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Background: An Achilles tendon rupture (ATR) is known to cause persistent biomechanical deficits such as decreased muscle
strength in end-range plantar flexion and reduced tendon stiffness.

Purpose/Hypothesis: This study aimed to examine whether sustained asymmetries were present in dynamic stiffness and
kinematic and kinetic variables in gait and single-leg balance at 4.5-year follow-up in conservatively treated patients recovering
from an ATR. We hypothesized that patients who had recovered from ATRs exhibit a midterm increase in peak ankle dorsiflexion, a
decrease in concentric work, and decreased dynamic stiffness during the stance phase of gait, along with increased single-leg
standing sway in the injured leg compared with the uninjured leg.

Study Design: Case series; Level of evidence, 4.

Methods: This study was a cross-sectional medium-term follow-up of conservatively treated patients recovering from ATRs. A total
of 34 patients who underwent nonoperative treatment were included for testing 4.5 years after a rupture. The Achilles tendon length
was measured using ultrasound. Standard instrumented 3-dimensional (3D) gait analysis and single-leg standing balance were
performed using 3D motion capture. Kinematic and kinetic ankle parameters were calculated during gait, and quasi-stiffness was
calculated as the moment change per the change in the degree of dorsiflexion during the second (ankle) rocker of the gait cycle.
Center of pressure displacement (sway length), along with rambling and trembling, was calculated for the single-leg balance task.

Results: Peak dorsiflexion in stance was 13.4% larger in the injured leg than the uninjured leg (16.9� ± 3.1� vs 14.9� ± 0.4�,
respectively; P � .001). Peak dorsiflexion was not associated with the normalized Achilles tendon length (B ¼ 0.052; P ¼ .775).
Total positive work in the plantar flexors was 23.9% greater in the uninjured leg than the injured leg (4.71 ± 1.60 vs 3.80 ± 0.79 J/kg,
respectively; P¼ .001). Quasi-stiffness was greater in the uninjured leg than the injured leg during the initial (0.053 ± 0.022 vs 0.046
± 0.020 N�m/kg/deg, respectively; P¼ .009) and late (0.162 ± 0.110 vs 0.139 ± 0.041 N�m/kg/deg, respectively; P¼ .005) phases of
eccentric loading. No difference was found in sway length during single-leg stance between the injured and uninjured legs (1.45 ±
0.4 vs 1.44 ± 0.4 m, respectively; P ¼ .955).

Conclusion: Patients treated conservatively have a small increase in peak dorsiflexion, decreased total concentric plantar flexor
power, and decreased quasi-stiffness in initial and end-range dorsiflexion in the injured leg. These deviations could not be directly
associated with the measured tendon elongation.

Registration: NCT02760784 (ClinicalTrials.gov).
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An acute Achilles tendon rupture (ATR) is a common injury
among active adults at the age of 40 to 50 years, with a
reported incidence ranging from 26.95 to 31.17 per
100,000 per year in Denmark.14 An ATR is known to cause
persistent elongation of the tendon after treatment, which
is associated with biomechanical deficits such as decreased

muscle strength in end-range plantar flexion and reduced
tendon stiffness.20 These functional deficits are reported
regardless of the treatment modality for both short-term2,15

and long-term outcomes.16,24,26 The elongated tendon and
decreased tendon stiffness may have implications for daily
functional activities such as gait, running, and walking on
stairs.6,7

Studies investigating early weightbearing have proposed
it to have a beneficial effect on tendon healing in terms of
increased tendon stiffness compared to standard
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nonoperative regimens owing to the mechanical loading
stimulus.4,22 However, a randomized controlled study of
nonoperatively treated ATRs did not find any difference
in function after late or early weightbearing rehabilitation
regimens at short-term6 or 4.5-year follow-up.17 A sus-
tained deficit in the injured leg was observed in heel-rise
work (limb symmetry index [LSI]) at short-term follow-up
regardless of the nonoperative regimen.17

Reduced work output during the heel-rise test may not
necessarily imply altered joint kinematics or dynamic
joint stiffness. Dynamic stiffness comprises the total
(active and passive) resistance of the plantar flexor–tendon
complex to the angular movement of the ankle joint.11

It involves passive stiffness along with possible active mus-
cle contractions during movement and thereby includes
muscle strength and possible co-contraction stabilization
strategies during gait.11 Reduced dynamic stiffness could
result in decreased plantar flexor moments and lower power
generation during gait as well as cause balance instabilities.

