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Microbiota and adipocyte mitochondrial damage in
type 2 diabetes are linked by Mmp12+ macrophages
Zhipeng Li1,6*, Manoj Gurung1*, Richard R. Rodrigues2,5,7*, Jyothi Padiadpu2*, Nolan K. Newman2**, Nathan P. Manes3**,
Jacob W. Pederson1, Renee L. Greer1, Stephany Vasquez-Perez1, Hyekyoung You1, Kaito A. Hioki2, Zoe Moulton1, Anna Fel3,
Dominic De Nardo4, Amiran K. Dzutsev5, Aleksandra Nita-Lazar3, Giorgio Trinchieri5, Natalia Shulzhenko1, and Andrey Morgun2

Microbiota contribute to the induction of type 2 diabetes by high-fat/high-sugar (HFHS) diet, but which organs/pathways are
impacted by microbiota remain unknown. Using multiorgan network and transkingdom analyses, we found that microbiota-
dependent impairment of OXPHOS/mitochondria in white adipose tissue (WAT) plays a primary role in regulating systemic
glucose metabolism. The follow-up analysis established that Mmp12+ macrophages link microbiota-dependent inflammation
and OXPHOS damage in WAT. Moreover, the molecular signature of Mmp12+ macrophages in WAT was associated with insulin
resistance in obese patients. Next, we tested the functional effects of MMP12 and found that Mmp12 genetic deficiency or
MMP12 inhibition improved glucose metabolism in conventional, but not in germ-free mice. MMP12 treatment induced insulin
resistance in adipocytes. TLR2-ligands present in Oscillibacter valericigenes bacteria, which are expanded by HFHS, induce
Mmp12 in WAT macrophages in a MYD88-ATF3–dependent manner. Thus, HFHS induces Mmp12+ macrophages and MMP12,
representing a microbiota-dependent bridge between inflammation and mitochondrial damage in WAT and causing insulin
resistance.

Introduction
A combination of overconsumption of food high in simple sugars
and animal fat diet and a sedentary lifestyle provoked dramatic
increases in the rates of diabetes, obesity, and other metabolic
diseases over recent decades. Type 2 diabetes (T2D) involves
dysfunction in multiple organs, with critical events in the liver,
white adipose tissue (WAT), and muscles, promoting the de-
velopment of systemic insulin resistance (IR). Despite estab-
lished knowledge of the disease processes occurring within each
organ, their relative contribution to systemic metabolic dysre-
gulation is less clear. Furthermore, gut microbiota are emerging
as key players in multiple proposed mechanisms that affect
different organs (Gurung et al., 2020; Hartstra et al., 2015;
Sonnenburg and Backhed, 2016). Nevertheless, there is no
consensus on which of these organs and pathways are most
important for the development of IR and T2D. To recapitulate
human diet–induced T2D in animal models, special diets were
developed, including high-fat/high-sugar diet (HFHS), frequently
referred to as western diet (WD; Small et al., 2018).

Several studies interrogating different omics data have been
conducted attempting to address these questions (Hosseinkhani
et al., 2021; Passaro et al., 2021). However, commonly used as-
sociation analyses between diet, microbiome composition, and
disease do not infer causality or attempt to establish master reg-
ulators/pathways that can be affected by inverse causality and
other confounding factors. In this study, we used multiorgan net-
work analysis and transkingdom causal inference employing sta-
tistical dependencies between differentially expressed elements
(e.g., genes, microbes, and phenotypic markers) combined with
causality principles (Pearl et al., 2009; Yambartsev et al., 2016),
information theory (Shannon, 1953; Uda, 2020), and interventions
(e.g., diet, antibiotics, etc.). This system’s approach provided us
with two causal inferences: first, microbiota-dependent inflam-
mation drives IR in WAT; second, this inflammation is caused by
specific members of HFHS-enriched gut microbiota.

Specifically, we investigated pathways underlying the
role of diet-modified microbiota in metabolic disease by
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comprehensively characterizing HFHS-induced changes in four
metabolic organs in mice: intestine, liver, WAT, and muscle.
We found that a novel predominant mechanism contributing to
systemic IR is microbiota-dependent damage of mitochondrial
oxidative phosphorylation (OXPHOS) in WAT. To establish
how microbiota contributes to this process, we characterized
IR-promoting microbiota-induced macrophages in WAT of mice
and humans. Using network analysis coupled with loss- and gain-
of-function studies, we establishedMMP12 as a critical effector of
these cells. Finally, we identified a specific microbe (Oscillibacter
valericigenes [OV]) that promotes Mmp12 expression through the
production of TLR2 ligands. We demonstrate in vitro that Mmp12
is induced by stimulation of the TLR2/Myd88 signaling pathway
and activation of the transcription factor (TF) ATF3.

Results
HFHS diet drives alterations predominantly in a microbiota-
dependent manner
To dissect the contribution of microbiota to the effects of WD
(designated herein HFHS), specific pathogen–free (SPF) and
germfree (GF) C57BL/6 mice were fed a HFHS or matched nor-
mal diet (ND) for 8 wk (Fig. 1 A). As expected (Backhed et al.,
2007; Rabot et al., 2010), HFHS increased glucose intolerance in
GF mice and the presence of microbiota further exacerbated IR
and adiposity in SPF mice (Fig. 1 B and Table S1).

Next, using samples from SPF and GF mice, we analyzed
whole-tissue transcriptomes of the intestine, as it harbors the
most abundant microbial community in mammals, and of the
three other major insulin-responsive organs implicated in T2D
(liver, WAT, muscle). We found that WAT and liver tran-
scriptomes were more sensitive to HFHS (2,427 and 794 differ-
entially expressed genes [DEGs], respectively), compared to
muscle and ileum (170 and 116 genes, respectively). The finding
that more genes are regulated in WAT than in liver or muscle
might be expected because mice that have consumed the HFHS
for 8 wk represent the initial stages of T2D, with molecular
changes progressing from adipose to the liver to the muscle
(Kraegen et al., 1991; Perry et al., 2015). HFHS-regulated genes
were classified as microbiota dependent (category 1) or micro-
biota independent (category 2; Fig. 1 C), while a small fraction of
genes could not be assigned to either of the above categories.
Microbiota-dependent genes were further classified as regulated
by HFHS differently in SPF and GFmice (category 1A; e.g., Itgax)
or regulated by diet in both types of mice, but whose expression
was enhanced by the microbiota (category 1B; e.g., S100b; Fig. 1
C). We found that microbiota play a key role in HFHS-modulated
gene expression in all four organs, with about 87% of genes in
the liver, 76% in WAT, 57% in the ileum, and 44% in muscle
belonging to category 1 (Fig. 1 D and Table S2).

Multiorgan network analysis identifies OXPHOS/mitochondria
in WAT as a key driver of systemic metabolism
To model HFHS-induced alterations, we reconstructed a co-
variation network, integrating gene expression with systemic
metabolic parameters (Fig. 2 A). Approximately two thirds of
DEGs in the four organs were retained in the network (Fig. 2 B

and Table S3) after filtering out genes (nodes) and edges (con-
nections between nodes of network) that did not fulfill statistical
and causality criteria (Yambartsev et al., 2016). As expected, the
network node degree distribution conformed with the power-
law structure of regulatory biological networks (Fig. 2 C). Two
subnetworks were identified in the liver and WAT (Fig. 2 A). In
WAT, the larger subnetwork mainly reflected impaired mito-
chondrial functions, in particular OXPHOS (Fig. 2 D [1]). The
smaller WAT subnetwork with mostly upregulated genes was
enriched for inflammation and immune response genes (Fig. 2 D
[2]). The larger liver subnetwork included mostly HFHS
downregulated genes that were enriched for ribosomal compo-
nents (Fig. 2 D [3]), while the other liver subnetwork, largely
upregulated by HFHS, was represented by fatty acid metabolism
genes (Fig. 2 D [4]). The genes controlling fatty acid metabolism
in the liver and inflammation in fat were those most impacted by
microbes (>85% of genes from the 1A and 1B categories; Fig. 2 A).

To disclose the regulatory relationships between the path-
ways and systemic metabolic parameters, we investigated net-
work topology reflective of information flow in the network
(including shortest path [Fig. 2 E] and bipartite betweenness
centrality [BiBC; Fig. 2 F and Table S4]). This analysis showed
(blue arrows in Fig. 2 A) that among the four subnetworks,
mitochondrial OXPHOS inWATdirectly affects systemic glucose
metabolism, while fatty acid pathways in the liver and inflam-
mation in WAT primarily act indirectly through microbiota-
dependent damage of mitochondrial OXPHOS in the adipose
(Fig. 2, A and G).

Three independent lines of evidence further supported the
computational inference that IR is induced in WAT and is par-
tially dependent on the gut microbiota. First, HFHS induced an
IR gene signature (Jung et al., 2018) inWAT of SPF, but not of GF
mice, indicating a significant contribution of microbiota (Fig. 3
A). Second, phosphorylated AKT and—to a lesser extent—p38
MAP kinase, both classical markers of insulin signaling (IS),
negatively correlated with inflammation and positively with
OXPHOS genes in WAT of SPF, but not GF mice (Fig. 3 B; Fig. S1,
A and B; and Table S5). Third, genes with a high regulatory
capacity (i.e., high BiBC [Dong et al., 2015] to systemic metabolic
markers in the network) and upregulated by HFHS negatively
correlated with the response of adipocytes to insulin in vitro
(Figs. 3 C and S1 C; and Table S6). This last result indicated that a
large proportion of genes inferred to mediate the negative ef-
fects of HFHS on systemic metabolism are involved in insulin
sensitivity in adipocytes.

Thus far, our experiments coupled with network analysis
predict that HFHS likely acts in WAT by driving microbiota-
related OXPHOS damage, leading to systemic IR.

Mmp12-positive macrophages link microbiota-dependent
inflammation and IR in WAT
Since our results indicated that WAT is the most critical tissue
initially involved in HFHS-driven T2D, we focused further
works on this tissue. Our multiorgan network model also
inferred that microbiota-dependent activation of immune/
inflammation pathways leads to OXPHOS damage and con-
sequently systemic IR.
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To identify microbiota-dependent genes that mediate this
process, we interrogated the network for genes with high BiBC
(Dong et al., 2015), reflecting their ability to mediate inflam-
matory damage on the OXPHOS pathway.Mmp12 was identified
as the most prominent microbiota-dependent gene (category 1A)
connecting inflammation and mitochondrial OXPHOS subnet-
works in WAT (Fig. 4 A). Notably, HFHS induced Mmp12 ex-
pression in the presence of both mouse and human microbiota
(Fig. 4 B). Mmp12 also negatively correlated with p-AKT/AKT
(Fig. 4 C), further supporting its role in WAT-specific IR.

