Fig. 3. The
standard image is stretched, rotated, and scaled to achieve any image
under this transformation. The feature of any image can be jointly
represented by the image parameters, including stretching parameters
𝛬𝑖, rotation parameters 𝑈𝜃𝑖 and scaling parameters 𝛾𝑖. Because of
this, the feature of any image can be accomplished with an adaptive
Gaussian kernel. As shown in Fig. 4, different kernel function shapes
are described. Where, (a) is the traditional Gaussian kernel, which
describes the flat area in the image, and (b) represents the texture area;
(c) represents the weak edge region, (d) represents the strong edge
region, and (e) represents the sloped edge region. In order to more
intuitively represent the characteristics of these five areas, the classical

image analysis is used, as shown in Fig. 5.
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Fig. 1. GGO classification of COVID-19 ((a) vascular adhesive GGO; (b) pleural adhesive GGO; (c) lung wall adhesive GGO; (d) solitary GGO; (e) solid GGO; (f) pure GGO).
Fig. 2. Flow chart of COVID-19 GGO segmentation.
Fig. 3. Improvement of traditional kernel function.
According to the transformation process described above, an adap-
tive Gaussian kernel function is proposed:

𝑘(𝑦, 𝑦 ) = 𝑒𝑥𝑝(−
(𝑦 − 𝑦0)𝑇𝐶0(𝑦 − 𝑦0) ) (1)
3

0 2𝜎2
where, 𝜎 represents the global smoothing factor, 𝜎 = 3. 𝐶0 is the
covariance matrix based on local different gray values. In order to
simplify the calculation, the eigenvalue decomposed of 𝐶0 is:

𝐶 = 𝛾𝑈 𝐵 𝑈𝑇 (2)
0 𝜃0 0 𝜃0
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Fig. 4. Adaptive surface evolution kernel ((a) flat region; (b) texture region; (c) weak marginal region; (d) strong marginal region; (e) oblique marginal region).
Fig. 5. Diagram of adaptive surface for COVID-19 CT image.
𝑈𝜃0 =
[

cos(𝜃0) sin(𝜃0)
− sin(𝜃0) cos(𝜃0)

]

(3)

𝐵0 =
[

𝜎0 0
0 𝜎−10

]

(4)

where, 𝐶0, 𝑈𝜃0 , and 𝐵0 represent the rotation matrix, the stretched rect-
angular matrix and the value of the kernel respectively. The gradient
matrix is defined as following:

𝑀0 = 𝑈0𝑁0𝑉
𝑇
0 , 𝑦𝑗 ∈ 𝑤0 (5)

where, 𝑈0𝑁0𝑉 𝑇
0 is the decomposition of 𝑀0, 𝑁0 is the second-order

diagonal matrix, which is the value of key direction; 𝑉0 = [𝑣1, 𝑣2]𝑇 is
an orthogonal matrix that defines the direction, the value of angle is:

𝜃0 = arctan(
𝑣1
𝑣2

) (6)

The rotation parameter 𝜎0 is defined according to the gradient
direction:

𝜎0 =
𝑣1 + 𝜂∕

𝑣2 + 𝜂∕
, 𝜂∕ ≥ 0 (7)

where, 𝜂∕ is the adjustment factor of stretching, 𝜂∕ = 1.
The selection factor 𝜙0 is:

𝜙0 = (
𝑣1𝑣2 + 𝜂∕∕

𝑀
)1∕2 (8)

where, 𝜂∕∕ is the selection adjustment factor, 𝜂∕∕ = 0.01, 𝑀 = 5×5. The
process of adaptive snowfall model is shown in Fig. 6.

In the simulated snowfall model, the adaptive Gaussian kernel func-
tion can suppress the noise while enhancing the contour information
through a certain number of iterations 𝑅 with the adaptive rotation
parameters 𝜎 and the selection factor 𝜙 , which lays a good foundation
4

0 0
for the subsequent image segmentation. By controlling the number
of iterations 𝑅, the snowfall accumulation can be controlled. For the
simulated snowfall model, the main factors which affect the number
of iterations are the strength of noise, the size of the image and the
strength of image edge information. The weak edges require more
iterations, and the strong edges require fewer iterations. The larger
the noise and the larger the image, the more iterations are required,
and vice versa. When the number of iterations is too small, the noise is
obvious; when the number of iterations is too many, the edges become
blurred. The selection of the number of iterations in this paper mainly
depends on the experimental trial and error method. According to the
experimental findings, the ideal number 𝑅 of iterations is 20. The
appropriate number of iterations is close to 20, and the change range
is not large, which also makes the method of determining the number
of iterations through the experiments feasible.

2.2. Adaptive spatial information MRF based FCM remote sensing image
clustering algorithm

In this paper, the spatial gravity model and the spatial structure
feature are combined to construct the MRF with adaptive spatial in-
formation weight, which is introduced into the traditional FCM. This is
defined as AMFCM.

