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Summary: CD4+ T-helper subsets are lineages of T cells that have effec-
tor function in the lung and control critical aspects of lung immunity.
Depletion of these cells experimentally or by drugs or human immuno-
deficiency virus (HIV) infection in humans leads to the development
of opportunistic infections as well as increased rates of bacteremia with
certain bacterial pneumonias. Recently, it has been proposed that CD4+

T-cell subsets may also be excellent targets for mucosal vaccination to
prevent pulmonary infections in susceptible hosts. Here, we review
recent findings that increase our understanding of T-cell subsets and
their effector cytokines in the context of pulmonary infection.
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Introduction

CD4+ T-helper (Th) cells are critical components of the adap-

tive immunity in the lung (Fig. 1). The development of these

cells arises after priming with antigen presented by class II

major histocompatibility complexes (termed signal 1).

Further activation occurs after the engagement of costimulato-

ry molecules and their receptors expressed on both antigen-

presenting cells (APCs) and T cells (termed signal 2). This

second signal is critical for both generating antigen-specific

effector T cells as well as memory cells. Presentation of anti-

gen in the absences of costimulation can result in T-cell

anergy. Final effector function is due to cytokine/growth

factor-directed CD4+ T-cell differentiation (signal 3). This

latter aspect of differentiation is driven by lineage-specific

transcription factors as well as changes in chromatin remodel-

ing. The critical role of CD4+ T cells in lung immunity and

pulmonary host defenses was clearly demonstrated by the

high incidence of pulmonary infections as a complication of

human immunodeficiency virus (HIV) infections/acquired

immunodeficiency syndrome (1–3).

CD4+ T-helper subsets

Th2 cells

Th2 CD4+ T cells differentiate from naive precursors under

the direction of the transcription factor GATA3 and signal
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transducer and activator of transcription 6 (STAT6) (4).

Effector cytokines produced by Th2 cells include interleu-

kin-4 (IL-4), IL-5, and IL-13. GATA3 binds directly to the

Il4 locus, and IL-4 and signaling via STAT6 is critical for

further Th2 proliferation and lineage commitment (4). Th2

effector cytokines mediate immunity against infections with

helminths (Fig. 2). Deletion of Gata3 in mice results is

embryonic lethal, but conditional deletion of Gata3 in T cells

confirms the essential role of this transcription factor in Th2

differentiation and the expulsion of helminths from the gas-

trointestinal tract (5). IL-5 is an essential growth factor for

eosinophilopoiesis (6, 7). Mice with homozygous deletion

of Il5 have substantial reduction in both peripheral and bone

marrow eosinophils (6, 7). In contrast, overexpression of

IL-5 protein results in substantial eosinophilia in blood and

tissues (8). IL-13 signals through a receptor complex of

IL13RA1 and IL4Ra and activates STAT6 signaling. These

receptors are expressed on airway epithelium as well as air-

way smooth muscle. In bronchial epithelium, IL-13 is a

major factor in mucous production and goblet cell differen-

tiation in the airway (9, 10). Moreover, IL-13 signaling via

STAT6 in airway smooth muscle and in airway epithelium

leads to airways hyperresponsiveness to methacholine

(9, 10). These cells and effector cytokines have been impli-

cated in diseases such as allergic rhinitis, atopic dermatitis,

and asthma (11). Anti-IL-5 has been investigated in asthma

and although initial studies did not show clear cut efficacy

(12), but subgroups of patients with high sputum eosino-

philia respond to IL-5 blockade (12). Similarly, initial stud-

ies with IL-13 blockade were also negative, but recently,

studies suggest that by stratifying patients with IL-13 driven

asthma (by assessing the serum level of periostin, an IL-13

regulated gene in lung epithelium) can identify subgroups

who respond to anti-IL-13 (13). In addition to asthma, IL-

13 has been implicated in fibrotic processes in the lung in

response to drugs such as bleomycin (14–16).

Th2 cells also facilitate B-cell differentiation and antibody

responses to T-cell-dependent protein antigens (17), includ-

ing the development of an anti-immunoglobulin E (IgE)

response. It has been recently recognized that Th2 cell dif-

ferentiation is not only regulated by IL-4 but also several

cytokines produced by the lung epithelium, including thy-

mic stromal lymphopoietin (TSLP), IL-25, and IL-33 (17).