In WAT, Mmp12 is predominantly expressed in CD45+ he-
matopoietic cells (Fig. 4 D). Using meta-analysis of eight publicly
available single-cell RNA sequencing (scRNA-seq) datasets (Ta-
ble S7), we established a 95-gene signature of Mmp12+ CD45+

cells (Figs. 4 E and S2 A; and Table S8) and confirmed its
expression in macrophages (Fig. S2 B; Lee et al., 2014; Martinez-
Santibanez et al., 2015). This new Mmp12 meta-signature com-
prehensively defined metabolic macrophages described by three
independent reports (Hill et al., 2018; Jaitin et al., 2019; Silva
et al., 2019; Fig. 4 F). Although these studies used different sets of
markers, they are all part of our newly discovered meta-
signature together with other genes that were previously im-
plicated in IR in WAT (Cd9 [Hill et al., 2018], Cd36 [Kennedy
et al., 2011], Lgals3 [Li et al., 2016; Pejnovic et al., 2013], and
Itgax [Patsouris et al., 2008]). This signature identifies a unique
cell population—IR-associated adipose tissue macrophages (IR-
ATMs; Fig. 4 E)—that was strongly increased by HFHS in SPF,
but not in GF mice (Figs. 4 G and S2 C). These data demonstrate
that HFHS increases not only Mmp12 expression but also IR-
ATMs in WAT in a microbiota-dependent manner (Figs. 4 G
and S2 C). Altogether, these results suggest that the Mmp12
meta-signature is characteristic of WAT-infiltrating, metaboli-
cally active macrophages with a negative impact on glucose
metabolism.

MMP12 inhibits the OXPHOS/mitochondria pathway in WAT,
worsening systemic glucose metabolism
While several genes in the IR-ATM signature were previously
associated with ATMmetabolic potential, our analysis predicted
that MMP12 is an effector molecule contributing to impairment
of mitochondrial OXPHOS in adipocytes and systemic glucose
metabolism. Accordingly, we observed that genetic deletion of
Mmp12 or inhibition of MMP12 protein activity by the specific
inhibitor MMP408 (Li et al., 2012; Li et al., 2009; Long et al.,
2015) in HFHS-fed SPF mice improved fasting glucose levels,
glucose tolerance, and IR (Fig. 5, A and B, left panel; and Fig.
S2 D). The most pronounced transcriptional effect of MMP408
was the restoration of mitochondria-related pathways (Fig. 5 C),
including increased expression of genes responsible for various
mitochondrial functions (Ndufaf5, Acacb, Maob, Lpin1, Nat8l, and
Mrpl38; Table S9), and of antioxidative genes (Fig. 5 D). This was

accompanied by a decrease in carbonyl protein, a marker of
oxidative stress (Fig. 5 D, right panel). MMP12 inhibition had a
significantly higher impact on microbiota-dependent than on
microbiota-independent genes in the OXPHOS/mitochondria
subnetwork (Fig. 5 E), and improved glucose metabolism in
HFHS-fed SPF mice but not in GF mice (Figs. 5 B and S2 D).
Finally, mitochondrial/OXPHOS-related gene expression that
was decreased by HFHS and increased by MMP408 negatively
correlated with markers of metabolic disease (Fig. 5 F and Table
S10). These results confirm the negative impact of MMP12 on
glucose metabolism and OXPHOS/mitochondria as well as its
microbiota dependence.

Mitochondrial OXPHOS damage in adipocytes leads to an
increase in the reactive oxygen species and is linked to systemic
IR (Kusminski et al., 2012). Thus, we sought to identify whether
adipocytes represent the target cells of MMP12. Treatment of
adipocytes in vitro with activated recombinant MMP12 reduced
insulin-stimulated glucose uptake by about 50% (Fig. 5 G) and
reversed the insulin-induced transcriptional profile in adipo-
cytes (Fig. 5 H and Table S11). On one hand, our in vivo data
showed that MMP12 blockade leads to a reduction of oxidative
markers (Fig. 5 D). On the other hand, mitochondrial OXPHOS
dysregulation increases oxidative stress (Kusminski et al., 2012).
Thus, we used an antioxidant (Tempol; Wilcox, 2010) to reduce
oxidative stress in adipocytes treated with recombinant MMP12
(rMMP12) and observed partial restoration of insulin-stimulated
glucose uptake in the presence of the antioxidant (Fig. 5 I).

Previous attempts to investigate the role of MMP12 in glucose
metabolism usingMmp12 KOmice showed contradictory results,
with some studies reporting phenotypes consistent with our
results (Amor et al., 2016; Bauters et al., 2013; Lee et al., 2014;
Martinez-Santibanez et al., 2015). In contrast to earlier research
that used only KO mice, our study employed two “loss of func-
tion” (Mmp12 KO and chemical inhibitor) perturbations and one
“gain of function” (rMMP12) perturbation, and showed full
consistency across all three types of perturbations. The dis-
crepancies between previous studies are likely to be explained
by microbiota-dependent Mmp12 expression in WAT (Fig. 4, A
and B) and the confounding effect of large differences between
microbiota composition in mice of the same genetic background
housed in different animal facilities (Rausch et al., 2016).

MMP12-dependent molecular signature in WAT is associated
with IR in humans
To verify whether these findings in experimental animals
translate into human pathology, we tested the Mmp12/IR-ATM
meta-signature in patients with T2D. We first performed
scRNA-seq analysis of the stromal vascular fraction (SVF) of
WAT from patients with obesity and with or without T2D (Vijay
et al., 2020). The IR-ATM meta-signature was overexpressed in
WAT from obese individuals with T2D compared with those

Figure 1. HFHS diet drives alterations predominantly in a microbiota-dependent manner. (A) Experimental design. SPF and GF mice were fed ND or
HFHS for 8 wk (SPFmice: n = 10 per group; GFmice: n = 5–6). (B)Metabolic parameters changed by HFHS in SPF and GF mice (mean ± SD, SPFmice, n = 10; GF
mice, n = 5–6, t test, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). (C) Schematic diagram for categorization of genes according to the regulation by diet
and microbiota. (D) Pie charts showing the number of DEGs in each category in WAT, liver, muscle, and ileum.
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Figure 2. Multiorgan network analysis identifies OXPHOS/mitochondria in WAT as a key driver of systemic metabolism. (A) Multiorgan co-variation
network demonstrating connections between DEGs in liver (565 nodes), WAT (1,747 nodes), ileum (3 nodes), and muscle (16 nodes) and host systemic
metabolic parameters. Subnetworks identified within WAT and liver are highlighted by ellipses. The shades of red and green colors of nodes indicate increased
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without T2D (Fig. 6 A), and predominantly in the MC1, a mac-
rophage subtype with the highest increase in patients with T2D
(Fig. 6, B–D; and Fig. S3 A). Meta-analysis of total WAT tran-
scriptomes from five available patient cohorts (Hardy et al., 2011;
Jain et al., 2013; Klimcakova et al., 2011; Soronen et al., 2012; Yang
et al., 2019; three with similar body mass index in patients and
controls) showed a consistent increase of Mmp12/IR-ATM sig-
nature (65/83 genes) in individuals with IR (Fig. 6, E and F; Fig.
S3 B; and Table S12) and also highly overlapping with the results
in mice (Fig. 6 G).

OV induces Mmp12/IR-ATM meta-signature in macrophages
To identify which bacterial taxa are responsible for the induc-
tion of Mmp12 in WAT, we performed transkingdom causal in-
ference including a combination of standard techniques (such as
instrumental variables and mediation analysis) incorporating
additional aspects of principles of causality such as common
cause (Pearl et al., 2009; Reichenbach et al., 1991), Simpson
Paradox (Blyth, 1972), and correlation inequalities (Yambartsev
et al., 2016). Specifically, we first perturbedmicrobiota of HFHS-
fed SPF mice with six antibiotics for 4 wk. We next assessed the
effects on the microbiome, Mmp12 expression in WAT and glu-
cose metabolism markers (Fig. 7 A). Using these data, we in-
ferred (see details of inference in Figs. S4 A and 7, B–D) that
among 263 different taxa, three bacteria (Figs. 7 E and S4 B) were
potential inducers of Mmp12 in HFHS-fed mice, with OV being
the candidate with the largest impact (Fig. 7 E). To test this
prediction, we first supplemented ND- and HFHS-fed mice for

4 wk with OV. We found that OV supplementation to mice in-
creased the expression of several genes of the IR-ATM signature
(Fig. 7 F), including Mmp12 in WAT (Fig. 7 G), with ∼70% simi-
larity to human T2D (Fig. S4 C). OV supplementation also
showed a trend of worsened glucose tolerance in mice with 2-h
serum glucose levels being significantly increased (Fig. S4 D).
Interestingly, another HFHS-associated bacterium (Romboutsia
ilealis), reportedly a negative regulator of glucose metabolism
(Rodrigues et al., 2021), was eliminated at the last step of the
analysis (Fig. 7, D and E). Accordingly, supplementation of R.
ilealis did not induceMmp12 expression in mouseWAT (Fig. 7 G),
indicating some level of specificity for OV.

To test whether OV can stimulate Mmp12 in macrophages
directly or whether it requires cell–cell contact or circulating
factors, we treated a macrophage cell line (RAW 264.7 cells) with
heat-killed (HK) OV or cell-free supernatant (CFS). We found
that the CFS from OV induced higher expression of Mmp12 (Fig.
S5 A) and a large part of the IR-ATM meta-signature (Fig. 7 H)
with significant overlap to observations in humans with IR (Fig.
S5 B). These results offer another indication that macrophage-
related inflammation in WAT of insulin-resistant patients is
driven by microbiota.

TLR2-induced Mmp12 expression in macrophages is Atf3
dependent
To identify the mechanisms of Mmp12 induction by OV, we first
tested (via knockdowns and/or knockouts) four major adaptor
molecules (Myd88, Ticam-1,Mavs, Ripk2) that mediate signaling