The present study aimed to examine if sustained elonga-
tion of the Achilles tendon was present in the injured leg 4.5
years after nonoperative treatment of an ATR and if, as a
consequence, dynamic stiffness and kinematic and kinetic
variables in gait and balance were different between the
injured and uninjured legs. We hypothesized that patients
recovering from ATRs exhibit a midterm increase in peak
ankle dorsiflexion, a decrease in concentric work, and
decreased dynamic stiffness during the stance phase of gait
along with increased 1-leg standing sway in the injured leg
compared to the uninjured leg. We further hypothesized
that these kinematic and kinetic differences are associated
with the Achilles tendon length.

METHODS

The present study was a cross-sectional medium-term
follow-up of nonoperatively treated patients recovering
from ATRs. The study was designed as an add-on to a
randomized controlled trial (RCT) conducted from 2011
to 2013 that investigated the short-term effects of early
weightbearing compared with nonweightbearing in
nonoperatively treated ATRs.6 This midterm follow-up
was conducted in accordance with Consolidated Stan-
dards of Reporting Trials (CONSORT) guidelines and
was approved by the Institutional Review Board of the
Capital Region of Copenhagen, Denmark.17 Follow-up of
the primary outcome has been published previous to this
work.17

Participants

Patients for the medium-term (4.5-year) follow-up were
recruited from the 56 patients who were included in and
completed the initial RCT previously described by Barfod
et al.6,7 A full description of initial and medium-term inclu-
sion has been published by Kastoft et al.17 Patients who
suffered an additional new and significant lower limb
injury such as cruciate ligament or tendon ruptures were
excluded. Seven patients were excluded because of a new
injury, 3 were excluded because of a rerupture succeeded by
surgical treatment, and 12 declined the invitation or did not
respond. Thus, 34 patients were included and pooled as the
nonoperatively treated group for the medium-term follow-
up (18 treated nonoperatively with early weightbearing
and 16 treated with conventional nonoperative treatment).

The initial treatment has previously been described in
detail.6,17 Briefly, it consisted of standard nonoperative
treatment, with immobilization for 8 weeks aimed to flex
the ankle in the equinus position (20�-30� of plantar flexion)
and controlled early motion after 2 weeks. A standardized
rehabilitation protocol was followed 3 times per week for 1
hour from weeks 9 to 16. In daily activities, cycling was
allowed from week 10 and jogging from week 14; however,
these recommendations were individualized. Sport activi-
ties could be resumed after 6 months, but the patients were
advised not to resume racquet or contact sports before 12
months. The treatment protocol for the patients included in
this cross-sectional medium-term follow-up differed only in
the permission to bear weight, in which 18 patients were
allowed full weightbearing from day 1 and the remaining
16 after 6 weeks.6,7

Procedure and Data Processing

All tests and measurements were carried out by a medically
trained test manager who was blinded to the patients’
initial RCT allocation. Blinding of the injured versus unin-
jured leg was not possible because of visually apparent dif-
ferences. Before participation, the patients completed the
Achilles tendon Total Rupture Score (ATRS).21 The Achilles
tendon length was measured using a previously validated
and well-described ultrasound-based technique, with a
minimal detectable change of 10 mm.8 The tendon length
was measured as the distance from the calcaneus to the
medial head of the gastrocnemius muscle, with the patient
in a prone position, the ankles resting at 10� of plantar
flexion on a foam roll, and the knees flexed at 10� to 20�.
The distal landmark was defined as the posterosuperior
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corner of the calcaneus, and the proximal landmark was
defined as the distal-most muscle fibers of the medial head
of the gastrocnemius. Measurements of the tendon length
were supervised by an experienced radiologist. The Achilles
tendon length was normalized to height for statistical anal-
ysis but was reported as the absolute length for anthropo-
metric measurements (Table 1).