It has been shown recently that polymorphism in both IL-

33 and its receptors ST2 is associated with asthma, strongly

implicating Th2 cells and specifically the IL-33 ST2 signaling

pathway in this disease.

Fig. 1. CD4+ T-helper cell differentiation. Antigen is presented by
dendritic cells (DCs) by class II major histocompatibility complex
(MHC) to naive CD4+ Th0 cells. Full T-cell activation requires a
second signal consisting of the upregulation and expression of
costimulatory molecules such as inducible costimulatory ligand
(ICOSL), CD28, and cytotoxic T-lymphocyte antigen-4 (CTLA-4).
T-cell differentiation is instructed by cytokine/growth factor signals.
T-bet can be activated by STAT1 as well as bind to the IFNc locus
followed by induction of IL-12bR2. IL-12 activates STAT4, which can
further drive Th1 development. IFNc can act in an autocrine manner to
further augment Th1 differentiation. IL-4 induces Gata3, which further
induces IL-4 and supports the differentiation of Th2 cells. Th2 cells
produce IL-4, IL-5, and IL-13 as their effector cytokines. TGFb and IL-
6 can induce RORct expression as well as activation of STAT3. This
leads to induction of the IL-23 receptor, rendering these cells
responsive to IL-23, which is required for terminal differentiation of
Th17 cells. Th17 cells produce the cytokines IL-17/IL-17F, IL-22, IL-
21. IL-21 can act in an autocrine fashion to further the differentiation
of the Th17 lineage.

Fig. 2. Th2 cells and immunity at the mucosa. Allergen parasites or
helminthic infection can induce TSLP and IL-25 in the lung
epithelium. These cytokines can drive early IL-4 production leading to
the differentiation of Th2 cells. IL-4 and IL-13 can drive the induction
of IgE as well as stimulate epithelial cells to increase mucous
production. IL-5 is a critical regulator of eosinophilopoiesis. Binding of
IgE to FcRe on mast cells leads to their degranulation and release of
chymases, tryptases, and histamines.
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Th1 cells

Th1 cells, initially described by Mossman and Coffman

(18), were defined by their ability to express interferon-c

(IFN-c). Differentiation of CD4+ Th1 cells is controlled by

the transcription factors T-bet (19) and STAT4. Differentia-

tion is controlled by IL-12p70, which is a heterodimer of

IL-12p35 and IL-12p40 subunits (20). However, both in vi-

tro and in vivo Th1 differentiation can be independent of IL-

12. One critical IL-12-independent pathway is through the

induction of type I interferons that can facilitate Th1 differ-

entiation in certain situations (21). IFN-c which signals via

a receptor complex consisting of two IFN-cR1 and two IFN-

cR2 chains can signal in an autocrine paracrine fashion to

further amplify Th1 differentiation and lineage commitment.

IFN-c receptors are expressed on a wide variety of cells

including myeloid cells including macrophages and den-

dritic cells (DCs), as well as structural cells in the lung such

as epithelial cells and fibroblasts (22). IFN-cR1 and IFN-cR2

activate Janus-associated kinases 1 and 2 (JAK1/2), which

phosphorylates STAT1. STAT1 undergoes homodimerization

and translocation to the nucleus and binds to DNA-encoded

c-activated sequences that ultimately control gene transcrip-

tion (22).

IFN-c is critical for mediating immunity and host resis-

tance to many intracellular infections including Mycobacterium

tuberculosis, Listeria moncytogenes, and Salmonella typhimurium.

Patients with mutations IL-12p40, IFN-c, or receptors for

IL-12 or IFN-c have increased susceptibility to intracellular

infections due to these organisms (23, 24). Patients with

IFN-c receptor mutations can develop disseminated infection

with bacillus Calmette-Guerin (BCG) that is resistant to anti-

biotics and IFN-c therapy (23, 25). Patients with IL-12p40

mutations can also develop BCG or S. typhimurium infection,

but theoretically can respond to IFN-c (24). Thus, there is

strong evidence that this pathway is essential for human

control of these intracellular pathogens.