and decreased expression in HFHS-fed SPF mice, respectively, with color intensity indicating the level of HFHS vs. ND fold change in SPF mice. The blue and
black colored edges (lines) indicate positive and negative correlations, respectively, and the color intensity of edges indicates the strength of correlation. Width
of blue arrows reflect the average shortest path distance between each subnetwork; arrow color intensity represents the proportion of top-ranked genes
(based on BiBC) in each of the subnetworks. The arrowheads indicate the flow of information between sub-networks showing that the inflammation sub-
network is strongly connected to the OXPHOS/mitochondria subnetwork (wide arrow), and it relies on the OXPHOS/mitochondria subnetwork to regulate the
metabolic parameters (darker blue). (B) The bar plot shows percent of DEGs in each organ that were retained in the network (black) after filtering out nodes
that did not fulfill statistical and causality criteria (white). (C) Power-law distribution of the number of nodes and edges in the multiorgan network. (D) Gene
ontology enrichment analysis of the four subnetworks: (1) WAT OXPHOS/mitochondria, (2) WAT inflammation, (3) liver ribosomes, and (4) liver fatty acid
metabolism subnetworks. The top five most significant biological processes and cellular component terms are shown along with adjusted P values. (E) Shortest
path analysis. Distribution of pairwise shortest path lengths between the nodes of each subnetwork and systemic metabolic parameters (systemic pheno-
types). The average shortest path is a metric evaluating closeness of one section of a network to another. The shortest paths were estimated between all four
subnetworks and systemic metabolic parameters, weighting the shortest paths to account for the fact that closer nodes potentially have a bigger impact. The
systemic metabolic parameters were nearly equidistant to all subnetworks except for the distant ribosomal subnetwork. The fatty acid metabolism and
OXPHOS/mitochondria pathways were closest to systemic metabolic parameters overall. The y axis represents the proportion of genes, normalized per
subnetwork, that are the indicated shortest path length away from systemic metabolic parameters (x axis). All comparisons between shortest path dis-
tributions of subnetworks were conducted using a chi-square test, and all were significant with a P value <0.0001. (F) BiBC as a proxy between pathway
interaction. To determine the likelihood of each of these subnetworks to be the hubs of the information flow (i.e., bottlenecks) between each of the other
subnetworks and systemic metabolic parameters, BiBC of each subnetwork was calculated. The proportion of genes from each subnetwork in the top 20%
BiBC between that subnetwork and systemic metabolic parameters is shown. Larger proportions indicate a greater importance of the subnetwork in regulating
metabolic parameters. All comparisons between subnetworks were conducted using a chi-square test, and all were significant with a P value <0.0001. This
means the OXPHOS/mitochondria and ribosomal subnetworks rely little on the other identified subnetworks to reach systemic metabolic parameters. On the
contrary, half of the effects of the inflammation and fatty acid metabolism subnetworks on systemic metabolic parameters are directed through the OXPHOS/
mitochondria subnetwork in adipose tissue, suggesting the importance of the OXPHOS/mitochondria pathway in regulating glucose metabolism. Accordingly,
the integration of the results of shortest paths and BiBC analyses showed that the OXPHOS/mitochondria pathway in adipose tissue partially mediates the
effects of both fatty acid metabolism in liver and inflammation in adipose tissue on systemic metabolism. (G) Microbiota-dependent genes show higher BiBC
between inflammation and OXPHOS/mitochondria than microbiota-independent genes. Comparison of BiBC values between three categories (Fig. 1 C) for
genes in OXPHOS/mitochondria subnetwork. Since microbiota-driven inflammation is one of the two main pathways influencing OXPHOS/mitochondria, we
compared potential regulatory capacity (using BiBC as a proxy) of interactive (cat. 1A), additive (cat. 1B), and microbiota-independent (cat. 2) components of
this pathway. For this, we calculated the BiBC of each gene between the inflammation and OXPHOS/mitochondria subnetworks (Fig. 2 F). Then, we compared
BiBC values of the OXPHOS/mitochondria subnetwork genes between three gene categories defining microbial contribution to their regulation (microbiota-
dependent with interaction [1A], microbiota-dependent no interaction [1B], andmicrobiota-independent [2]). Significantly higher values of BiBCwere found for
category 1A genes than for 1B and 2 (mean ± SEM, P values based off ANOVA, followed by Tukey’s multiple comparisons test, *P < 0.05, **P < 0.01, #P = 0.08).
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Figure 3. Validation of network inferences revealing microbiota-dependent IR inWAT. (A) Expression levels of IR signature genes described in Jung et al.
(2018) inWAT of ND or HFHS-fed SPF or GF mice (SPFmice, n = 10; GFmice, n = 5–6). (B)Heatmaps showing the fold change of gene expression (HFHS/ND) in
WAT and the correlation of the gene expression levels with the abundance of phosphorylated p-Akt/Akt or p-p38/p38 in WAT in each mouse (upregulated
genes by HFHS tend to negatively correlate with phosphorylated Akt and p38, while downregulated genes by HFHS tends to positively correlate with
phosphorylated Akt and p38 in SPF mice; this phenomenon only holds in SPF mice). The contingency tables show the relationship between sign of correlation
(indicated by + or −) and regulation by HFHS (Dn, genes downregulated by HFHS; up, genes upregulated by HFHS; +, genes positively correlated with p-Akt/Akt
or p-p38/p38; −, genes negatively correlated with p-Akt/Akt or p-p38/p38, chi-square, Yates value). Scatterplots show two examples of genes demonstrating
positive (Mtfp1) and negative correlation (Cd68) with p-Akt/Akt (Spearman correlation, one-tailed P value, n = 10) inWAT of SPF mice. (C) Correlation between
in vivo effects of HFHS in WAT and in vitro effect of insulin in 3T3-L1 adipocyte cells on the expression of high- and low-ranking BiBC genes (left panel shows
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downstream of receptors of innate immunity and in-
flammasome activation. These experiments revealed thatMmp12
regulation by OV is Myd88 dependent (Figs. 8 A and S5 C). Next,
we screened OV supernatant for TLR-ligands and found that this
bacterium produces Tlr2 and Tlr5 agonists (Fig. 8 B). The follow-
up studies demonstrated that Tlr2 agonist strongly induced
Mmp12 in the macrophage cell line, while Tlr5 ligand shows only
a trend in the same direction (Fig. 8 C).

While the classical view of Myd88-dependent signaling is
focused on NF-κB activation, we investigated if any other factor
might be involved in Mmp12 transcription in IR-ATMs. Analyz-
ing scRNA-seq data (Aibar et al., 2017), we inferred ATF3 to be
one of the top TFs regulating the IR-ATM signature (Fig. 8 D),
including Mmp12 (Table S13). This computational inference was
confirmed by ATF3 chromatin immunoprecipitation sequencing
(ChIP-seq) results (Krebs et al., 2014), with a 3.4-fold difference
(>2 is significant) between WT and Atf3 KOmacrophages for the
Mmp12 gene region in addition to 29 genes (out of 95) from the
IR-ATM signature also targeted by ATF3 (Table S13). Both OV
CFS and TLR2 ligands induced the expression of Atf3 in macro-
phages (Fig. 8 E). Although ATF3 dampens the classic inflam-
matory response (M1) in macrophages (De Nardo et al., 2014;
Gilchrist et al., 2006), by treating Atf3 KO and control cell lines
with OV CFS, we demonstrated that ATF3 is required for the
complete induction ofMmp12 expression bymacrophages (Fig. 8 F,
left panel), despite its inhibitory effect on Tnf and Il6 expression
(Fig. 8 F, right panel).

Discussion
Using a robust multiorgan network and transkingdom causal
inference analysis, we were able to infer, in mice and humans,
and experimentally confirm novel pathways linking the dele-
terious effect of HFHS on glucose metabolism and diabetes via
gut microbiome alterations. HFHS expands the gut commensal
O. valericigenes and a few other bacterial species that, via the
release of TLR2 ligands, may induce Mmp12 expression in adi-
pose tissue macrophages in an ATF3-dependent manner.Mmp12
is part of a meta-signature expressed in a subset of WAT mac-
rophages (IR-ATM) associated with T2D in mice and humans.
MMP12 is a negative regulator of glucose metabolism that,
through the damage of antioxidative and mitochondrial gene
expression, causes OXPHOS dysfunction and IR in adipocytes,
leading to systemic dysfunction of glucose metabolism in
diabetes.

Dysregulation in the OXPHOS pathway in different organs,
including WAT, is an important factor contributing to the
pathogenesis of T2D (Lee et al., 2018; Rocha et al., 2020). Our
study not only pointed to a central role of WAT mitochondrial
OXPHOS damage in T2D, but more importantly showed for
the first time the importance of gut microbiota in this process.
We characterized a gene expression signature of microbiota-

dependent MMP12-expressing macrophages (IR-ATM) that is
associated with IR in humans. Notably, among six different
clinical cohorts (one single cell and five whole tissue tran-
scriptomes), where IR-ATM enrichment was observed, four
cohorts represented patients with a similar level of obesity,
differing only in IR. Our results agree with the association
studies reporting that expression of MMP12 in WAT positively
correlates with IR in humans (Lee et al., 2018) and another study
that showed MMP12 plasma levels were elevated in patients
with T2D and were associated with atherosclerosis (Goncalves
et al., 2015).

Previous studies showed the critical role of diverse adipose
macrophages, classified into several subtypes beyond classical
M1/M2, in animal models of T2D (Russo and Lumeng, 2018).
These macrophages can be identified by individual markers
(e.g., LGALS3 [Li et al., 2016; Pejnovic et al., 2013], CD36 [Silva
et al., 2019], and CD9 [Hill et al., 2018]) and have a negative
impact on metabolism. Our analysis of multiple scRNA-seq da-
tasets established that the previously identified subtypes con-
verge into a single subset of metabolically harmful adipose
macrophages (IR-ATM) characterized by a gene signature that
includes both previously identified and novel marker genes.
Moreover, we found that ATF3 (an inhibitor of proinflammatory
cytokines such as TNF and IL-6) is a key TF for IR-ATMs and a
positive regulator of Mmp12 expression. This is an additional
strong indicator that a special type of macrophage (IR-ATMs),
rather than classical inflammatory M1 (Chylikova et al., 2018;
Fujisaka, 2021), promotes IR in WAT.

The negative effect of MMP12 on OXPHOS and consequently
glucose uptake by adipocytes is a novel mechanism of IR, which
could not be predicted based on the existing knowledge about
MMP12. Thus, our study adds a new chapter to the variety of
roles played by this protein ranging from a pathological factor in
COPD (Hunninghake et al., 2009) to an antiviral response mol-
ecule (Marchant et al., 2014).

Our observation that TLR2 and MYD88 are involved in the
control of Mmp12 is in line with reports demonstrating a role of
TLR2 in T2D (Ehses et al., 2010) and of MYD88 in HFHS-induced
inflammation in WAT (Tran et al., 2020). Accordingly, our
findings suggest that microbial regulators of Mmp12 expression
are not limited to one pathobiont (i.e., OV). Importantly, OV’s
effect on the IR-ATM signature in adipose tissue in mice shows
high similarity with gene expression alterations in humans,
suggesting that microbiota-modifying treatments targeting IR-
ATMs may offer a therapeutic strategy for T2D. Furthermore,
our analysis predicted that at least two other bacteria (Barnesiella
viscericola and Hydrogenoanaerobacterium saccharovorans) may
impair systemic metabolism by inducing Mmp12 in WAT. No-
tably, these three bacteria (OV, B. viscericola, and H. saccha-
rovorans) and/or their parent genera were negatively associated
with metabolic health in some studies (Anhe et al., 2017; Jung
et al., 2016; Wang et al., 2015). Our study, however, is the first to

the distribution of BiBC among the DEGs in WAT; middle panel shows the correlation coefficient between fold change [HFHS/ND] in WAT and fold change
[insulin/vehicle] in vitro of gene expression in each category; right panel [scatter plot] shows the correlation only in category 2 [each dot represents a gene]).
Only high-ranking BiBC genes have negative correlation (Spearman correlation, one-tailed P values: *P < 0.05, **P < 0.01, #P = 0.11).
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Figure 4. Mmp12-positive macrophages link microbiota-dependent inflammation and OXPHOS damage in WAT leading to impaired glucose me-
tabolism. (A) Identifying critical candidate genes mediating information flow from the inflammation subnetwork to the OXPHOS/mitochondria subnetwork.
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pinpoint a mechanistic role for these bacteria in T2D as well as to
propose a molecular mechanism of their potential action. Al-
though our study identified theMmp12 pathway to be instrumental
in mediating effects of HFHS on IR and T2D, alternative pathways
are expected to exist, and possibly, to become prevalent in the
presence of a different gut microbiota (Leshem et al., 2020). For
example, among bacteria associated with a HFHS in the current
data,OV acts through the induction ofMmp12 inmacrophages,while
we previously described that R. ilealisworsens glucose tolerance by
inhibiting insulin levels, which may be relevant to more advanced
stages of disease (Thévenod, 2008; Rodrigues et al., 2021).