The calf circumference was measured 13 cm below the
distal tip of the patella with the patient sitting on the exam-
ination bench and the feet hanging off the side. The calf
circumference was normalized to body weight for statistical
analysis but was reported as the absolute circumference for
anthropometric measurements (Table 1).

Standard instrumented 3-dimensional (3D) gait analysis
and 1-leg standing balance were performed using 3D
motion capture with 8 T40 cameras (Vicon Motion Systems)
and 2 OR6-7 force plates (AMTI).

Gait Analysis

Twenty-two reflective skin markers were placed over ana-
tomic bony landmarks according to the modified Plug-in
Gait model (Vicon Motion Systems).23 Thigh markers were
placed on the patella to minimize the effect of wobbling
masses,27 and markers were placed on the iliac crest to
ensure redundancy of markers. The patients were
instructed to walk barefoot at a self-selected speed on a
10-m level walkway. This was continued until 5 gait trials
for each leg with complete hits on the force plates were
obtained. The position of each marker was recorded 3-
dimensionally at 100 Hz, and ground-reaction forces were
sampled at 1000 Hz. Kinematic and kinetic data from gait
analysis were subsequently calculated using inherent soft-
ware (Nexus 2.5; Vicon Motion Systems). The raw kine-
matic data were in this process filtered using a Woltring
cubic spline filter. The discrete outcome parameters were
derived using custom-written MATLAB script (MATLAB
8.5.0; MathWorks). The mean of the 5 obtained gait trials
on each leg was used for further statistical analysis.

To describe the kinematic differences between the
injured and uninjured legs during gait, the sagittal-plane
ankle angle (in degrees) was calculated at initial contact
and at peak dorsiflexion during the stance phase (Figure
1). The kinetic differences were described by extracting
peak plantar flexor moment (N�m/kg), peak eccentric (neg-
ative) power (W/kg), and peak concentric (positive) power
during the stance phase as well as the instant of these
peaks from the time of heel strike (in seconds). Total inter-
nal plantar flexor moment (plantar flexor angular impulse)
was calculated by numerical integration of the moment
curve as the cumulative sum of positive moments. Total
negative and positive work produced during the stance
phase were calculated by numerical integration of the
power curves. Eccentric work was calculated as the cumu-
lative sum of negative power generation and concentric
work as the cumulative sum of positive power generation
during the stance phase (in J/kg).

Dynamic stiffness of the plantar flexor–tendon complex
was expressed as quasi-stiffness11 and was calculated for

TABLE 1
Anthropometric Measurements

and Patient Characteristics (N ¼ 34)a

Mean ± SD

Age, y 45 ± 7
Height, m 1.77 ± 0.07
Weight, kg 88.6 ± 14.4
Achilles tendon Total Rupture Score 83.2 ± 16.9
Tendon length, cm

Uninjured 18.8 ± 2.2
Injured 20.5 ± 1.8

Passive dorsiflexion, deg
Uninjured 11.0 ± 5.3
Injured 12.9 ± 5.0

Calf circumference, cm
Uninjured 40.0 ± 2.9
Injured 38.3 ± 3.2

Figure 1. Graphs showing selected kinematic and kinetic
outcome parameters. (A) The sagittal ankle angle curve with
peak angle in the stance phase and angle at initial contact
(IC). (B) The sagittal ankle moment curve with peak sagittal
ankle moments. (C) The sagittal ankle power curve with peak
negative (Neg.) power and peak positive (Pos.) power as well
as the distinction between total negative work and total pos-
itive work.
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3 separate phases during eccentric loading of the plantar
flexors (second rocker of the gait cycle) (Figure 2). The
period from initiation of the internal plantar flexor
moment until the time of peak plantar flexor moment was
selected, and stiffness was calculated as the change in
plantar flexor moment (in N�m/kg body mass) per change
in the dorsiflexion angle (in degrees). The whole period of
the joint moment-to-angle curves was divided into 3
equally long periods, and first-order polynomial fitting
was used to obtain the slope coefficient within each of the
3 (initial, intermediate, late) periods during eccentric
loading of the plantar flexors during gait.