Th17 cells

Th17 cells are recently described effector lineage of T-helper

cells that produces IL-17A, IL-17F, IL-21, IL-22, and IL-26

(the latter expressed in human cells). Th17 cells differentiate

under control of the transcription factors retinoid orphan

receptor-c (RORc), ROR-a, and STAT3 (26, 27). It was ini-

tially believed that one of the critical instructional cytokines

for Th17 differentiation was IL-23 (28); however, IL-23

receptors are not expressed on naive CD4+ T cells. Landmark

studies published in 2005 showed that these cells develop

independently of STAT4 or STAT6 as well as T-bet or

GATA3 (29, 30). These data implicated that Th17 cells were

a distinct CD4+ T-cell lineage (29, 30). Th17 differentiation

can occur with stimulation with transforming growth fac-

tor-b (TGF-b) and IL-6 (31–33). Moreover, this cytokine/

growth factor combination induces the expression of IL-23R

(31–33). Signaling via IL-23 allows terminal differentiation

and expansion of Th17 cells (34). Another critical effector

cytokine produced by Th17 cells is IL-22, which is con-

trolled by IL-23 as well as the transcription factor the aryl-

hydrocarbon receptor (Ahr) (35). IL-21 (36, 37) can

function in an autocrine manner to further expand Th17

differentiation (Fig. 1). It has been recently shown in vivo

that TGFb activation and thus differentiation of Th17 cells

requires activation of latent TGFb by av integrins (38, 39).

This pathway is not required for IL-17 production by cd T

cells (38, 39).

T-follicular helper cells

T-follicular helper (Tfh) cells are a subgroup of CD4+ T cells

that are located in the B-cell follicle region of secondary

lymphoid tissues including lymph nodes and bronchial-asso-

ciated lymphoid tissues in the lung. These cells regulate T-

cell-dependent B-cell activation through the expression of

CD40L and IL-21 (40). These cells develop under the

control of the transcription factor Bcl-6 (40) and are also

regulated by inducible costimulatory (ICOS).

T-regulatory cells

Treg differentiation is controlled by the transcription factors

Foxp3 and STAT5 (41). These cells are essential for mediat-

ing tolerance to inhaled antigen in the lung (41). Deletion

of these cells or abrogating their effector molecules, which

include IL-10 and TGFb, prevent airways sensitization to

allergen as well as allergic inflammation (41). These cells

can suppress the effector activity of many T-helper subsets

and can be thymically derived (natural Tregs) or induced in

the periphery (iTregs). An exhaustive review of these cells is

beyond the scope of this chapter, but the reader is referred

to excellent thorough reviews (41, 42) of these cells if they

seek a more in-depth description of these cells.

Non-CD4+ T-helper cell sources of Th1/Th2/Th17

effector cytokines in the lung

Other cells in the lung exist that produce many of the same

effector cytokines as Th1, Th2, or Th17 cells including

innate lymphoid cells, natural killer (NK) cells, and cd T
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cells. cd T cells are resident in mucosal sites including the

lung and can produce IFN-c, IL-4, IL-17, and IL-22 (43).

These cells are a major source of early IL-17 after pulmo-

nary infection, and IL-17 production by these cells is regu-

lated by IL-23 and IL-1b (44–48). cd T-cell production of

IL-10 has been shown to play a key counter-inflammatory

role in some pulmonary infections such as Pneumocystis infec-

tion (49).

NK cells can also produce IL-4, IFNc, and IL-17 (50) in

the lung in response to infection, allergen, or ozone. One

population that has been extensively studied is a population

that expresses an invariant T-cell receptor (iNKT cells) that

recognizes a galactolipid Sphingomonas, a-galactosylceramide

(51, 52). These cells are elevated in the bronchial alveolar

lavage fluid of patients with asthma (53, 54). NKT cells

produce IFNc in response to S. pneumoniae pulmonary infec-

tion (55) and IL-17 in response to Escherichia coli lipopolysac-

charide (LPS) (50). These cells also produce IL-17, and this

response is critical for airways hyperresponsiveness to ozone

(56). NK cells can develop under the control of IL-15 and

express antiviral molecules such as IFN-c as well as cytotoxic

molecules (57).