In conclusion, our study developed a multiorgan model cor-
responding to initial stages of T2D and revealed a new mecha-
nism of interaction between HFHS and microbiota in the
pathogenesis of this illness. Specifically, we demonstrated that
certain members of the gut microbial community (e.g., patho-
bionts such as O. valericigenes) exacerbate the detrimental effects
of a HFHS onmitochondrial dysregulation inWAT by promoting
IR-ATMs and their effector molecule MMP12. Our work sheds
light on the one of most enigmatic phenomena in the field of
T2D, potentially explaining why some patients with obesity
develop diabetes while others do not.

Materials and methods
Animals and diets
7-wk-old SPF C57BL/6 male mice were purchased from The
Jackson Laboratory and housed in a controlled environment
(12-h daylight cycle) in groups of four to five per cage at the
Laboratory Animal Resources Center at Oregon State University,
with ad libitum access to food and water. After 1 wk of acclimati-
zation, mice were either switched to aWD designated in this study
as HFHS diet D12451 (40 kcal % lard and 17 kcal % sucrose) or to a
matched NDD12450K (ND; 4 kcal % lard and 0% sucrose) produced
by Research Diets (Table S14). For initial experiments (shown in
Fig. 1), diets were γ-irradiated at 50 kGy at the Oregon State
University Radiation Center. In follow-up experiments (shown in
Figs. 2 and 4), diets irradiated by the manufacturer were used.

Mice were on these diets for 8 wk. C57BL/6 GF were bred at
the Oregon State University Germ-Free Mouse Core at the
Laboratory Animal Resources Center. At 8 wk of age, male mice

were transferred to ventilated racks (Innovive) to fully sealed
disposable cages with HEPA-filtered air supply and fed either
irradiated ND or HFHS for 8 wk. Each group had five to six mice
per experiment and repeated twice.

Mmp12 knockout (B6.129X-Mmp12tm1Sds/J) and C57BL/6J
controls initially purchased from The Jackson Laboratory were
bred to generate heterozygous Mmp12 KO mice. The heterozy-
gous mice were then interbred to generate littermate KO
Mmp12−/− and WT Mmp12+/+ mice. Genotyping was proceeded
according to the protocol provided by The Jackson Laboratory
with modifications. The following primers were used: mutant
forward, 59-GCTACTTCCATTTGTCACGTCC-39; WT forward, 59-
ACTGGGCAACTGGACAACTC-39; common, 59-CTCCCATGTGCT
GGGATTAC-39. Briefly, a small piece of ear tissue was suspended
in 50 μl lysis buffer containing 0.2% SDS, 100 mM Tris-HCl, 100
mMNaCl, 10mMEDTA (pH = 8), and 1 μl proteinase K (Ambion,
20 mg/ml), and then digested at 55°C for 2 h. After being diluted
with 450 μl distilled water, vortexed, and spun down, the su-
pernatant was used for PCR (GoTaq Master Mixes) with the
following program: initial denaturation at 94°C for 3 min, 10
cycles of 94°C for 30 s, 65°C (touch-down, 0.5°C/cycle) for 30 s,
and 68°C for 30 s, 28 cycles of 94°C for 30 s, 60°C for 30 s, and
72°C for 30 s, and a final extension at 72°C for 2 min, hold at 4°C.

Adult male littermates (Mmp12 KO and littermate WT) were
fed a HFHS for 5–6 wk before conducting the glucose tolerance
test (GTT) and insulin tolerance tests. All mice were housed
individually. The experiment was performed twice.

Work on mice was carried out in accordance with the Guide
for the Care and Use of Laboratory Animals as adopted and
promulgated by the U.S. National Institutes of Health and was
approved by Oregon State University’s Animal Care and Use
Committee (protocol IACUC-2021-0202).

Mmp12 inhibitor experiments
Adult male C57BL/6J SPF and GFmicewere used. Micewere first
fed a HFHS for 4 wk to induce glucose intolerance then divided
into two groups. Mice were injected intraperitoneally with an
MMP12 selective inhibitor MMP408 (3.5 mg/kg, dissolved in
PBS containing 10% DMSO) or vehicle every day for 2–3 wk
while continuing HFHS feeding. All mice were housed individ-
ually. The experiment was performed twice.

The scatterplot displays genes by the dimensions of: (1) BiBC between inflammatory and OXPHOS/mitochondria subnetworks (red color, top 10%); (2) fold
change of gene expression induced by diet in SPF mice (HFHS/ND in SPF mice); (3) fold change of gene expression induced by microbiota in HFHS-fed mice
(SPF/GF under HFHS condition); (4) log-transformed FDR of the interaction effect (diet × microbiota, two-way ANOVA). The inset bar-plot shows the intensity
of Mmp12 transcripts in SPF or GF mice fed with either ND or HFHS diet (mean ± SEM, SPF mice: n = 10 per group; GF mice: n = 5, ND, n = 6, HFHS). (B) Top:
Mmp12 gene expression in WAT of ND or HFHS-fed GF mice transplanted with fecal microbiota harvested from either ND or HFHS-fed SPF mice (mean ± SD,
n = 4, parametric t test, one-tailed, *P < 0.05). Colors: outlines = diet and bar filling = type of microbiota used for fecal transplantation; HFHS = red, ND = green.
Bottom: GF mice were transplanted with human microbiota. The figures respectively show WAT Mmp12 gene expression, glucose tolerance curve, fasting
glucose levels, and epididymal fat amounts in ND or HFHS-fed mice (mean ± SD, n = 5, Mann-Whitney test, one-tailed, *P < 0.05). (C) Correlation of Mmp12
gene expression and p-Akt/Akt in adipose tissue (n = 9; Spearman correlation, one-tailed). (D) Mmp12 expression in bulk WAT and CD45+ cells isolated from
WAT of SPF mice fed with ND or HFHS (mean ± SD, n = 5 for ND-fed mice, n = 7 for HFHS-fed mice, one-tailed parametric t test, *P < 0.05, **P < 0.01).
(E) Meta-analysis of single cell transcriptome analysis to derive Mmp12 meta-signature in mice. Eight single-cell RNA datasets with CD45+ cells containing
Mmp12+ cell subsets were used for this analysis. The meta-correlation analysis and meta-differential expression analysis from each data set (details in Materials and
methods) identify a gene signature specific to subsets ofMmp12+ cells (adjusted P value <0.001); Venn diagram indicates the overlap between the two analyses, the 95
genes are shown on the scatter plot with labeling of some genes. (F) Heatmaps showing the expression of Mmp12 meta-signature genes in different types of
macrophages in GSE113595, GSE126407, and GSE128518. DP, CD11c+CD64+ double-positivemacrophage; VAM, vasculature associatedmacrophages. (G)Mmp12meta-
signature gene set is enriched by HFHS in SPF mice, but not in GF mice (SPF mice: n = 10 per group; GF mice: n = 5; ND, n = 6, HFHS).
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Figure 5. MMP12 inhibits the OXPHOS/mitochondrial pathways in WAT and worsens systemic glucose metabolism in mice. (A) Fasting blood glucose
and area under the curve (AUC) from GTT inMmp12 knockout or littermatewild-type SPFmice fed with HFHS (mean ± SEM, n = 10, per group, paired one-tailed
t test, *P < 0.05, **P < 0.01). (B) Fasting blood glucose and GTT-AUC in HFHS-fed wild-type SPF and GFmice injected with MMP12 inhibitor, MMP408 (mean ±
SEM, n = 12 per group, one-tailed parametric t test, *P < 0.05). (C) Over-represented gene ontology terms in WAT of SPF mice treated with MMP12 inhibitor
(MMP408) vs. vehicle (FDR < 0.05). (D) Expression of antioxidant genes Gpx3, Sod1, and Prdx3 in WAT in mice treated with MMP12 inhibitor (MMP408) vs.
vehicle (mean ± SEM, one-tailed parametric t test; n = 12; *P < 0.05, **P < 0.01). Right: Oxidative stress (protein carbonyl) in WAT in mice treated with MMP12
inhibitor (MMP408) vs. vehicle (mean ± SEM, one-tailed parametric t test; n = 8; *P < 0.05, **P < 0.01). (E) Average effects of MMP408 reversing impact of
HFHS on genes in the mitochondrial/OXPHOS subnetwork (chi-square test, Yates, P = 0.012). Categories: 1A, microbiota dependent, interaction with HFHS; 1B,
microbiota dependent, no interaction with HFHS; 2, microbiota independent. (F) Top: Inference of genes mediating effects of Mmp12 on systemic metabolism:
after MMP408 treatment, expression of 1,730 genes was changed (P < 10%). After applying the filter of minimal P values for correlation with various metabolic
parameters, there are 747 genes left (P < 5%). Finally, among this, 151 genes were oppositely regulated by HFHS (FDR < 10% P < 5%). Bottom: Heatmaps
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Microbe supplementation experiment
8-wk-old male C57BL/6J mice were fed with an ND and gavaged
with 109 CFU of O. valericigenes DSM 18026 or R. ilealis DSM
25109 in PBS for 4–5 wk every day.

GTT
Mice were fasted for 6 h during the light phase with free access
towater. A concentration of 2 or 1mg kg−1 glucose (Sigma-Aldrich)
was injected intraperitoneally. Blood glucose was measured at 0
(immediately before glucose injection), 15, 30, 60, and 120 min
with a Freestyle Lite glucometer (Abbot Diabetes Care).

Insulin tolerance testing
Mice were fasted for 6 h during the light phase with free access
to water. Insulin (Novolin R) was injected intraperitoneally us-
ing the dose of 1 U/kg body weight. Blood glucose was measured
at 0 (immediately before insulin injection), 15, 30, 60, and
120 min with a Freestyle Lite glucometer (Abbot Diabetes Care).

Fasting insulin and fasting glucose
Mice were fasted for 6 h with free access to water. Fasting blood
was collected either via submandibular bleed or from the tail
vein. Insulin and glucose levels in fasting plasma or serum was
measured with Mouse Insulin ELISA Kit (Crystal Chem) and
Glucose Colorometric Assay Kit (Cayman Chemical), respec-
tively, according to the manufacturer’s protocol. Homeostatic
model assessment for insulin resistance (HOMA-IR) was calcu-
lated according to formula: HOMA-IR = glucose (mg/dl) × insulin
(μU/ml)/405.

Antibiotic administration experiments
SPF mice were fed ND or HFHS for 4 wk, followed by the ad-
ministration of antibiotics in drinking water for 4 wk. The fol-
lowing doses of antibiotic were used: ampicillin (Amp), 1 g/liter;
neomycin, 1 g/liter; metronidazole (Met), 1 g/liter; vancomycin,
0.5 g/liter; norfloxacin, 1 g/liter; and cefoperazone (Cef) 0.5 g/
liter. Body weight and feed intake were measured each week.
GTT, insulin, and fasting glucose was measured every 4 wk. At
the end of 8 wk of the experiment (i.e., 4 wk on antibiotics),
Mmp12 gene expression was measured in WAT using quantita-
tive PCR (qPCR) and stool microbiota was sequenced using 16S
rRNA sequencing. Two independent experiments were con-
ducted with n = 5 each.

Fecal transplantation experiments
GF mice were fed either irradiated ND or HFHS for 4 wk and
then gavaged with 250 μl of inoculum prepared either from fecal
contents fromND- or HFHS-fed mice. Gavagingwas done on day
1 and day 3. The change in body weight, feed intake, glucose

tolerance, and insulin were measured on day 4, 9, 16, and 30
after first gavage.