2.2.1. MRF with adaptive spatial information
In the traditional MRF in FCM (MFCM) [16], each pixel in the

neighborhood has the same influence on the central pixel. It does not
take into account the distance between each pixel in the neighborhood
and the central pixel. However, according to the first law of geography,
the objects with similar spatial distance are more likely to belong to
the same type of objects. The closer the neighborhood pixels are to the
central pixel, the greater the impact on the central pixel. In addition,
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Fig. 6. Flowchart of adaptive snow model.
the clustering effect is not good for complex small target regions in
the MFCM model. Therefore, in order to improve the accuracy of
clustering, the spatial gravity model and spatial structure feature are
introduced to construct the MRF with adaptive spatial information,
which describes the weight of spatial information between the central
pixel and each pixel in the neighborhood adaptively. It improves the
accuracy of clustering for small object regions. According to the space
gravity model and the characteristics of space structure, the improved
prior probability expression of MRF is:

𝑃 (𝑖𝑗) = 𝑒𝑥𝑝(−𝛼(𝑥𝑖)𝑈 (𝑖𝑗))∕𝑍 (9)

𝑍 =
∑

𝑥∈𝑋
𝑒𝑥𝑝(−𝑈 (𝑖𝑗)) (10)

where, 𝑍 is the normalization constant of the segmentation function,
𝑈 (𝑖𝑗) is the energy function, and its expression is:

𝑈 (𝑖𝑗) =
∑

𝑖,𝑗∈𝐶
𝐼(𝑖𝑗) (11)

where: 𝑈 (𝑖𝑗) is the sum of all potential groups in potential group set C.
𝐼(𝑖𝑗) is the potential function on C:

𝐼(𝑖𝑗) =

{

−𝑆𝑖𝑗 𝑐(𝑥𝑖) = 𝑐(𝑥𝑗 )
0 𝑐(𝑥𝑖) ≠ 𝑐(𝑥𝑗 )

(12)

where: 𝑐(𝑥𝑖) is the category of pixel 𝑥𝑖, 𝑐(𝑥𝑗 ) is the neighborhood
category of pixel 𝑥𝑗 , and 𝑆𝑖𝑗 is the spatial attraction between the central
pixel 𝑥𝑖 and the neighborhood pixel 𝑥𝑗 , which is used to control the
influence of the neighborhood pixel on the central pixel. 𝛼 is the feature
of spatial structure, which is the edge coefficient of structure.
5

2.2.2. The model of space gravity
The spatial gravity model is proved to be effective in characterizing

the spatial correlation between the image pixels [17]. For two pixels 𝑥𝑖
and 𝑥𝑗 , their attraction to the 𝑘th cluster is directly proportional to their
fuzzy membership 𝑢𝑖𝑘 and 𝑢𝑗𝑘. 𝑤𝑖𝑗 is the weight of the distance between
different pixels. Therefore, the pixel spatial attraction 𝑆𝑖𝑗 between two
pixels can be described as:

𝑆𝑖𝑗 =
𝑤𝑖𝑗

∑

𝑗∈𝑁𝑖
𝑤𝑖𝑗

× 𝑢𝑖𝑘 × 𝑢𝑗𝑘 (13)

where: 𝑆𝑖𝑗 ∈ (0, 1), 𝑖 is the position of the central pixel. 𝑗 ∈ 𝑁𝑖,𝑗{𝑗 =
0, 1, 2,… , 7} is the neighborhood pixel of 𝑖. 𝑤𝑖𝑗 is the weight of the
distance between the central pixel and the neighboring pixels, which
is the reciprocal of the Euclidean distance, as shown in Fig. 7. Fig. 7 is
the square neighborhood system, whose scale is 3. The spatial attraction
in Fig. 7(a) exists only between the central pixel and its neighborhood
pixel in the given window. And other pixels outside the window are
too far away from the central pixel to give any gravity to the central
pixel.

2.2.3. Spatial structure characteristics
The edge feature is one of the characteristics of spatial structure

[18]. The calculation of gradient is the most common method in edge
detection [19]. The Sobel operator is used to calculate the horizontal
and vertical gradients of each pixel for the original medical CT image.
The gradient expression for each pixel is as following:

▽𝑥𝑖 =
1
2

√

(▽ℎ𝑥𝑗𝑖 )2 + (▽𝑣𝑥𝑗𝑖 )2 (14)

where, ▽ℎ𝑥𝑗𝑖 and ▽𝑣𝑥𝑗𝑖 are the first-order horizontal and vertical
gradients of pixel 𝑥 in the 𝑗th band respectively. The edge coefficient
𝑖
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Fig. 7. The spatial gravity between the central pixel and the neighborhood pixel ((a)
neighborhood of central pixel; (b) The distance weight coefficient between the center
pixel and the neighborhood pixel).

is constructed, which is expressed as:

𝛼(𝑥𝑖) =
1

1 +▽𝑥𝑖
(15)

The gradient reciprocal smooth method can not only effectively
reduce noise, but also preserve the certain edge and the detail infor-
mation.