One-Leg Standing Balance

The degree of postural balance was quantified during the 1-
leg standing balance task. The patients were instructed to
perform the task positioned on a force platform with the
feet aligned along the anteroposterior axis of the platform;
patients were instructed to stand as still as possible, with
the arms crossed across the chest and the head in a fixed
position. The task was performed 3 times for 30 seconds
each on both the injured and uninjured legs, alternating
between legs. Each patient was given a short 30-second
break between trials, including a walk of a preset 6-m dis-
tance to prevent the disturbance of balance due to the
hydrostatic accumulation of blood in the lower leg. The
ground-reaction force was recorded at 1000 Hz when the
patients indicated that a stable 1-leg position had been
achieved.

Balance differences between the injured and uninjured
legs were expressed as sway length along with rambling
and trembling.30 Calculations were performed using
custom-written MATLAB script (MATLAB 8.5.0). Force

plate data were down-sampled to 100 Hz before smoothing
the anteroposterior (AP) and mediolateral (ML) compo-
nents of the center of pressure (CoP) using a fourth-order
low-pass Butterworth filter with a cut-off frequency of 10
Hz. The distance traveled of the CoP was calculated as
sway length using the Pythagorean theorem. Rambling-
trembling analysis was performed as proposed by Zat-
siorsky and Duarte.30 This analysis decomposes the CoP
trajectory into “rambling” and “trembling” contributions
to postural control, enabling a distinction between supra-
spinal motor cortex–controlled oscillations of the CoP (ram-
bling) and the effect of peripheral proprioceptive feedback
(trembling).

To estimate the rambling trajectory, the instant equilib-
rium positions were identified as the CoP positions when
the horizontal force Fhor¼ 0 and interpolated using a cubic
spline function. To obtain the trembling trajectory, devia-
tions of the CoP trajectory from the interpolated instant
equilibrium positions were determined.29,30 Rambling and
trembling trajectories were quantified by the standard
deviation in the AP and ML directions. The mean of the 2
best trials (shortest sway length) on each leg was used for
further statistical analysis.

Statistical Analysis

Differences between the injured and uninjured limbs in
gait kinematics and kinetics along with sway parameters
were analyzed using a paired t test. Differences between
injured and uninjured limbs in quasi-stiffness from gait
analysis were analyzed using the Wilcoxon signed-rank
test. Associations between the normalized Achilles tendon
length and normalized calf circumference and functionally
relevant gait parameters were analyzed using linear

Figure 2. Quasi-stiffness is calculated as the rise in plantar flexor moment as a function of the change in dorsiflexion during the
second rocker. The second rocker is indicated in the (A) ankle angle and (B) ankle moment curves. (C) Quasi-stiffness of initial,
intermediate, and late phases of the second rocker.
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regression models. Associations between quasi-stiffness
and sway length were analyzed using linear regression
models. All models were adjusted for early weightbearing
versus nonweightbearing because of unexpected differ-
ences in the pooled nonoperatively treated population. The
level of significance was set at P < .05, and results are
reported as mean ± SD for normally distributed data. Stiff-
ness data were not normally distributed and are reported
as the median. Regression coefficients are reported as B.

RESULTS

The physical examination showed clinical differences
between the injured and uninjured legs; these are pre-
sented in Table 1 along with an overview of participant
characteristics.

Gait: Kinetics and Kinematics

Significant differences in ankle joint kinematics and kinet-
ics and the timing of power production were found between
the uninjured and injured legs at follow-up after 4.5 years.
These differences are summarized in Table 2.

During gait, peak dorsiflexion in stance was, on average,
13.4% larger in the injured leg than the uninjured leg
(P � .001). At initial contact, the difference between the legs
was significant but smaller (P¼ .017). Peak dorsiflexion was

not associated with the normalized Achilles tendon length (B
¼ 0.052; P ¼ .775).