For humanized microbiota mice experiments, 7–8 wk old,
male, GF mice were gavaged with 100 μl inoculum prepared
from stool of a healthy human on day 1 and day 3 and fed with
either irradiated ND or HFHS for 8 wk. Systemic measurements
were done on week 3 and 8.

Tissue collection
At the end of each experiment, mice were euthanized by cervical
dislocation. The right lobe of the liver, terminal ileum, epididymal
fat pad, subcutaneous fat, and gastrocnemius muscle were col-
lected and snap frozen at −80°C until future use.

Protein carbonyl assay
Around 80mg in epididymal adipose tissue was homogenated in
600 μl radioimmunoprecipitation assay buffer containing pro-
tease inhibitors using an OMNI Bead Ruptor and 2.8 mm ce-
ramic beads (OMNI International). Protein carbonyl levels were
measured with Protein Carbonyl Content Assay Kit (Sigma-
Aldrich) according to the manufacturer’s protocol. The final
values were normalized by total protein amount measure by
the bicinchoninic acid assay.

Preparation of inoculum for fecal transfer
L-cystein at 0.05% solution was prepared in PBS in sterile
condition. Stool from ND or HFHS fed mice was mixed with
L-cystein solution to final concentration of 10% g/ml and vor-
texed vigorously for 5 min. This solution was centrifuged at
200 g for 5 min and aliquots from supernatant was prepared and
stored at −80°C until gavaging. Inoculum from human sample
was prepared in the same way.

Bacterial culture
O. valericigenesDSM 18026was cultured in peptone yeast glucose
(PYG) medium (AS 825; Anaerobe Systems) medium for 2–3 d at
30°C in an anaerobic GasPak jars (BD), then harvested, and
stored in PBS containing 15% glycerol at −80°C. The R. ilealis
DSM 25109 culture was provided by DSMZ in carboxymethyl
cellulose medium after culture for 24 h at 37°C.

To prepare CFS from O. valericigenes, the bacterium was
grown in PYG medium for 3 d, culture was centrifuged at
4,000 rpm for 20 min at 4°C, supernatant was filtered through
0.2 μM low protein binding filter and aliquoted in 2 ml tubes,
then stored at −80°C. To prepare the HK O. valericigenes, the
bacterial suspension was washed twice with broth, heated at
70°C for 10 min, aliquoted, and stored at −20°C. To confirm that
there were no viable bacteria, one aliquot was thawed and plated
in PYG agar plate, then incubated anaerobically in 30°C for 3 d.

representing 151 adipose gene expression changes induced by HFHS and reversed byMMP12 blockade and associated with systemic metabolic parameters (n =
12 per group). (G) Insulin-stimulated glucose uptake is impaired in recombinant MMP12 treated 3T3-L1 cells (mean ± SEM, n = 5, the control group was set at
100%, one-sample parametric t test, hypothetical value 100, one-tailed, *P < 0.05, **P < 0.01). (H) Regulation of genes by recombinant MMP12 vs. regulation
by insulin in differentiated 3T3-L1 cells (DEGs, two-tailed t test P value <0.05; chi-square test, Yates P < 0.0001). x axis: fold change insulin/vehicle (n = 3); y
axis: rMMP12/vehicle (n = 5). (I) Glucose uptake inhibited by recombinant MMP12 is restored by Tempol in differentiated 3T3-L1 cells (one-tailed t test P value <
0.023; n = 9 independent experiments; mean ± SD).
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Figure 6. MMP12-IR-ATM molecular signature in WAT is associated with IR in humans. (A) Scatter plot of log-transformed average gene expression in
human visceral adipose tissue SVF (GSE129363), with a fit line and Mmp12 signature genes marked in red. Inset graph shows the percentage of genes in each
group with Mmp12 meta-signature significantly higher in T2D (n = 5) vs. non-T2D (n = 9) obese patients (two-sided, Wilcoxon rank sum test with continuity
correction, P < 0.0001). (B) t-SNE plot of the human scRNA-seq from adipose tissue SVF (GSE129363). Cell type names are annotated in the plots based on

Li et al. Journal of Experimental Medicine 13 of 23

Microbiota promotes diabetes by Mmp12+ macrophages https://doi.org/10.1084/jem.20220017

https://doi.org/10.1084/jem.20220017


Cell culture
3T3-L1 cells were grown in DMEM (high glucose) media sup-
plemented with 10% FBS in a 5% CO2 incubator at 37°C. For
differentiation, cells were seeded in a 96-well plate at a density
of 5,000 cells/well. After 24 h, the medium was shifted to dif-
ferentiation medium (90% DMEM, 10% FBS, 1.0 µM dexa-
methasone, 0.5 mMmethylisobutylxanthine, 1.0 µg/ml insulin).
After 48 h, the mediumwas removed and the cells were cultured
in adipocyte maintenance medium (90% DMEM, 10% FBS, 1.0
µg/ml insulin) for another 48 h. Then the medium was changed
to regular growth medium (90% DMEM, 10% FBS) and the cells
were treated with activated rMmp12 or vehicle for 24 h. After-
ward, the cells were incubated in glucose uptake testingmedium
(low glucose DMEM containing 0.2% BSA) with or without 100
nM insulin for 12 h. Then, 3 μl medium from each well was used
for glucose assay using a glucose assay kit (Cayman). Levels of
glucose uptake were calculated by subtracting the glucose
readout from that of the fresh medium. Cells were frozen in RLT
buffer and stored in −80°C for RNA extraction.

RAW cells were grown in DMEM (high glucose) media
(Thermo Fisher Scientific) supplemented with 10% FBS in 5%
CO2 at 37°C. Cells were than seeded in a 24-well plate with
250,000 cells per well in 500 μl complete media for 24 h. Cells
were then treated with either 5% or 10% of CFS or HK for 24 h.
For the control, respective concentration of PYG media was
added to separate wells. Following 24 h treatment, media was
removed, cells were scraped in RLT buffer (Qiagen), and stored
at −80°C until RNA extraction.

For the siRNA knock down experiments, Myd88, Ticam-1,
Ripk2, Mavs siRNAs, and scrambled controls were purchased
from Thermo Fisher Scientific. Then 100,000 RAW cells per
well in 500 μl completemediumwere seeded in 24-well plate for
24 h. After 24 h, medium was replaced with fresh medium and
cells were treated with siRNAs or scrambled control for 24 h.
The final concentration of each siRNAwas 20 pmol. After 24 h of
siRNA transfection, 5% CFS or its control was added to respec-
tive wells and incubated for 24 h, followed by collection of cell
lysates in RLT buffer.

WT, Ticam-1ko, and Myd88ko immortalized mouse macro-
phages (IMM) were originally generated in the Katherine A.
Fitzgerald lab and grown in DMEM high glucose media supple-
mented with 10% FBS and 20 mM HEPES. Then 100,000 cells
were seeded in 24-well plate in 500 μl complete medium for
24 h. All three types were seeded in the same plate. After 24 h of
seeding, cells were treated with either 5% CFS or control for
24 h, then collected in RLT buffer and stored at −80°C.

TLR agonist experiments
WT IMM were originally generated in the Katherine A. Fitz-
gerald lab and grown in DMEM media (4.5 g/liter glucose)
supplemented with 10% FBS, 1% antibiotics, and 20 mM HEPES.
A total of 30,000 cells/well were seeded in triplicate in 96-well
plates for 18–24 h in complete medium and incubated at 37°C
with 5% CO2. Cells were then stimulated for 6 h with either 1%
vol/vol O. valericigenes CFS or PYG media as control, TLR2 ago-
nist (HKLM at 10E+8 cells/ml; InvivoGen), or TLR5 agonist
(FLA-ST Ultrapure 1 µg/ml; InvivoGen). Cells were then col-
lected in RLT lysis buffer by scraping before being stored at
−80°C until RNA extraction.

Atf3 KO experiments
WT and Atf3ko IMM were originally generated by Dominic de
Nardo (De Nardo et al., 2014) and grown in DMEMmedia (4.5 g/
liter glucose) supplemented with 10% FBS, 1% antibiotics, and
20 mMHEPES. Then 30,000 cells/well were seeded in triplicate
in 96-well plates for 18–24 h in complete medium and incubated
at 37°C with 5% CO2. Cells were then stimulated for 6 h with 1%
vol/vol O. valericigenes CFS or PYG media as control (O. valer-
icigenes growth media), then collected in RLT lysis buffer by
scraping before being stored at −80°C until RNA extraction.

RNA extraction and qPCR
RNA was extracted using an OMNI Bead Ruptor and 2.8-mm
ceramic beads (OMNI International) followed by Qiashredder
and an RNeasy kit (the right lobe of liver, terminal ileum, and
cells), RNeasy Fibrous Tissue Mini Kit (for gastrocnemius
muscle), and an RNeasy Lipid Tissue Mini Kit (for epididymal
fat) using Qiacube (Qiagen) automated extraction according to
themanufacturer’s specifications with DNase treatment (RNase-
Free DNase Set; Qiagen). Total RNA was quantified using Quant-
iT RNA Assay Kit (Thermo Fisher Scientific). Complementary
DNA was prepared using qScript reverse transcription kit
(QuantaBio). qPCR was performed using the Perfecta SYBR
Green Fastmix mix (Quantabio) and the StepOne Plus Real Time
PCR system and software (Applied Biosystems).

The primers used are listed in Table 1.

Normalization of qPCR data and statistics
Raw cycle threshold (CT) values of genes of interest from qPCR
runs were normalized to CT values of the housekeeping gene
(Polr2c) via delta CT method before calculation of relative ex-
pression using the 2−ΔCT method. Relative expression levels of
genes were median-normalized and/or also log2 transformed

identified cell type specific marker genes. MC, myeloid cells; P, progenitor cells; E, endothelial cells. (C) Percentage distribution of human SVF of myeloid cell
(MC) clusters in the scRNA-seq samples. Significant enrichment of MC1 cells are seen in T2D patient samples as compared to other clusters (Pearson’s chi-
squared test, ****P < 0.0001). (D) Dot plot of average expression and percentage of cells withMmp12meta-signature enrichment in MC1 cluster cells among all
clusters of the adipose tissue SVF in humans. (E) Forest plot of Hedge’s g effect size in meta-analysis of five human studies of whole tissue adipose tran-
scriptome for the Mmp12 meta-signature genes. Studies were obtained from GEO and contained gene expression data of individuals with/without T2D. The
P value shown is from the fixed effect model. See materials and methods for exclusion criteria. (F) Heatmap showing the expression of Mmp12 IR-ATM genes
from meta-analysis of the human adipose tissues of insulin resistant (IR) and non-IR patients (Fisher’s P values <0.05 considered significant), each column
represents mean gene expression in corresponding group of patients. (G) Fold change (FC) ofMmp12meta-signature in human adipose tissue by diseases (T2D/
control) and by diet in the WAT of mouse (HFHS/ND, n = 10 per group) (Fisher’s P value < 0.05 for human and parametric, one-tailed P value <0.05 for mouse,
binomial test P = 2.2E−16).
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Figure 7. OV is a primary inducer of Mmp12 IR-ATM signature in mouse adipose and in macrophages in vitro. (A) Fasting glucose, AUC-GTT, 120 min
blood glucose and Mmp12 expression in antibiotic-treated mice on HFHS (n = 10, two independent experiments with n = 5 each; two-tailed, parametric,
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before departure from normality was assessed with a Shapiro–
Wilk test. If data were normally distributed, one- or two-tailed
parametric t tests were used, otherwise a Mann–Whitney test
was used to compare treatments. Individual plot legends note
how data are visualized specifically.