Innate lymphoid cells are also important sources of effec-

tor cytokines in the lung. These cells are defined by the lack

of lineage markers and T-cell receptors, but they require IL-

7 signaling for their development. Thus, these cells are pres-

ent in recombination-activating gene 1 (RAG1) or RAG2�/�

mice, but are lacking in RAG2, common c chain (cc) dou-

ble deleted mice (58, 59). Retinoid orphan receptor ct

(RORct)-expressing cells are critical for the formation of

secondary lymphoid tissues (via regulation of lymphotoxin

expression) and play critical roles in mucosal immunology

in the gastrointestinal tract through the production of IL-17

and IL-22 (60). Type 2 ILCs produce IL-5 and IL-13 and

participate in the clearance of helminths from the gastroin-

testinal tract (61). These cells appear to be regulated by IL-

25 (IL-17E) as well as IL-33, a member of the IL-1 family.

Recently, it has been demonstrated that a population of ILCs

produce IL-13 in response to IL-33 induced by viral infec-

tion, and these cells mediate in part viral induced exacerba-

tion of allergic disease in the lung (62). These cells can also

be activated by protease allergens to drive eosinphilic air-

ways inflammation as well as airways hyperresponsiveness

(58) under control of IL-33 and TSLP. Thus, these cells

recapitulate many aspects of CD4+ T-cell immunity in that

there are subsets that express similar effector molecules, yet

these cells are activated early and their activation is indepen-

dent of TCR stimulation.

CD4+ T-cell effector cytokines in the lung

Type 2 effectors

Both IL-4 and IL-13 activates STAT6 signaling in a variety of

lung cells including alveolar macrophages, fibroblasts, air-

way smooth muscle, and airway epithelium. In macrophag-

es, activation of STAT6 leads to what is termed ‘alternative

macrophage activation’ which is characterized by the expres-

sion of arginase 1, YM1, YM2, and the macrophage man-

nose receptor (63). It has been shown that IL-4 treatment

of macrophages can reduce their phagocytic ability, but IL-4

stimulation of macrophages can augment the clearance of

apoptotic neutrophils (63). Alternatively, activated macro-

phages (AAMs) play regulatory roles in helminth infection

and can reduce immunopathology (63). It has also been

shown that AAMs have augmented dectin-1 expression as

well as the macrophage mannose receptor. Given that both

of these receptors are critical in recognizing the fungal car-

bohydrates b1,3 glucan and mannan, respectively, AAMs

may have greater fungicidal activity. Induction of AAMs

may also be exploited by pathogens to allow their survival.

For example, Francisella tularensis, a virulent pathogen in the

lung, can prolong its intracellular survival via induction of

AAMs (64).

As mentioned earlier, IL-13 induction of STAT6 signaling

induces several mucin genes in airway epithelium including

Muc5ac and Muc5b as well as inducing goblet cell hyperplasia

(65). These signaling effects are critical for host defenses

against helminths such as Nippostrongylus brasiliensis (66). Dur-

ing viral infection, airways mucins can prevent viral spread;

however, in infants this can also contribute to airway

obstruction. The role of IL-13 in viral infection is complex,

and IL-13 is not necessarily beneficial to the host. For exam-

ple, IL-13 has recently been shown to increase the suscepti-

bility of epithelial cells to infection with rhinovirus (67).

Type 1 effectors

There are several mechanisms by which IFN-c controls

lung immunity to intracellular pathogens. IFN-c can prime

macrophages to enhance their intracellular microbiocidal

activity (68) in a process termed classical activation of

macrophages (69). IFN-c priming augments Toll-like

receptor (TLR) signaling (70). IFN-c also increases micro-

biocidal activity via the induction of inducible nitric oxide

synthase, which regulates the production of reactive nitro-

gen intermediates (71, 72). IFN-c can also increase the

production of reactive oxygen species. These activities may

explain the therapeutic benefit of IFN-c in patients with

© 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd
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chronic granulomatous disease due to mutations in NADPH

oxidase (73–75).