2.2.4. The objective function of AMFCM is constructed
AMFCM is an unsupervised clustering algorithm, which is used for

lesion clustering of CT image. It not only combines the local spatial
information with grayscale information into the objective function of
traditional FCM, but also adds the spatial structure features to reduce
noise. At the same time, the accuracy of classification for linear features
is improved. Through the MRF of adaptive spatial information, the prior
probability 𝑃𝑖𝑗 of pixel 𝑥𝑖 at a certain mark is obtained, and the rejec-
tion degree of the mark is obtained. The objective function 𝐽𝐴𝑀𝐹𝐶𝑀 is
obtained by combining the rejection degree with the traditional FCM
algorithm. The expression is:

𝐽𝐴𝑀𝐹𝐶𝑀 =
𝑁
∑

𝑖=1

𝐶
∑

𝑘=1
𝑢𝑚𝑖𝑘(1 − 𝑃 (𝑖𝑗))‖𝑥𝑖 − 𝑣𝑘‖ (16)

Similarly, according to the Lagrange multiplier method, the nec-
essary conditions for the objective function 𝐽𝐴𝑀𝐹𝐶𝑀 to obtain the
conditional extreme value are:

𝑣𝑘 =
∑𝑁

𝑖=1 𝑢
2
𝑖𝑘(1 − 𝑃 (𝑖𝑗))𝑥𝑖

∑𝑁
𝑖=1 𝑢

2
𝑖𝑘(1 − 𝑃 (𝑖𝑗))

(17)

𝑢𝑖𝑘 = 𝑆𝑖𝑗 ×
‖𝑥𝑖 − 𝑣𝑘‖−2(1 − 𝑃 (𝑖𝑗))−2

∑𝑐
𝑡=1 ‖𝑥𝑖 − 𝑣𝑡‖−2(1 − 𝑃 (𝑖𝑗))−2

(18)

where, 𝑥𝑖 is the gray value of the pixel at the position 𝑖; 𝑁 is the total
number of pixels in the CT image; 𝑃𝑖𝑗 is the prior probability of the
MRF; 𝐶 is the number of clustering; 𝑣𝑘 is the clustering center of the
class 𝑘; 𝑢𝑖𝑘 is the membership degree of pixel point 𝑖 belonging to the
class 𝑘; 𝑚 is a constant, which can be used to control the fuzzy degree
𝑚 ∈ (1,∞) of the clustering results. When the parameter 𝑚 is close to 1,
the FCM algorithm tends to be the hard clustering algorithm, which is
the same as k-means. When the parameters are close to positive infinity,
the entire data tends to be classified into one category. In this paper,
𝑚 = 2, 𝑁 = 512 × 512.

The improvement of FCM clustering algorithm is shown in Fig. 8.
In Fig. 8a, A-D is the vascular region and E-M is the GGO region.
When the gray value of the blood vessel area is close to that of the
GGO area, it is easy to produce over-segmentation. When the adaptive
spatial information weight coefficient is added, the contrast between
the blood vessel and the background is reduced, as shown in A-D in
Fig. 8b. The closer a pixel is to the vascular region, the smaller the
fuzzy membership 𝑢𝑖𝑘 is. When the pixel belongs to the vascular region,
the minimum value is obtained, while the fuzzy membership of the
non-vascular region remains almost unchanged. Finally, the GGO is
6

accurately segmented, as shown in E-M in Fig. 8b. In this paper, when
using FCM clustering to pre-segment the image, 𝐶 = 5 is set can
obtain better processing results, which is conducive to further image
processing.

2.2.5. Time computational complexity of the improved FCM clustering
algorithm

For the time computational complexity, 𝑂(𝑓 ) is set as the time
computational complexity in each iteration of each clustering center,
then it can be seen that the time computational complexity of the
traditional FCM algorithm [20] is 𝑂(𝑇 ⋅ 𝐻 ⋅ 𝑓 ). Where, 𝑇 is the total
number of iteration and 𝐻 is the total number of the clustering center.
For the traditional FCM, the value of the membership function in each
iteration remains unchanged, so there is 𝑂(𝑓1) = 𝑂(𝑓2) = ⋯ = 𝑂(𝑓𝑇 ) =
𝑂(𝑓 ). For the proposed FCM algorithm, since 𝑆𝑖𝑗 ∈ (0, 1), the value
of the membership function gradually decreases with the increase of
iteration, so there is 𝑂(𝑓1) ≥ 𝑂(𝑓2) ≥ ⋯ ≥ 𝑂(𝑓𝑇 ). It can be seen from the
above analysis that compared with the traditional FCM, the proposed
FCM greatly reduces the time computational complexity.

2.3. Anisotropic diffusion filtering

In the lung CT image, due to the high gray difference between the
chest wall area and both sides, in the process of filtering and denoising
the lung CT image using the P-M model, the smooth denoising can
be carried out in the lung area, while smoothing can be suppressed
where there are edges [21,22]. Compared with Gaussian filtering, mean
filtering and other methods, on the premise of ensuring the important
feature information of the image, it can remove the noise and preserve
the image edge more effectively [23,24]. The nonlinear anisotropic
diffusion equation is:
{

𝜕𝑢(𝑥,𝑦,𝑡)
𝜕𝑡 = 𝑑𝑖𝑣(𝑐(𝑥, 𝑦, 𝑡)▽𝑢)

𝑢|𝑡=0 = 𝑢0
(19)

where, 𝑢(𝑥, 𝑦, 𝑡) represents the image to be processed; 𝑑𝑖𝑣 represents
the divergence; ▽ represents the gradient operator; 𝑐(𝑥, 𝑦, 𝑡) represents
the diffusion coefficient, which controls the diffusion rate. The image
gradient function is usually selected, so that the image edge information
can be protected during diffusion. 𝑢(𝑥, 𝑦, 𝑡) = 𝑢0 represents the initial
condition.