Sequencing of RNA (RNA-seq)
RNA libraries were prepared with the QuantSeq 39mRNA-Seq
Library Prep Kit (Lexogen) for the Apollo 324 NGS Library Prep
System and sequenced using Illumina NextSeq. Sequences were
processed to remove the adapter, polyA, and low-quality bases
by BBTools (https://jgi.doe.gov/data-and-tools/bbtools/) using
bbduk parameters of k = 13, ktrim = r, forcetrimleft = 12, use-
shortkmers = t, mink = 5, qtrim = r, trimq = 15, minlength = 20.
Reads were aligned tomouse genome and transcriptome (ENSEMBL
NCBIM37) using Tophat (v. 2.1.1) 70 with default parameters.
Number of reads per million for mouse genes were counted using
HTSeq (v. 0.6.0) 71 and quantile normalized. BRB-ArrayTools was
used to identify DEGs.

Western blots
Adipose tissue samples (n = 31) were blocked and randomized to
mitigate any potential systematic experimental biases (Oberg
and Vitek, 2009). The tissue samples were homogenized in
cell lysis buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 1 mM
EDTA, 1 mM EGTA, 1% vol/vol Triton X-100, 2.5 mM sodium
pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na3VO4, 1 μg/
ml leupeptin, and 1 mM PMSF [added immediately before use]).
Homogenization was achieved using a Bioruptor Plus sonicator
and Bioruptor Protein Extraction Beads (Diagenode, Inc.) at 4°C.
The samples were microcentrifuged (20 min; 4°C; 20,000 g) and
the supernatants were retained. Bicinchoninic acid protein
concentration assays were performed using aMicro BCA Protein
Assay Kit (Thermo Fisher Scientific).

Multiplexed Western blots were performed using the fol-
lowing primary antibodies from Cell Signaling Technology: total
AKT (C67E7; cat# 4691S), AKT phospho-Ser473 (D9E; cat#
4060S), total ERK1/2 (L34F12; cat# 4696S), ERK1/2 phospho-
Thr202/Tyr204 (D13.14.4E; cat# 4370S), total p38 MAPK (D13E1;
cat# 8690S), p38 MAPK phospho-Thr180/Tyr182 (D3F9; cat#
4511S), total PTEN (D4.3; cat# 9188S), PTEN phospho-Ser380/
Thr382/Thr383 (cat# 9554S), total GSK-3β (D5C5Z; cat#
12456S), total JNK (cat# 9252S), and total cofilin (D3F9; cat#
5175S). For each tissue, a sample pool was prepared and probed
using each primary antibody individually, and these results
were used to ensure that the analytes would not bemisidentified

due to multiplexing. Between one and three primary antibodies
were used per Western blot. Each Western blot was used to
analyze either adipose or liver samples (not both). At least two
lanes were used for a MW ladder standard and at least two lanes
were used for the pooled tissue sample. Imaging was performed
using a ChemiDoc MP imager, and densitometry was performed
using Image Lab v. 6.0.1 (both Bio-Rad, Inc.).

DNA extraction and 16S rRNA gene libraries preparation
For microbial measurements, stool pellets were collected at T1
(4 wk) and T2 (8 wk). Ileum contents were collected at T2 (8 wk)
only. To get microbial DNA, frozen fecal pellets were re-
suspended in 1.4 ml ASL buffer (Qiagen) and homogenized with
2.8 mm ceramic beads followed by 0.5-mm glass beads using
an OMNI Bead Ruptor (OMNI International). DNA was ex-
tracted from the entire resulting suspension using a QiaAmp
mini stool kit (Qiagen) according to the manufacturer’s pro-
tocol. DNA was quantified using a Qubit broad range DNA
assay (Life Technologies). The V4 region of the 16S rRNA gene
was amplified using universal primers (515f and 806r) as
previously described. Individual samples were barcoded,
pooled to construct the sequencing library, and then sequenced
using an Illumina Miseq (Illumina) to generate pair-ended 250
bp reads.

16S rRNA gene sequencing data analysis
The samples were demultiplexed, and forward-end fastq files
were analyzed using QIIME v. 1.9.1. The default quality filter
parameters from QIIME’s split_libraries_fastq.py were applied
to retain high quality reads (Phred quality score ≥20 and mini-
mum read length = 75% of 250 nucleotides). To cluster 16S rRNA
gene sequence reads into operational taxonomic units (OTUs)
and assign taxonomy, a closed reference OTU picking with 97%
sequence similarity was performed using UCLUST and the
Greengenes reference database v. 13.8. The reference sequence
of candidate OTUs from the Greengenes database was used to
obtain species level taxonomic assignment using Megablast (top
hit using default parameters). A threshold of 99% cumulative
abundance across all samples in an experiment was used to re-
tain abundant microbes, thus removing OTUs with approxi-
mately 1% abundance across all samples in that experiment. The
read counts were normalized using cumulative sum scaling,
accounted for bacterial DNA quantity based on qPCR, followed
by quantile normalization. The principal component analysis for
the 16S sequencing data was created using Clustvis and the
GraphPad Prism software.

unpaired t test, one-tailed, unpaired t test for Mmp12 gene expression, mean ± SD). Neo, neomycin; Van, vancomycin; Nor, norfloxacin. (B) Top: Heatmap
showing microbiota perturbation following the three antibiotics treatment. Bottom: Median fold change of the abundance of 188 OTUs between mice treated
with antibiotics (Amp, Cef, Met) and control mice, all fed HFHS. (n = 10, two independent experiments with n = 5 each; two-tailed, parametric, unpaired t test.)
(C) Number of OTUs correlated positively with fasting glucose, GTT-AUC, and/or WATMmp12 gene expression measured by qPCR (mean ± SD, n = 10 mice per
group). (D) Correlation of the seven common microbes with the expression of Mmp12 signature genes and Mmp12 neighbor genes in the gene regulation
network in WAT. (E) Cumulative sum of correlation coefficients of seven OTUs with Mmp12/IR-ATM signature (x axis) and Mmp12 gene neighbors (y axis).
(F) Volcano plot showing fold change (FC, log2 transformed) and P values of Mmp12 signature genes in OV-supplemented mouse WAT (n = 10 per group, one-
tailed, parametric, P < 0.05). (G) Mmp12 gene expression in WAT measured by qPCR (mean ± SD, n = 10 for OV, n = 5 for R ilealis (RI), one-tailed, unpaired,
parametric t test, normalized to control diet, *P < 0.05). (H) Volcano plot showing fold change (FC, log2 transformed) and P values ofMmp12 signature genes in
OV CFS–treated macrophages (n = 4 independent experiments, parametric t test, two-tailed P value <0.05).
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Isolation of SVF
Epididymal adipose tissue was minced in HBSS (Invitrogen)
containing calcium, magnesium, and 0.5% BSA and 3 mg/ml
collagenase type 1 (Rockland). After incubation at 37°C for 1 h,
the cell suspension was filtered through 100-μm strainer and

then washed with 20 ml wash buffer (DPBS containing 1 mM
EDTA and 0.5% BSA). After centrifugation at 700 g for 10 min,
the supernatant was removed and the cell pellet was re-
suspended in 5 ml of RBC lysis buffer (Tonbo Biosciences) and
incubated for 10 min at room temperature. A total of 10 ml wash

Figure 8. OV-derived Tlr2 ligands induce Mmp12 expression in macrophages in Myd88-and Atf3-dependent manner. (A) Relative Mmp12 gene ex-
pression measured by qPCR in WT IMM or Myd88−/− IMM treated with OV CFS (median normalized data shown as mean ± SD, n = 4 independent experiments,
one-tailed Mann-Whitney test). (B)Mouse TLR agonist screen conducted by InvivoGen using single mouse TLR expressing HEK-Blue NFkB/SEAP reporter cells
treated with OV CFS. Data shown as fold induction (CFS treated/control), mean ± SD of n = 3. (C)Mmp12 expression measured by qPCR inWT IMM cells treated
with a TLR2 agonist, TLR5 agonist, or control. Data are median normalized and log2-transformed, shown as mean ± SD, n = 8 independent experiments, one-
tailed Mann–Whitney tests were used, #P = 0.1284. (D) Atf3 as one of the top TFs regulating IR-ATMs signature. Left: The ATMs scRNA-seq GRN analysis using
SCENIC predicted 38 TFs for the adipose macrophages. Right: Among the predicted TFs in IR-ATMS, Atf3 is shown to regulate 14 genes from the signature
includingMmp12. (E) Atf3 expression in OV CFS (top)– or TLR2 or TLR5 agonist (bottom)–treated IMM cells. Data are median normalized and log2 transformed,
shown as mean ± SD, n = 8 independent experiments, two-tailed Mann–Whitney test used, #P = 0.2113. (F) Mmp12, Il-6, and Tnf gene expression in WT
(orange) and Atf3−/− (orange with lines) IMM cells treated with OV CFS. Data are median normalized relative expression levels in OV CFS–treated cells divided
by PYG media (control)–treated cells, mean ± SD, n = 9 independent experiments, two-tailed (Mmp12) or one-tailed (Il6, Tnf) unpaired parametric t test used.
For all experiments above: #P < 0.25, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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buffer was added and the cell suspension was filtered through
40 μm and centrifuged again. CD45+ cells from the SVF were
isolated using CD45 MicroBeads (Miltenyi Biotec) according to
the manufacturer’s instruction.

The isolated cells were re-suspended in 1 ml FBS containing
10% DMSO and stored at liquid nitrogen tank until use.

Analyses
Gene categorization
The genes whose expressions are significantly changed by HFHS
(false discovery rate [FDR] < 15%) in the conventional SPF mice
were grouped into two main categories: category 1 (microbiota-
dependent) and category 2 (microbiota-independent genes).
Category 1A are genes whose expressions are significantly
changed by the interaction effect of diet and microbiota (two-
way ANOVA interaction effect FDR < 15%). Category 1B are genes
whose expressions are not affected by the interaction effect
(FDR > 15%) but are significantly regulated by microbiota under
either ND or HFHS conditions (SPF vs. GF FDR < 15%). Genes
whose expressions are not detectable in GF mice are grouped in
Category 1 and cannot be categorized further. Category 2 are
genes whose expression are independent of microbiota (inter-
action FDR > 15%, SPF vs. GF FDR > 15%).

Reconstructing the multiorgan network
First, Spearman rank correlations were calculated between all
pairs of genes from four tissues (muscle, ileum, liver, and fat)
and metabolic parameters (phenotypes) by pooling the samples
per diet (HFHS, ND) from both experiments. Meta-analysis was
performed to retain edges with the same sign of correlation
coefficient in both the diets. Edges were further filtered by the
following criteria: individual P value of correlation within each
diet from pooled experiments <30%, combined Fisher’s P value
over diets from pooled experiments <5%, and FDR cutoff of 5%
for edges within tissues and 10% for phenotypes and between
tissues, and edges needed to satisfy principles of causality
(i.e., satisfied fold change relationship between the two partners
in the HFHS vs. ND comparison). Next, correlations were cal-
culated per diet per experiment. Finally, the edges obtained from
pooling were retained if they had the same sign of correlation
coefficient as in two groups (two experiments × two diets). False

positive edges due to pooling experiments were removed in the
creation of the network. The proportion of genes from each
tissue type that made it to the final network (following statistical
cutoffs) was determined by dividing the number of DEGs in each
tissue after applying correlation cutoffs by the number of DEGs
in each tissue prior to applying correlation cutoffs.