Plantar flexor impulse (total summated internal plantar
flexor moment) was significantly higher in the uninjured
leg compared to the injured leg (P¼ .003), and total positive
work in the plantar flexors was 23.9% higher in the unin-
jured leg compared to the injured leg (P¼ .001). Peak eccen-
tric (negative) power was larger in the injured leg and
occurred, on average, 29 milliseconds later in the stance
phase (P ¼ .002). No difference was found for total negative
work. No statistically significant associations were found
between early weightbearing and peak power, minimum
power, or total negative and positive work.

Gait: Quasi-Stiffness

Quasi-stiffness was calculated during initial, intermediate,
and late eccentric loading (Figure 3). Quasi-stiffness was
significantly higher in the uninjured leg than the injured
leg during the initial and late phases of eccentric loading (P
¼ .009 and .005, respectively). No statistical difference was
found in the intermediate phase. Quasi-stiffness in the ini-
tial phase of eccentric loading was associated with plantar
flexor impulse in the injured leg, and quasi-stiffness in the
intermediate phase was associated with total negative
work in the injured leg. In the uninjured leg, quasi-
stiffness in the intermediate phase was associated with
peak positive power and total positive work. Finally, in the
late phase, it was associated with total positive work and
peak negative power in both legs (Table 3). Quasi-stiffness
in the injured leg was not associated with the normalized
Achilles tendon length (initial: P ¼ .672; intermediate: P ¼
.695; late: P ¼ .802) or early weightbearing (initial: P ¼
.177; intermediate: P ¼ .779; late: P ¼ .821).

Static Balance

No difference was found in sway length during 1-leg stance
between the injured and uninjured legs, nor did the decom-
position of CoP displacement into rambling and trembling
reveal any differences in either the AP or ML direction
(Table 4). Linear regression analyses showed no association
between sway length in the injured leg and the ATRS (B ¼
0.00; P ¼ .68). For the injured leg, quasi-stiffness in initial
eccentric loading was associated with an estimated 0.075-m
increase in sway length per 0.01-N�m/kg/deg increase in
stiffness (B ¼ 0.075; P ¼ .0271). This association was,
however, not significant in the uninjured leg (B ¼ 0.056;
P ¼ .0709).

DISCUSSION

In the current study, we showed a 2.0� (þ13.4% in the
injured leg) increased peak dorsiflexion during gait in
the injured leg compared to the uninjured leg 4.5 years
after ATR. The increased range of motion was accompa-
nied by decreased functional stiffness in the initial and
late parts of eccentric loading (second rocker), decreased
total positive work and plantar flexor impulse, and

TABLE 2
Kinematic, Kinetic, and Quasi-Stiffness Results

From Gait Analysisa

Uninjured Injured P

Kinematics
Peak dorsiflexion, deg 14.9 ± 0.4 16.9 ± 3.1 �.001b

Dorsiflexion at initial
contact, deg

0.2 ± 2.3 1.3 ± 2.3 .017b

Kinetics
Plantar flexor impulse,

N�m*s/kg
39.19 ± 5.62 37.32 ± 4.99 .003b

Total positive plantar
flexor work, J/kg

4.71 ± 1.60 3.80 ± 0.79 .001b

Peak positive plantar
flexor moment, N�m/kg

1.53 ± 0.16 1.55 ± 0.17 .271

Peak positive plantar
flexor power, W/kg

4.39 ± 0.88 4.30 ± 0.75 .479

Total negative plantar
flexor work, J/kg

–2.20 ± 0.49 –2.31 ± 0.44 .179

Peak negative plantar
flexor moment, N�m/kg

0.22 ± 0.05 0.20 ± 0.05 .028b

Peak negative plantar
flexor power, W/kg

0.99 ± 0.34 1.18 ± 0.33 �.001b

Quasi-stiffness, N�m/kg/deg
Initial phase 0.053 ± 0.022 0.046 ± 0.020 .009b

Intermediate phase 0.104 ± 0.091 0.102 ± 0.043 .106
Late phase 0.162 ± 0.110 0.139 ± 0.041 .005b

aData are presented as mean ± SD.
bStatistically significant difference between uninjured and

injured legs (P < .05).
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increased peak eccentric (negative) power for the injured
leg compared to the uninjured leg. No statistically signif-
icant differences were found in 1-leg standing balance. In
general, the normalized Achilles tendon length and nor-
malized calf circumference were not statistically

associated with any of the functional outcomes from gait
and standing balance.