The P-M edge stop function is defined as:

𝑐(‖▽𝑢‖) = 1

1 + ( ‖▽𝑢‖
𝐾 )2

(20)

where, the constant 𝐾 is used to control the sensitivity of the edge,
and the image is smooth denoised by iteration. According to several
groups of experimental tests, the higher the number of iterations, the
better the effect, but the time will increase accordingly. In this paper,
the constant 𝐾 is 0.2 and the number of iterations is 100.

2.4. Morphological method

In this paper, morphological open operation [25,26] and closed
operation [27] are combined to remove the interference of noise and
other isolated small areas according to the characteristics of target and
noise.

2.5. Improved random walk algorithm

In this paper, the random walk algorithm [28] is improved, and the
geodesic distance is used as the measurement basis for GGO segmen-
tation, so as to more accurately determine the probability that a pixel
belongs to a certain type of seed point. There are many blood vessel
areas and edge burr with similar gray values to GGO in CT images of
COVID-19, even the GGO adheres to the chest wall. These situations
make the random walk algorithm based on gray or Euclidean distance
unable to achieve good segmentation results. However, the geodesic
distance on the segmentation graph is not limited by this.
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Fig. 8. Improved FCM clustering algorithm ((a) traditional FCM clustering; (b) adding adaptive spatial information characteristic coefficient).
Fig. 9. Comparison of Random Walk Algorithm ((a) Traditional random walk algorithm; (b) Improved random walk algorithm).
2.5.1. Definition of spatial geodetic

In the CT images of COVID-19, the gray value of GGO is almost the
same as that of the chest wall. It is difficult to accurately separate the
GGO from the chest wall if only based on the gray value information.
Therefore, based on the pixel grayscale information, this paper adds the
coordinate position information of each pixel and the geodesic distance
information between the seed points into the weight function. The
geodesic distance between the pixel points and the seed points in the
image is defined. It uses coordinate information to calculate geodesic
distance. Then the GGO is segmented more accurately according to the
image gray level and the spatially shortest geodesic distance.
7

We define the geodesic distance between the pixel point 𝑣𝑖 and the
seed point 𝑣𝑘 as:

𝐷(𝑣𝑖, 𝑣𝑘) = min
𝑃⊂𝑃𝑖𝑘

𝑛
∑

𝑙=1

𝑛
∑

𝑚=1
𝑢𝑙𝑚𝑑(𝑥𝑙 , 𝑥𝑚) (21)

where, 𝑢𝑙𝑚 =

{

1, 𝑑𝑙𝑚 ∈ 𝑝
0, 𝑑𝑙𝑚 ∉ 𝑝

, it indicates that the path 𝑝 is connected

through the pixel 𝑣𝑖 and the seed point 𝑣𝑘𝑢𝑙𝑚 = 1, otherwise 𝑢𝑙𝑚 = 0, and
𝑝 ∈ 𝑃𝑖𝑘. 𝑃𝑖𝑘 represents the set of whole paths connecting the pixel points
𝑣𝑖 and the seed points 𝑣𝑘. 𝑝 is the path formed by overlaying a series
of edges between the adjacent pixels. That is, the geodesic distance is
the shortest path connecting two points in space. The geodesic distance
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Fig. 10. Seed points selection of random walk ((a) Original CT image; (b) Seed points marked; (c) Selection of seed points; d. Result of GGO segmentation).
preserves the internal geometry of data better than Euclidean distance
on a global basis.

The similarity of spatial geodetic between the pixel points 𝑣𝑖 and
the seed points 𝑣𝑘 in the image is defined as:

𝐺𝑣𝑖𝑣𝑘 = 𝑒𝑥𝑝(−𝜕 ×
𝐷(𝑣𝑖, 𝑣𝑘)
max𝑁𝑖=1 𝑃𝑖𝑘

) (22)

2.5.2. The estimation of adaptive weight
The random walk algorithm is an image segmentation method based

on the graph structure. The weight function describes the similarity
between different nodes and it determines the quality of the image
segmentation. This paper proposes an adaptive weight function, which
calculates the proportion of grayscale and texture features in the weight
function according to the edge density of the image. The similarity
description between nodes can better reflect the essential properties of
the image. The improved weight function is defined as following:

𝑤𝑖𝑗 = 𝑒𝑥𝑝(−𝛼
√

|𝑔𝑖 − 𝑔𝑗 | − (1 − 𝛼)(
√

|ℎ𝑖 − ℎ𝑗 | +
𝑁

max
𝑘=1

𝐺𝑣𝑖𝑣𝑘 )) (23)

where, 𝑔𝑖 represents the gray value of the image pixel i after the
snowfall model processing, ℎ𝑖 represents the corresponding gradient
value, 𝛼 represents the parameter of gray feature, (1 − 𝛼) represents
the weight of spatial geodesic distance.