Detecting subnetworks essential for regulation of systemic
parameters of metabolic disease
The networks were visualized in the Cytoscape Software 2.6.3.
To identify subnetworks of correlated genes in fat and liver, we used
the MCODE v. 1.2 (Molecular Complex Detection) plug-in for Cyto-
scape to identify clusters (subnetworks) of correlated genes. The
largest two subnetworks in each tissue were selected for further
analyses, as all other subnetworks were representing parts of them.

Finding the shortest paths between subnetworks
Dijkstra’s algorithmwas used in the pythonmodule NetworkX v.
2.2 to calculate all pairwise shortest paths between the nodes
of each subnetwork–subnetwork pair and each subnetwork–
phenotype pair. The weighted average (reciprocal) of the shortest
paths was calculated to determine the distance of each subnet-
work from systemic parameters of metabolic disease. A chi-square
test was then conducted on the shortest path distributions for each
pair of subnetworks.

Identifying important nodes for the information flow
between subnetworks
BiBC has previously been used to find nodes that control the
information flow between two parts of a network (Morgun et al.,
2015). Node BiBC was calculated between each subnetwork–
phenotype pair of the multiorgan network. Per pair, we counted the
number of nodes in the top 20% (ranked in decreasing order of BiBC)
belonging to each of the identified subnetworks. A chi-square test was
used to compare the distributions of the number of top BiBC nodes
belonging to each subnetwork for each subnetwork–phenotype pair.

Establishing the information flow within network by incorporating
the results of the shortest paths and BiBC analyses
To combine the results from the previous two analyses, we
created a model that demonstrates how close each subnetwork is

Table 1. Primer sequences used in this study

Gene name Forward primer (59→39) Reverse primer (59→39)

Mmp12 CAGGTCACACACACATAGTTACACA AAACCAGTTGGCCTCTGA AC

Polr2c CTCACCGAAGAGAACGTCAAG TCGATGGCTATTATGGGCACC

Myd88 AGGACAAACGCCGGAACTTTT GCCGATAGTCTGTCTGTTCTAGT

Mavs TGGGGTCACAGTATCAGCC ACTGGGACCAATCTGGGAGAA

Ticam1 AACCTCCACATCCCCTGTTTT GCCCTGGCATGGATAACCA

Ripk2 ATGCCACCTGAGAACTATGAGC GCAAAGGATTGGTGACCTCTT

Atf3 GAGGATTTTGCTAACCTGACACC TTGACGGTAACTGACTCCAGC

Il6 TCTATACCACTTCACAAGTCGGA GAATTGCCATTGCACAACTCTTT

Tnf CCCTCACACTCAGATCATCTTCT GCTACGACGTGGGCTACAG
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to systemic parameters of metabolic disease as well as howmuch
one of the identified subnetworks relies on another subnetwork
to influence those systemic parameters. Both the line weights
and distance from systemic parameters indicate the average
shortest path between the subnetwork and systemic parameters.
Arrowweights indicate the number of nodes in the top 20% BiBC of
the network indicated by the arrow direction (i.e., the OXPHOS/
mitochondria subnetwork hasmore nodes in the top 20%BiBC than
the inflammation subnetwork when using fatty acid metabolism
and systemic parameters as the two groups of the BiBC analysis).

Analysis of association of IS proteins and gene expression
Spearman correlations between the expression levels of DEGs
(ND vs. HFHS, FDR < 15%), and p-Akt/Akt protein levels inWAT
were calculated using the following cutoffs: (1) correlation sign
(±) is consistent between two experiments, (2) when the two
experiments are pooled, the correlation P value is <0.05 (two-
tailed). Spearman correlations between the expression levels of
DEGs and p-p38/p38 protein levels in WAT were also calculated
(two-tailed P < 0.05). To compare the relationship between the
sign of the correlation (the levels of gene expression vs. the
levels of IS protein) with the regulation of HFHS on this gene
(up/down), a 2 × 2 contingency table was made and chi-square
test was performed. Next, ToppGene was used to perform gene
enrichment analysis on the two groups of genes: (1) upregulated
by HFHS and negatively correlated with IS proteins; (2) down-
regulated by HFHS and positively correlated with IS proteins.

Analysis of IR signature in WAT
A gene expression meta-signature of IR in adipose tissue ob-
tained from Jung et al. (2018) was used for this analysis. Di-
mension reduction using median summary metric was carried
out to compare the presence of the signature in different groups
using RNA-seq data. For this, we first normalized each gene
expression using the median in all groups. For the genes
downregulated in T2D, the reciprocal values were used. Then
the sum of all genes in the signature was used to indicate the
level of presence of the signature in each sample.

Analysis of the relationship between the effects of HFHS and insulin
on gene expression
To analyze the relationship between the effects of HFHS and that
of insulin, global gene expressionwas profiled by RNA-seq of the
WAT of mice fed with ND or HFHS (n = 10) and 3T3-L1 cells treated
with insulin or vehicle (n = 3), respectively. Spearman correlations
were conducted between fold change of gene expression in mice
(HFHS/ND, FDR < 15%) and fold change of gene expression in 3T3-
L1 cells (insulin/vehicle) using GraphPad Prism7.

scRNA-seq analysis
The raw gene expression matrix (UMI counts per gene per cell)
was filtered, normalized, and clustered using R (https://www.R-
project.org/). Cell and gene filtering were performed as follows:
cells with a very small library size (<2,500) and a very high
(>0.5) mitochondrial genome transcript ratio were removed.
Genes detected (UMI count > 0) in less than three cells were
removed. After log normalization, clustering was performed

using standard Seurat package procedures. Principal component
analysis was used to reduce the number of dimensions repre-
senting each cell. The number of components used for analysis
was determined based on the elbow of a scree plot. Selection of
a biologically relevant number of clusters was based on differ-
ential expression between neighboring clusters. Differential
expression between clusters was calculated using a likelihood-
ratio test for single-cell gene expression implemented in Seurat
at a family-wise error rate of 5%. Neighboring clusters in principal
component spacewere identified as the next-nearest cluster to each
cell after the cell’s assigned cluster. Clusters were visualized using
t-distributed stochastic neighbor embedding of the principal com-
ponents (spectral t-SNE), as implemented in Seurat. The cell-type
identities for each cluster were determined manually using a
compiled panel of available known immune cell marker expression.

Identifying Mmp12-positive cells
The detectable expression of Mmp12 was identified in subset of
cells in each of the single cell RNA-seq data set for further
analysis.

Meta-correlation. The gene expression was correlated with
the expression of Mmp12 in these cells in each dataset using the
Pearson correlation coefficient and a t test was performed to
determine the significance. The Bonferroni-Hochberg multiple
comparisons procedure was used to compute the adjusted P
value. Genes withmean Spearman correlation coefficients above
0.2 and a P value of 0.001 or less was selected for meta-analysis.

Meta-differential expression. Mmp12 cluster cells expression
was analyzed for differential expression across other clusters.
The DEGs whose fold change is >2 in at least three or more da-
tasets with P value <0.001 were selected. Significant genes were
further shortlisted based on Bonferroni-Hochberg corrections.

Mmp12 meta-signature
The Mmp12 meta-signature list of genes was selected based on
the meta-analysis of overlapped gene sets from both Mmp12-
positive cell meta-correlations and Mmp12 cluster meta-
differential lists of genes.

Dimension reduction ofMmp12meta-signature using median
summary metric was carried out to compare the metabolic
macrophage cell types from different publicly available studies
with data from the Gene Expression Omnibus (GEO; GSE126407,
GSE128518 and GSE113595). For this, we normalized each gene
expression and calculated the median value of all genes for each
sample, obtaining a single value for eachmacrophage cell type in
each of the study.

Human diabetic patient adipose tissue SVF scRNA-seq analysis
scRNA-seq profiling of SVF from subcutaneous and visceral
adipose tissue of obese individuals with or without T2D available
in GEO as Discovery cohort (GSE129363) were analyzed to check
the relevance of mouse Mmp12 meta-signature and signature
expressing macrophages to human diabetes. The analysis was
performed using Seurat package as described previously.

The gene average expression of T2D and non-T2D patients’
samples were calculated separately. The percentage of genes in
each condition for Mmp12 meta-signature was calculated and
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observed to be significantly higher in T2D condition. The single
cell gene expression data for cluster specific markers were used
to identify and classify the clusters. The cluster enriched in
Mmp12meta-signature identified using the expression of marker
genes as part of myeloid cells were then labeled MC1 cluster.
Percentage distribution of SVF of MC cluster cells as compared
with other clusters in these single cell samples were estimated to
show the enrichment of MC1 cells as compared with other
clusters in T2D samples. This was also evident in the dot plot of
average expression and percentage of cells with Mmp12 meta-
signature enrichment in MC1 cluster cells among all clusters of
the adipose tissue SVF. Additionally, for the specific cell type
identification of MC1 cluster as macrophages, scQuery, a single
cell database was queried with highly differential and are also
part of Mmp12 meta-signature genes in MC1 cluster.

Analysis of TFs regulating IR-ATMs signature
The gene regulatory network (GRN) was inferred from 1,758
obese adipose tissue macrophages scRNA-seq data (GSE117176/
GSM3272967) using standard SCENIC (Aibar et al., 2017) work-
flow. The normalized enrichment score for the GRN was esti-
mated and 38 TFs were identified in this data. Atf3 was the only
TF, withMmp12 as part of predicted regulon with the normalized
enrichment score. There were additionally 13 genes from the
Mmp12meta-gene signature identified to be part of Atf3 regulon.
A single gene from the signature was predicted to be part ofMaf
regulon in this GRN. Expression matrix units: UMI counts.

Meta-analyses of Mmp12 meta-signature in human studies
GEO was searched for studies that compared the expression of one
group (either obese or obese with T2D) to another group (either
non-obese or obese with T2D, respectively). Studies were further
filtered out if (1) either bodymass index or fasting glucose were not
listed, (2) the T2D group consisted of non-obese individuals, or (3)
individuals in the study were not over the age of 18 (adults). After
filtering out, five studies remained: GSE133786 (Yang et al., 2019),
GSE24883 (Klimcakova et al., 2011), GSE20950 (Hardy et al., 2011),
GSE29231 (Jain et al., 2013), and GSE26637 (Soronen et al., 2012).

Using BRB-ArrayTools (https://brb.nci.nih.gov/BRB-ArrayTools/),
the gene expression data were then log2-transformed and quantile-
normalized, then subset for the 87 genes in the human Mmp12 sig-
nature. Since these studies were all microarray data, duplicate arrays
weremanaged by selecting the arrays in the disease group (the group
with either obese insulin-resistant individuals or obese noninsulin-
resistant individuals) that had the maximum geometric mean.
Meta-Mar v2.7.0 (http://www.meta-mar.com/) was used to
perform meta-analysis, while GraphPad Prism 8.2.1 was used
to create the volcano plots. The online tool Morpheus (https://
software.broadinstitute.org/morpheus) was used to create the
heatmaps of genes.