IFN-c signaling also upregulates class II major histocom-

patibility complex molecules and costimulatory molecules

such as CD80 and CD86, which can augment antigen pre-

sentation to naive T cells. IFN-c’s first observed activity was

its ability to suppress viral replication in many target cells

including macrophages, fibroblasts, and lung epithelial cells

(76). This occurs in part through the induction of many an-

tiviral genes such as MxA (77). However, other respiratory

viruses including severe acute respiratory syndrome corona-

virus are controlled by IFNc through mechanisms that are

independent of MxA (78).

IFN-c signaling in lung structural cells including fibro-

blasts and epithelium cells induces several chemokine

ligands for CXCR3, including CXCL9, CXCL10, and CXCL11.

CXCR3 is expressed on Th1 cells, and thus, the induction of

these chemokines by IFN-c may be a critical mechanism to

increase the recruitment of Th1 cells. Moreover, these

chemokines are critical for granuloma formation, which is

essential for control of many intracellular pathogens such as

M. tuberculosis (79, 80). Systemic and aerosolized IFN-c has

been investigated for the potential adjunctive treatment of

tuberculosis. A recent meta-analysis showed that IFN-c was

well tolerated and associated with higher sputum steriliza-

tion rates (81); however, definitive randomized control tri-

als are lacking to make firm conclusions on the efficacy of

this cytokine.

Type 17 effectors

IL-17 can signal in human bronchial epithelium (HBE) to

induced chemokine ligands for CXCR2, such as CXCL8,

CXCL1, and the granulopoietic growth factor G-CSF (82,

83). Like other cell systems, HBE responses to IL-17 or IL-

17F are augmented by TNF-a (82, 84). HBE cells express

IL-17RA, IL-17RC, as well as IL-22R and IL-10R2, the

receptors for IL-22 (82, 83) (Fig. 3). As IL-17A and IL-17F

can be coexpressed in the same cell, it has been reported

that these two IL-17 family members can form three cyto-

kines including IL-17A homodimers, IL-17A/F heterodi-

mers, which have intermediate activity compared with IL-

17A homodimers, and IL-17F homodimers, which have the

least potent activity (85). One mechanism by which IL-17

increases the production of chemokines is through increas-

ing mRNA stability of this transcript (86, 87) resulting in

augmented protein production. A similar mechanism has

also been reported for IL-17-mediated increases in G-CSF

production (88).

IL-17RA is ubiquitously expressed on many cells includ-

ing myeloid cells; however, these cells express very little IL-

17RC. Thus, IL-17A and IL-17F have limited activity on

myeloid cells. It has been reported that IL-17 can enhance

IL-12p70 in alveolar macrophages (89) as well CCL2, CCL3,

GM-CSF, IL-1b, and IL-9 in CD4+ T cells (90). Th17 cells

express IL-17RA and IL-17RE, which form a receptor com-

plex for IL-17C (91–93). IL-17C can increase the produc-

tion of IL-17 by these cells (91–93). IL-17C can be

expressed in lung epithelium (unpublished observations)

and thus can serve as a feed forward mechanism by which

the epithelium could influence interstitial T-cell responses.

In addition to regulating neutrophil recruitment in the lung

(94), IL-17 augments apical bicarbonate transport in HBE

cells (95). Carbonate anion regulates the activity of b defen-

sins (96), and this may be an important mechanism of IL-

17’s net anti-microbial effect in the lung mucosa.

IL-17RA is required for host resistance to the extracellular

pathogens K. pneumoniae (94), and in this model IL-17RA

regulates the local production of CXCR2 ligands as well

Fig. 3. Th17 cytokines in mucosal immunity. Many infections,
including those caused by fungi and bacteria, can activate dendritic
cells and macrophages to produce interleukin-6 (IL-6), IL-23, and IL-
1b. IL-23 and IL-1b can drive IL-17 production by both innate
lymphoid cells and cd T cells. Differentiation of Th17 cells requires
TGFb, and a critical mechanism of activation of TGFb in the lung is
through the activation of this growth factor by av integrins. IL-17 and
IL-22 can signal to the epithelium to augment G-CSF as well as ligands
for CXCR2 that mediate the recruitment of neutrophils. These two
cytokines also induce the expression of anti-microbial proteins such as
lipocalin-2 and b-defensins. IL-22 can also augment epithelial repair.
After vaccination, Th17 cells through the production of IL-17 can also
induce ligands for CXCR3 that increase the recruitment of IFNc-
producing Th1 cells, which can also help control intracellular pathogen
growth.
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granulopoiesis through the regulation of G-CSF. IL-17RA is