The edge is an important information in the image and it reflects the
essential properties of the image. In this paper, the edge density is used
to calculate the weight factor 𝛼. The calculation of the edge density
needs to use the gradient amplitude information of the image. The
Sobel operator is used to calculate the gradient amplitude of the image.
Corresponding to the input image 𝐼 , the gradient image is calculated
by Eq. (24):

𝐸𝑖,𝑗 =
√

(𝐸𝑥
𝑖,𝑗 )2 + (𝐸𝑦

𝑖,𝑗 )2 (24)

where, 𝐸𝑥
𝑖,𝑗 and 𝐸𝑦

𝑖,𝑗 are the gradient values in horizontal and vertical
directions respectively, which can be calculated in Eqs. (25) and (26):

𝐸𝑥
𝑖,𝑗 = (𝐼 ∗ 𝑆𝑥)𝑖,𝑗 (25)

𝐸𝑦
𝑖,𝑗 = (𝐼 ∗ 𝑆𝑦)𝑖,𝑗 (26)

where, 𝑆𝑥 and 𝑆𝑦 are the horizontal and vertical Sobel filters respec-
tively. The calculation of the edge density with the node as the center
and the fixed size of window is as following:

𝜌𝑖,𝑗 =

∑𝑗+𝑛∕2
𝑙=𝑗−𝑛∕2

∑𝑖+𝑚∕2
𝑘=𝑖−𝑚∕2 𝐸𝑘,𝑙

𝑚 × 𝑛
(27)

where: 𝑚 and 𝑛 are the length and width of the window respectively,
𝑚 = 5, 𝑛 = 5; the numerator represents the edge strength of nodes
in the fixed-size window, and the denominator represents the number
of pixels contained in the window. The weight factor 𝛼 is defined as
8

following:

𝛼 =

⎧

⎪

⎨

⎪

⎩

0, 𝜌𝑖,𝑗 𝑎𝑛𝑑 𝜌𝑘,𝑙 ≥ 𝑇1
1, 𝜌𝑖,𝑗 𝑜𝑟 𝜌𝑘,𝑙 ≤ 𝑇2
𝑇1−𝑚𝑎𝑥(𝜌𝑖,𝑗 ,𝜌𝑘,𝑙 )

𝑇1−𝑇2
, 𝑜𝑡ℎ𝑒𝑟𝑠

(28)

where, 0 ≤ 𝑇1, 𝑇2 ≤ 1. In this paper, when 𝑇1 = 0.7 and 𝑇2 = 0.3,
the adaptive weight function can more accurately reflect the difference
between nodes. The size of the weight factor 𝛼 reflects the complexity
of the image neighborhood structure and it determines the proportion
of the two weight components in the adaptive weight function. When
the neighborhood of image is relatively smooth, the 𝛼 is relatively
large, and the gray-scale similarity weight component in the weight
function accounts for the main part. When the image neighborhood
structure is relatively complex, the 𝛼 is relatively small, and the texture
similarity weight component in the weight function dominates part, the
obtained weight function accurately reflects the structural information
of the image, which is beneficial to improve the accuracy of image
segmentation.

Fig. 9 shows the different segmentation results before and after the
improvement of the random walk algorithm, where the red points are
the target seed points and the green points are the background seed
points. Before adding the geodesic distance, the GGO is segmented
according to the gray information of the image. Due to the similar gray
value between the chest wall and GGO, a better segmentation result
cannot be obtained, as shown in the left side of Fig. 9. After adding
the geodesic distance, the geodesic distance between the image pixel
points and the seed points is judged at the adhesion of the chest wall.
The connection paths between the pixels in the GGO area and the target
seed points are all inside the GGO, while the distance between the
background seed points and the pixels outside the target seed point is
much larger, so there will be none over-segmentation, as shown on the
right side of Fig. 9.

2.5.3. Seed points selection of random walk
Since random walk is an interactive image segmentation algorithm,

it is necessary to specify a certain number of seed points in advance.
The number of seed points will directly affect the segmentation effect.
Too few seed points lead to inaccurate image segmentation. Too many
seed points make the segmentation result depends too much on the
initial contour target obtained by the mixed Gaussian background
modeling (because these seed points will define the label according
to the initial contour target), which affects the optimization effect.
Therefore, an appropriate number of seed points is beneficial for image
segmentation. Aiming at the segmentation problem of different types of
GGO, this paper adds the spatial information between image point pairs
to the weight function of random walk. Combined with the grayscale
information of the pixels, the spatial distance between the pixel points
and the seed points in the image is used to complete the segmentation.
In adhesive GGO with great difficulty in segmentation, the target seed

points in the GGO adhered to the chest wall is marked, as shown by the
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red points in Fig. 10b. Then, the background seed points are set at the
position of the adhesion chest wall and the low gray level area of lung
parenchyma, as shown by the green points in Fig. 10b. It makes full use
of the spatial relationship between the image pixels and the seed points.
Therefore, when selecting the seed points, the preprocessed image is
morphologically expanded with appropriate size, and the contour of
lung parenchyma edge is larger than its real contour, as shown by the
green line in Fig. 10c. Selecting the edge pixels as the background seed
points, and the required coordinate values are recorded. Morphological
erosion of appropriate size is then performed, and the margin of the
lung parenchyma is still larger than its true contour at this time, as
shown by the red line in Fig. 10c. Selecting the edge pixels as the target
seed points can ensure that there exists the target seed points in the
GGO area, and the required coordinate values are recorded. Finally, the
large-scale morphological erosion is carried out, then the edge contour
of lung parenchyma is smaller than its real contour, as shown in blue
line in Fig. 10c. The edge pixels are selected as the background seed
points, and the seed points must be outside the GGO and inside the lung
parenchyma. After the seed points are obtained, the improved random
walk algorithm is used to calculate the geodesic distance between the
pixel points required for segmentation and the seed points, so as to
complete the accurate segmentation of the GGO. The segmentation
result is shown in Fig. 10d.