Transkingdom causal inference analysis: Prediction of microbes
that induce Mmp12 gene expression and worsen glucose
metabolism (steps refer to Fig. S4 A)
Step 1. SPF mice were treated with six antibiotics, systemic
metabolic parameters were measured, stool microbiota was se-
quenced, and Mmp12 gene expression in WAT was measured

using qPCR at the end of 8 wk. Outliers were identified using
Grubbs (α = 0.05). Statistical significance was calculated by
comparing the ND and antibiotics groups against HFHS.

Step 2. Microbes were selected if they consistently showed
the same (antibiotics vs. HFHS) fold-change direction in the
three antibiotics group where Mmp12 was changed (Amp, Met,
Cef) in both experiments and were significantly changed
(Fisher’s P value <0.1) by at least two of the three antibiotics.

Step 3. OTUs passing the above criteria were correlated
(Spearman correlation) with systemic measurements, and Mmp12
across all the samples treated with antibiotics. Meta-analysis was
performed to retain correlations with same sign of coefficient in
both experiments and accounting for correlation inequalities
(Yambartsev et al., 2016; i.e., satisfied fold change relationship
between the two partners in the antibiotics vs. HFHS comparison).

Step 4. Next, the OTUs were correlated with genes from
Mmp12/IR-ATM meta-signature and direct neighbors of Mmp12
from the multi-organ network by pooling the HFHS samples
from both experiments (i.e., samples from mice that did not
receive antibiotics), therefore eliminating the common cause
(Pearl et al., 2009; Reichenbach et al., 1991) and accepted edges
that satisfied correlation inequalities (Yambartsev et al., 2016;
i.e., satisfied fold change relationship between the two partners
in the HFHS vs. ND comparison). Correlations were calculated in
HFHS samples per experiment. Edges obtained from pooling
were retained if they had the same sign of correlation coefficient
as in HFHS group per experiment. False positive edges due to
pooling experiments were removed. The cumulative scores ob-
tained by adding the (OTU-gene) correlation coefficients were
used to select top candidate OTUs for experimental validation.

Online supplemental material
Fig. S1 shows additional details of validation of network in-
ferences revealing microbiota-dependent IR in WAT. Fig. S2
shows Mmp12/IR-ATM signature and Mmp12 blockade in mice.
Fig. S3 shows Mmp12/IR-ATM signature in patients with T2D.
Fig. S4 shows inference and validation of microbes inducing
Mmp12/IR-ATMs. Fig. S5 shows testing innate adaptor molecules
used by OV to stimulate Mmp12 expression and IR-ATM signa-
ture. Table S1 shows analysis of systemic metabolic parameters
in SPF and GF mice fed with HFHS and control diets. Table S2
lists DEGs between HFHS and ND in conventional (SPF) mice
(FDR < 15%) in four organs and their expression in GF mice.
Table S3 shows the total number and percentage of DEGs and
percentage of DEGs that were retained in the networks in the
WAT, liver, muscle, and ileum. Table S4 shows chi-square values
of each pairwise comparison between subnetworks for the
shortest paths and BiBC analyses performed in Fig. S2 E. Table
S5 shows the intensity values of each individual sample (WAT)
from Western blot. Table S6 shows the effects of HFHS on gene
expression in WAT of SPF mice and of insulin on gene expres-
sion in adipocytes. Table S7 shows Mmp12 and CD45(Ptprc)
positive cell counts for eight publicly available scRNA-seq da-
tasets. Table S8 shows Mmp12-IR-ATM meta-signature genes.
Table S9 shows gene ontology enrichment analysis of genes
regulated by MMP12 inhibitor (ex vivo). Table S10 shows genes
significantly regulated inWAT inMMP12 inhibitor-treated mice
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and their correlation to metabolic parameters (ex vivo). Table
S11 shows genes significantly regulated by rMMP12 and insulin
in 3T3-L1 cells (in vitro). Table S12 showsMmp12meta-signature
gene expression in human datasets and in macrophage cell lines
stimulated with OV supernatant. Table S13 shows genes from IR-
ATM signature targeted by Atf3 as predicted by SCENIC and
identified via ChIP-seq. Table S14 shows composition of exper-
imental (HFHS) and control (normal) diets.

Data availability
Sequencing data are deposited in under BioProject accession
number PRJNA558801 and GEO accession numbers GSE145132,
GSE145133, GSE145052, GSE203516, GSE203488, and
GSE203489.
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Figure S1. Additional details of validation of network inferences revealing microbiota-dependent IR in WAT. (A) Representative examples of the
multiplexed Western blots of Akt, PTEN, phosphorylated-Akt, phosphorylated-PTEN, phosphorylated-ERK1 and ERK2 in WAT. The heatmap shows Spearman
correlation of IS-related proteins with metabolic parameters in HFHS-fed SPF mice (n = 7–10, one-tailed, *P < 0.05). The scatter plot shows Spearman
correlation between serum leptin and p-Akt/Akt in theWAT of SPF mice (n = 10, one-tailed P = 0.03). MW, molecular weight. (B) Enrichment analysis of genes:
(1) Which expression is decreased by HFHS and positively correlates with p-Akt/Akt; (2) Which expression is increased by HFHS and negatively correlates with
p-Akt/Akt (FDR < 0.05). (C) Scatterplots of correlation between fold change induced by HFHS (HFHS/ND) in mice with fold change induced by insulin (insulin/
vehicle) in 3T3-L1 cells for the three categories of genes regulated by HFHS (Spearman correlation, one-tailed P values). These data are related to Fig. 3 C.
Source data are available for this figure: SourceData FS1.
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Figure S2. Mmp12/IR-ATM signature andMmp12 blockade inmice. (A)Overview of the meta-analysis of single cell transcriptome analysis to deriveMmp12
meta-signature. The eight chosen datasets with CD45+ cells expressed Mmp12 in a subset of the cells. The meta-correlation analysis and meta-differential
expression analysis from each dataset (detailed in Materials and methods) led to identification of a gene signature specific to these subsets of Mmp12+ cells.
(B) The cell type identification using the Mmp12meta-signature genes with scQuery showing highly significant macrophages as the primary cell type with this
signature. (C) Mmp12 meta-signature enrichment in (left) WAT of SPF mice compared to GF mice under HFHS condition (P value <0.001) and (right) WAT of
SPF mice compared to GF mice under ND condition (not significant). (D) Top: GTT (left) and insulin tolerance test (right) in HFHS-fed wild type and Mmp12
knockout SPF mice (mean ± SEM; n = 10; one-tailed parametric t test, *P < 0.05, **P < 0.01). Bottom: GTT and 2 h (120 min) blood glucose (measured after 2 h
of intraperitoneal glucose injection) in HFHS-fed SPF or GF mice injected with Mmp12 inhibitor, MMP408 (mean ± SEM, one-tailed parametric t test, n = 12 for
SPF mice, n = 5 for GF mice (two-tailed), *P < 0.05, **P < 0.01).
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Figure S3. MMP12/IR-ATM signature in patients with T2D. (A) Left heatmap shows the cluster markers in the human adipose tissue SVF. The color range
is depicted as row max in orange to least in gray. The right heatmap shows the single cell gene expression of cluster specific markers MC1, MC2, and MC3
respectively. (B) Volcano plot of theMmp12meta-signature genes fold change (FC, insulin resistant patients/control) from meta-analysis of the human studies
of whole tissue transcritomes.
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Figure S4. Inference and validation ofmicrobes inducingMmp12/IR-ATMs. (A) Transkingdom causal inference analysis workflow for identifying candidate
microbes that induce Mmp12 expression/IR-ATM signature and worsen glucose metabolism. Abx, antibiotics. (B) Abundance of OV, H. saccharovorans, and B.
viscericola in ND- or HFHS-fed mice at week 4 and week 8 (mean ± SD, parametric, unpaired, one-sided t test, *P < 0.05, **P < 0.01). (C) Fold change (FC) of
Mmp12 signature genes in diabetic human subjects and in OV supplemented mouse WAT (Fisher’s P value < 0.05 for human data, and one-tailed, parametric P
value <0.05 for mouse data). (D)WT SPF mice were treated with OV or PBS. The figures showWATMmp12 expression (HFHS condition, n = 5), fasting glucose
level, 120 min glucose, and glucose tolerance-AUC (total n = 10, two independent experiments with n = 5 each), respectively (mean ± SD, one-tailed t test,
*P < 0.05).
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Figure S5. Testing innate adaptor molecules used by OV to stimulate Mmp12 expression and IR-ATM signature. (A) Mmp12 gene expression in RAW
cells treated with HK OV (mean ± SD, n = 3, two-tailed, unpaired, parametric t test, ***P < 0.001). (B)Mmp12 meta-signature gene expression change in human
diabetic subjects compared to healthy controls and in macrophage cell line treated with OV compared to vehicle (Fisher’s P value < 0.05 for human data and
two-tailed parametric P < 0.05 for macrophage cells). (C) Mmp12 gene expression in RAW cells treated with OV and (top right) siRNAs Myd88 (n = 10). Top
right: siRNAs Mavs, Ripk2 (mean ± SD, n = 3, two-tailed, unpaired, parametric t test, ***P < 0.001). Top left:Mmp12 gene expression in RAW cells treated with
siRNAs Ticam-1. Bottom right: Ticam-1−/− IMM cells (right; mean ± SD, n = 5 independent experiments, one-tailed, unpaired, parametric t test, ****P < 0.0001).
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Provided online are Table S1, Table S2, Table S3, Table S4, Table S5, Table S6, Table S7, Table S8, Table S9, Table S10, Table S11,
Table S12, Table S13, and Table S14. Table S1 shows analysis of systemic metabolic parameters in SPF and GF mice fed with HFHS
and control diets. Table S2 lists DEGs between HFHS and ND in conventional (SPF) mice (FDR < 15%) in four organs and their
expression in GF mice. Table S3 shows the total number and percentage of DEGs and the percentage of DEGs that were retained in
the networks in the WAT, liver, muscle, and ileum. Table S4 shows chi-square values of each pairwise comparison between
subnetworks for the shortest paths and BiBC analyses performed in Fig. 2 E. Table S5 shows intensity values of each individual
sample (WAT) from Western blot. Table S6 shows effects of HFHS on gene expression in WAT of SPF mice and of insulin on gene
expression in adipocytes. Table S7 listsMmp12 and CD45(Ptprc)-positive cell counts for eight publicly available scRNA-seq datasets.
Table S8 lists Mmp12-IR-ATM meta-signature genes. Table S9 shows gene ontology enrichment anlysis of genes regulated by
MMP12 inhibitor (ex vivo). Table S10 shows genes significantly regulated in WAT in MMP12 inhibitor-treated mice and their
correlation to metabolic parameters (ex vivo). Table S11 shows genes significantly regulated by rMMP12 and insulin in 3T3-L1 cells
(in vitro). Table S12 showsMmp12meta-signature gene expression in human datasets and in macrophage cell lines stimulated with
Oscillibacter supernatant. Table S13 shows genes from IR-ATM signature targeted by Atf3 as predicted by SCENIC and identified via
ChIP-seq. Table S14 shows composition of experimental (HFHS) and control (normal) diets.
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