Gait Kinematics and Kinetics

Increased peak dorsiflexion for the injured leg, as found in
the present study, has also been observed in other studies.
An earlier midterm follow-up on nonsurgically treated
patients reported a similar level of side-to-side differences,
with peak passive dorsiflexion that was 7.5% (1�) larger in
the injured leg after 2 to 4 years.24 A difference of 2� may
not seem clinically relevant, and the ATRS value (83.2) did
indicate that this group of patients may have recovered
fairly well. We did, however, observe corresponding kinetic
differences that may indicate or reveal functional conse-
quences or causes for this difference.

Interestingly, the present study found no significant
association between the normalized Achilles tendon length

Figure 3. Quasi-stiffness of the uninjured and injured legs during gait. The group means are represented as solid lines ± 1 SD
(broken lines).

TABLE 3
Statistically Significant Associations Between Quasi-Stiffness and

Kinematic and Kinetic Parameters From Regression Models

Initial Phase Intermediate Phase Late Phase

Injured Uninjured Injured Uninjured Injured Uninjured

Peak positive
moment

B ¼ 2650.44; P < .001

Peak positive power B ¼ 3.30; P ¼ .035
Peak negative power B ¼ 3.7; P ¼ .006 B¼ 2.4; P< .001
Total positive work B¼ –5.75; P¼ .043 B ¼ 9.6; P ¼ .005 B¼ 9.5; P¼ .004
Total negative work B¼ 4.65; P¼ .016 B¼ 3.1; P¼ .002
Plantar flexor

impulse
B¼ 87702.34; P¼ .030 B¼ 65155.56; P¼ .001

TABLE 4
Sway Length and Rambling/Trembling
During 1-Leg Standing Balance Taska

Uninjured Injured P

Sway length, m 1.44 ± 0.4 1.45 ± 0.4 .955
Anteroposterior rambling 7.0 ± 1.8 6.7 ± 1.6 .414
Anteroposterior trembling 3.2 ± 0.7 3.3 ± 0.9 .710
Mediolateral rambling 5.3 ± 1.4 5.4 ± 1.2 .908
Mediolateral trembling 3.3 ± 0.9 3.5 ± 0.9 .123

aData are presented as mean ± SD.
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and peak dorsiflexion. Sustained lengthening of the Achil-
les tendon in the injured leg is a well-established observa-
tion after a rupture,16,22 but only a few other studies have
investigated the association between ultrasound-measured
Achilles tendon length and gait kinematics and kinetics.
Brorsson and colleagues10 investigated this association and
found a weak to moderate correlation between the Achilles
tendon length and gait kinematics. An alternative explana-
tion could be found in the fact that forward progression of
the tibia in the second rocker is controlled by eccentric con-
traction of the plantar flexors. Increased peak dorsiflexion
may therefore reveal a sustained deficit in eccentric
dynamic control even 4.5 years after a rupture. Don and
colleagues12 showed an association between consistent def-
icits in plantar flexor eccentric contraction and increased
ankle dorsiflexion 2 years after an injury. In the present
study, we observed decreased functional stiffness in end-
range eccentric loading in the injured leg, with no associa-
tion with the normalized Achilles tendon length. These
results support the speculation that the eccentric capacity
of the plantar flexors may influence the biomechanical
changes occurring in the end of the second rocker.12

Patients with more than a 30% difference between the
injured and uninjured legs in the LSI of heel-rise height
at 1-year follow-up have been shown to exhibit reduced
heel-rise power at 6-year follow-up, which was associated
with increased eccentric plantar flexor power during gait.10

The patients in the current follow-up exhibited an LSI of
heel-rise height between 69% and 72% at 1-year follow-up5

and similarly increased eccentric plantar flexor power dur-
ing gait at medium-term follow-up.