3. Analysis of experimental results and performance

Aiming at the different kinds of GGO COVID-19 CT images including
vascular adhesive GGO, pleural adhesive GGO, lung wall adhesive GGO,
solitary GGO, solid GGO, pure GGO are tested by the Intel E8200 CPU
2.5 GHz, RAM 8G, Matlab 2016a. The size of the image is 512 × 512.

he COVID-19 CT images tested in this paper are from COVID-19
T segmentation dataset (https://medicalsegmentation.com/covid19/)
nd LIDC-IDRI (https://paperswithcode.com/dataset/lidc-idri). This
aper calculates the Dice similarity coefficient (DSC) and sensitivity
f image segmentation effect to verify the effectiveness of the exper-
mental methods. The Dice similarity coefficient can be obtained by
easuring the overlap between the segmentation results of the paper
ethod and the manual segmentation results of experts, namely:

𝑆𝐶 =
2 × |𝑢 ∩ 𝑣|
|𝑢| + |𝑣|

(29)

where, 𝑢 represents the segmentation result of this article, and 𝑣 repre-
sents the golden standard segmentation result by doctor.

The 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 is obtained by measuring the ratio of the segmenta-
tion results of the paper method and the expert manual segmentation
results to correctly segment the GGO area, namely:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
|𝑢 ∩ 𝑣|
|𝑢|

(30)

where, 𝑢 represents the segmentation result of this article, and 𝑣 rep-
resents the golden standard segmentation result by doctor. This paper
compares with the comparative methods and uses the accuracy 𝐼𝑂𝑈
index to objectively evaluate the experimental results:

𝐼𝑂𝑈 =
𝑁11 +𝑁10

𝑁11 +𝑁10 +𝑁01 +𝑁00
(31)

here, 𝑁11 represents the correctly segmented GGO region. 𝑁10 rep-
resents the correctly segmented background region. 𝑁01 represents the
incorrectly segmented GGO region and 𝑁00 represents the incorrectly
segmented background region. The greater the accuracy 𝐼𝑂𝑈 , the more
accurate the image segmentation is and the closer to the standard
segmentation.

Golden standard segmented GGO by doctor (GSSD), improved ran-
dom walk combined with traditional FCM (IRWF) [29], watershed
image segmentation (WIS) [8], automatic random walk image seg-
mentation (ARW) [30], traditional random walk image segmentation
(TRWS) [31], region growth combined with morphological (RGCM)
9

Table 1
Comparison of AMFRW with different methods for COVID-19 CT image of vascular
adhesive GGO.

Segmentation method Dice Sensitivity IOU

AMFRW 0.964 0.953 0.957
IRWF 0.876 0.885 0.864
RGCM 0.852 0.866 0.842
SRWS 0.849 0.851 0.839
ARW 0.813 0.826 0.801
TRWS 0.781 0.797 0.775
WIS 0.757 0.762 0.742

[32], super-pixel random walk image segmentation (SRWS) [33], adap-
tive spatial information MRF combined with FCM and improved ran-
dom walk algorithm (AMFRW, paper method) are used for simulation
comparison tests.

It can be seen from Fig. 11 that the algorithm in this paper has better
segmentation result than the comparison methods on different types
of GGO in COVID-19. Since the comparison methods only consider
the grayscale information between pixels, it cannot achieve better
segmentation result for different kinds of GGO with small difference of
grayscale. Fig. 11(c1)–(i6) show the segmentation results of AMFRW,
IRWF, RGCM, SRWS, ARW, TRWS, and WIS for different types of GGO
respectively. Among them, Fig. 11(c1)–(c6) show the best segmentation
results of AMFRW (paper method). Visually, the segmentation effect of
AMFRW is better due to the application of spatial information. Different
types of GGO are segmented as lesions to a certain extent. In the
comparison methods, due to the inhomogeneity of GGO, it has similar
gray value with the surrounding lung wall, blood vessels, pleura, etc.
A good segmentation result cannot be obtained only by the segmenta-
tion method of grayscale information. For example, in Fig. 11(h1), it
can be found that the GGO segmentation result contains some blood
vessels, which is inconsistent with the actual situation. By comparing
Fig. 11(c2) and (i2), it can be seen that the GGO segmentation effect
of Fig. 11(c2) is better than that of Fig. 11(i2). The edge of GGO in
Fig. 11(i2) is not obvious, and the segmentation effect is not good for
the state of pleural adhesion. The reason is that the segmentation result
of the traditional method is isotropic, which makes the segmentation
result lose the details of the GGO. In Fig. 11(c2), this situation is
changed because the spatial correlation of pixels is considered. The
algorithm in this paper redefines the weight function of the random
walk, and it adds the spatial geodetic distance between the pixel points
and the seed points to the measurement of the segmentation process,
which can complete the accurate segmentation of different types of
GGO, making the segmentation results closer to the real target area. The
FCM algorithm with adaptive spatial information weight coefficient can
enhance the contrast of GGO region compared to the background and
suppress the gray value of the edge-independent area. It can better deal
with the over-segmentation caused by blood vessels, burrs and other
factors.