dispensable for the control of intracellular pathogen M. tuber-

culosis (83), but is required for the control of the intracellu-

lar pathogen F. tularensis (89). In this latter model, IL-17

regulates IL-12p70 production by macrophages, which sub-

sequently generates the Th1 CD4+ T-cell response ultimately

controls the pathogen (89).

IL-22 signals through STAT3 in HBE cells. IL-22 increases

the clonogenic potential of HBE cells in colony assays (83)

and also augments repair to puncture injury in confluent

HBE cells (97) (Fig. 3). IL-17 and IL-22 stimulation of HBE

and mouse tracheal epithelial cells induces several anti-

microbial genes in lung epithelium including lipocalin 2

(83) and regenerating islet-derived protein 3-c (98). Neu-

tralization of IL-22 during experimental K. pneumoniae lung

infection results in rapid bacteremia, which substantially

increases mortality in this model. IL-22 is regulated by IL-

23 and recombinant IL-22 can rescue IL-23-deficient mice

(83). A complication pneumonia is acute lung injury which

can be exacerbated by mechanical ventilation also called

ventilation-induced lung injury (VILI). In a model of VILI,

recombinant IL-22 has also been shown to decrease lung

leak and improve lung fluid dynamics (99). These data sup-

port a potential therapeutic role of IL-22 in diseases such as

severe pneumonia or acute respiratory distress syndrome.

In primary infection, early sources of IL-17 and IL-22 can

be from innate lymphoid cells (100), NK or NKT cells

(100, 101), or cd T cells (44, 45, 102). However, CD4+

Th17 cells can be elicited in the lung by vaccination. Vac-

cine-induced Th17 responses have been shown to play pro-

tective roles in a diverse set of organisms including both

intracellular and extracellular bacteria as well as fungi. For

example, Th17 cells induced by vaccination with the antigen

from M. tuberculosis ESAT-6 induce a population of Th17 cells

that augment the local production of ligands for CXCR3 in

the lung and result in substantial enhanced recruitment of

protective Th1 cells (103). Fungal-specific Th17 cells have

also been shown to be critical for vaccine-induced protec-

tion against Coccidioides posadasii, Histoplasma capsulatum, and Blas-

tomyces dermatitidis infection (104). In this setting, the

protection against fungal challenge was dependent on IL-17

regulation of neutrophil recruitment.

Vaccination of whole-cell polysaccharides of S. pneumoniae

has been shown to induce IL-17 in the lung, and this IL-17

response has been shown to mediate serotype-independent

immunity (105). Chen et al. (48) have also shown that

Th17 cells elicited by K. pneumoniae vaccination recognize

conserved outer membrane proteins in the cell wall of the

bacteria and these antigens could also provide serotype-inde-

pendent immunity. Th17 cells conferred heterologous pro-

tection against multiple serotypes of the organism (48).

Thus, in two models of important human extracelluar

pathogens, Th17 cells are capable of mediating serotype-

independent immunity which may advance vaccine

approaches against these pathogens. It still remains to be

defined which specific aspects of Th17 function that are

required for protection. There needs to be better under-

standing of factors important in generating mucosal Th17

cells in the lung such as adjuvants, factor regulating prolifer-

ation, homing, and survival. More research is needed to also

define the contributions of IL-22, IL-17F, and IL-17A/F

heterodimers.

Conclusions

CD4+ T cells play critical roles in lung immunity, and these

cells are impacted by many drugs as well as by HIV infec-

tion. CD4+ T cells are critical targets to achieve therapeutic

vaccines against both bacterial and fungal pathogens. Future

work will be required to understand the induction and sur-

vival of these cells in the lung and how they can be manip-

ulated therapeutically.
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