Stiffness

Stiffness is an important functional parameter, as energy
return from the Achilles tendon stretching during dorsi-
flexion is a contributor to total push-off power.31 Functional
stiffness includes a position-dependent component that
stores and releases energy (passive stiffness) along with
possible simultaneous muscular work.11 Caution should
therefore be applied when comparing functional stiffness
to passive stiffness.

At 1-year follow-up, the patients included in this study
exhibited decreased passive stiffness in the early and ter-
minal parts of dorsiflexion,7 consistent with several previ-
ous studies.9,19,28 Decreased energy storage has also been
proposed to be caused by increased stiffness of the actual
tendon.1 The explanation to measure passive stiffness
should then be the result of a longer, more slack tendon
and therefore less stretching of the actual tendon struc-
tures during ankle dorsiflexion.28 If the tendon is stretched
to a lesser degree, energy storage in the Achilles tendon
would be less,12,19,22 and energy return to the push-off
would be reduced. Decreased stiffness was also reflected
in the smaller plantar flexor impulse and less work in the
injured leg; however, peak positive power (push-off power)
was not different between the legs.

At midterm follow-up, decreased quasi-stiffness was
identified in the injured leg in the initial and late phases
of dorsiflexion during the second rocker, which are the

early and terminal parts of dorsiflexion. Reduced stiffness
in the terminal phase, when tibial progression is mainly
controlled by eccentric contraction in the triceps surae,
could be related to the previously discussed decrease in
eccentric capacity.

Reduced dynamic stiffness may also have implications
for joint positioning, as the triceps surae and Achilles ten-
don play a large part in ankle proprioception.9 Ankle pro-
prioception is reduced in patients recovering from ATRs,9

which could make them more susceptible to perturbations
during gait. A recent study on healthy participants con-
cluded that walking in unstable or randomly perturbating
shoes increases co-contraction around the ankle joint and
thereby decreases functional stiffness during loading.3 This
mechanism could help explain decreased quasi-stiffness in
the initial phase of dorsiflexion. However, slippery or
uneven surfaces have also been suggested to increase
quasi-stiffness,13 so further studies are warranted.

One-Leg Standing Balance

Our study hypothesis was that potential proprioceptive def-
icits after ATRs would increase sway length in the injured
leg owing to the diminished sense of tendon length changes
influencing ankle joint control.30 Yet, no differences were
found in sway length, rambling, or trembling. An explana-
tion could be that sway length may not be associated with
range of dorsiflexion but range of plantar flexion18; thus,
increases in passive dorsiflexion and tendon length may not
influence standing balance as hypothesized. Interestingly,
a relation was found in the injured leg, in which an increase
in quasi-stiffness was associated with an increase in sway
length. This association was also present in the uninjured
leg but was not significant. A larger degree of co-
contraction has been speculated to result in increased sway
length,25 and as stated above, quasi-stiffness increases in
unstable conditions. Yet, increased co-contraction is, as
stated above, indicated to decrease quasi-stiffness. Further
studies are needed to fully determine this connection.

Limitations

A limitation to the results found in the current study was
the only partial inclusion of the original randomized
groups. Participants in the original RCT who did not
respond to the invitation for a medium-term follow-up may
have been the patients with the best outcome from the
initial treatment.

CONCLUSION

The current study showed that patients treated nonopera-
tively have a small increase in peak dorsiflexion along with
decreased total internal plantar flexor moment and concen-
tric plantar flexor power, as well as increased eccentric
power with a delayed peak. Furthermore, we showed
decreased quasi-stiffness in initial dorsiflexion and end-
range dorsiflexion during gait. This study did, however,
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reveal that these deviations could not be directly associated
with the measured tendon elongation.

The results on functional stiffness and sway indicate that
there may be neuromuscular adaptations or compensations
to structural and passive changes in the muscle-tendon
complex after ATRs. Future studies may include muscle
coordination as well as neuromuscular responses to pertur-
bations or surface changes in the injured leg to understand
sustained passive and active factors of gait and balance in
midterm and long-term recovery after ATRs.
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