The improved segmentation method in this paper has better indica-
tors for the 𝐷𝑆𝐶 and the 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦. The segmented GGO image can
fully and clearly show the lesions, which is helpful to improve the
accuracy and sensitivity of COVID-19 classification. The extraction of
GGO for different kinds of COVID-19 CT images are shown in Fig. 11.
The calculation results are shown in Tables 1–6. Table 7 is the average
of GGO segmentation results for comparison of AMFRW with different
methods. From the change trend of the data in Table 7, compared
with the comparative segmentation methods, AMFRW has increased the
value of 𝐷𝑖𝑐𝑒 about 0.086, the value of 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 has been increased
by about 0.076, the value of 𝐼𝑂𝑈 has been increased by about 0.095.
It can be seen that the segmentation effect for different kinds of GGO
under AMFRW is the best.

We compared the AMFRW with 9 state-of-the-art approaches in-

cluding Inf-Net [34], Chain code-SVM [35], CNN-Clustering [36],

https://medicalsegmentation.com/covid19/
https://paperswithcode.com/dataset/lidc-idri
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Fig. 11. COVID-19 CT image of vascular adhesive GGO: (a1) original CT image; (b1) segmented by doctor(golden standard); (c1) segmented by AMFRW(paper method); (d1)
segmented by IRWF; (e1) segmented by RGCM; (f1) segmented by SRWS; (g1) segmented by ARW; (h1) segmented by TRWS; (i1) segmented by WIS. COVID-19 CT image of
pleural adhesive GGO: (a2) original CT image; (b2) segmented by doctor(golden standard); (c2) segmented by AMFRW(paper method); (d2) segmented by IRWF; (e2) segmented
by RGCM; (f2) segmented by SRWS; (g2) segmented by ARW; (h2) segmented by TRWS; (i2) segmented by WIS. COVID-19 CT image of lung wall adhesive GGO: (a3) original CT
image; (b3) segmented by doctor(golden standard); (c3) segmented by AMFRW(paper method); (d3) segmented by IRWF; (e3) segmented by RGCM; (f3) segmented by SRWS; (g3)
segmented by ARW; (h3) segmented by TRWS; (i3) segmented by WIS. COVID-19 CT image of solitary GGO: (a4) original CT image; (b4) segmented by doctor(golden standard);
(c4) segmented by AMFRW(paper method); (d4) segmented by IRWF; (e4) segmented by RGCM; (f4) segmented by SRWS; (g4) segmented by ARW; (h4) segmented by TRWS;
(i4) segmented by WIS. COVID-19 CT image of solid GGO: (a5) original CT image; (b5) segmented by doctor(golden standard); (c5) segmented by AMFRW(paper method); (d5)
segmented by IRWF; (e5) segmented by RGCM; (f5) segmented by SRWS; (g5) segmented by ARW; (h5) segmented by TRWS; (i5) segmented by WIS. COVID-19 CT image of pure
GGO: (a6) original CT image; (b6) segmented by doctor(golden standard); (c6) segmented by AMFRW(paper method); (d6) segmented by IRWF; (e6) segmented by RGCM; (f6)
segmented by SRWS; (g6) segmented by ARW; (h6) segmented by TRWS; (i6) segmented by WIS.
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Fig. 12. COVID-19 CT image of vascular adhesive GGO: (a) original CT image; (b) segmented by doctor(golden standard); (c) segmented by AMFRW(paper method); (d) segmented
by GAN-Unet; (e) segmented by U-Net++; (f) segmented by MLT; (g) segmented by CNN-Clustering; (h) segmented by Chain code-SVM; (i) segmented by Inf-Net; (j) segmented
by R2U-Net; (k) segmented by FCN; (l) segmented by CPMC.
MLT [37], GAN-Unet [38], U-Net++ [39], R2U-Net [40], FCN [41], and
CPMC [42] to do segmentation simulations on the COVID-19 CT image
of vascular adhesive GGO, and further comparing and analyzing the
𝐷𝑖𝑐𝑒, 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 and 𝐼𝑂𝑈 under different segmentation methods. The
comparative COVID-19 CT image segmentation simulations of vascular
adhesive GGO are shown in Fig. 12. The evaluation index values are
shown in Table 8.
11
From the change trend of the data in Table 8, compared with the
comparative segmentation methods, AMFRW has increased the value
of 𝐷𝑖𝑐𝑒 about 0.008, the value of 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 has been increased by
about 0.005, the value of 𝐼𝑂𝑈 has been increased by about 0.008. It
can be seen that the segmentation effect for the COVID-19 CT image
of vascular adhesive GGO under AMFRW is the best. It can better deal
with the over-segmentation caused by blood vessels, burrs and other
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Table 2
Comparison of AMFRW with different methods for COVID-19 CT image of pleural
adhesive GGO.

Segmentation method Dice Sensitivity IOU

AMFRW 0.956 0.973 0.946
IRWF 0.883 0.905 0.874
RGCM 0.867 0.882 0.852
SRWS 0.854 0.871 0.841
ARW 0.812 0.836 0.807
TRWS 0.790 0.812 0.783
WIS 0.753 0.761 0.739

Table 3
Comparison of AMFRW with different methods for COVID-19 CT image of lung wall
adhesive GGO.

Segmentation method Dice Sensitivity IOU

AMFRW 0.934 0.942 0.957
IRWF 0.883 0.904 0.913
RGCM 0.857 0.875 0.882
SRWS 0.844 0.862 0.871
ARW 0.823 0.841 0.856
TRWS 0.782 0.806 0.813
WIS 0.769 0.782 0.792

Table 4
Comparison of AMFRW with different methods for COVID-19 CT image of solitary
GGO.

Segmentation method Dice Sensitivity IOU

AMFRW 0.964 0.956 0.963
IRWF 0.903 0.894 0.905
RGCM 0.876 0.863 0.872
SRWS 0.852 0.846 0.854
ARW 0.838 0.822 0.833
TRWS 0.822 0.814 0.822
WIS 0.792 0.780 0.791

Table 5
Comparison of AMFRW with different methods for COVID-19 CT image of solid
GGO.

Segmentation method Dice Sensitivity IOU

AMFRW 0.976 0.968 0.962
IRWF 0.894 0.885 0.884
RGCM 0.873 0.864 0.866
SRWS 0.857 0.843 0.847
ARW 0.844 0.832 0.836
TRWS 0.823 0.816 0.819
WIS 0.802 0.794 0.797

Table 6
Comparison of AMFRW with different methods for COVID-19 CT image of pure GGO.

Segmentation method Dice Sensitivity IOU

AMFRW 0.955 0.967 0.959
IRWF 0.884 0.894 0.885
RGCM 0.867 0.873 0.863
SRWS 0.833 0.848 0.832
ARW 0.802 0.813 0.808
TRWS 0.788 0.792 0.784
WIS 0.762 0.771 0.762

factors, which reduces the mistake diagnosis for the vascular adhesive
GGO.

4. Conclusion

This paper proposes an accurate segmentation of GGO based on
FCM clustering and improved random walk algorithm. Firstly, the
combination of random walk and snowfall model improves the perfor-
mance of image segmentation, especially in the edge processing, which
not only maintains the original characteristics of the image, but also
12
Table 7
The average of GGO segmentation results for comparison of AMFRW with different
methods.

Segmentation method Dice Sensitivity IOU

AMFRW 0.958 0.959 0.956
IRWF 0.872 0.883 0.861
RGCM 0.854 0.863 0.843
SRWS 0.842 0.847 0.834
ARW 0.816 0.833 0.817
TRWS 0.776 0.811 0.788
WIS 0.753 0.771 0.764

Table 8
Comparison of AMFRW with different SOTA methods for COVID-19 CT image of
vascular adhesive GGO.

Segmentation method Dice Sensitivity IOU

AMFRW 0.964 0.953 0.957
GAN-Unet 0.956 0.948 0.949
U-Net++ 0.954 0.944 0.945
MLT 0.952 0.942 0.942
CNN-Clustering 0.949 0.939 0.938
Chain code-SVM 0.944 0.934 0.935
Inf-Net 0.943 0.932 0.932
R2U-Net 0.939 0.928 0.927
FCN 0.937 0.924 0.923
CPMC 0.931 0.921 0.921

suppresses the noise well. Then, by introducing spatial gravity model
and spatial structure characteristics into MRF, a MRF with adaptive
spatial information is constructed to overcome the shortcomings of
traditional FCM. It can adaptively determine the influence weight of
the spatial neighborhood and has good clustering effect for small target
areas. It can automatically balance the effectiveness of being insensitive
to noise and preserving the edge details of GGO COVID-19 CT images.
Finally, by improving the random walk algorithm, it makes full use
of the spatial distance relationship between pixel and seed points,
and it adds the geodesic distance to classify pixels more accurately. It
makes up for the traditional GGO segmentation method based on gray
information or Euclidean distance, resulting in the error segmentation
of GGO. It ensures the accurate segmentation for different types of
GGO lesion areas on CT images. By comparing the segmentation results
of the paper method with those of several traditional segmentation
algorithms and the SOTA methods based on deep learning, it is proved
that the paper method not only improves the segmentation accuracy,
but also has good segmentation performance. The paper method can
provide doctors with different types of real regions of GGO, with high
accuracy of segmentation, which can further improve the accuracy
of doctors’ diagnosis for COVID-19. The subsequent research of this
paper is mainly to optimize the performance of the algorithm. The
adaptive parameters of the snowfall model need to be further improved
to increase the segmentation integrity of the complex images. The seed
points extraction of the random walk needs to be further advanced to
improve the quality of the image segmentation.
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