
Epidemiology and Infection

cambridge.org/hyg

Original Paper

Cite this article: Léon L, Pillonel J, Jauffret-
Roustide M, Barin F, Le Strat Y (2019).
Estimating prevalence from dried blood spots
without using biological cut-offs: application
of a novel approach to hepatitis C virus in drug
users in France (ANRS-Coquelicot survey).
Epidemiology and Infection 147, e220, 1–7.
https://doi.org/10.1017/S0950268819001043

Received: 1 June 2018
Revised: 24 April 2019
Accepted: 15 May 2019

Key words:
Cut-off; drug users; hepatitis C virus; mixture
model; prevalence

Author for correspondence: L. Léon,
E-mail: lucie.leon@santepubliquefrance.fr

© The Author(s) 2019. This is an Open Access
article, distributed under the terms of the
Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which
permits unrestricted re-use, distribution, and
reproduction in any medium, provided the
original work is properly cited.

Estimating prevalence from dried blood spots
without using biological cut-offs: application of
a novel approach to hepatitis C virus in drug
users in France (ANRS-Coquelicot survey)

L. Léon1, J. Pillonel1, M. Jauffret-Roustide1,2, F. Barin3 and Y. Le Strat1

1Santé publique France, French national public health agency, F-94415 Saint-Maurice, France; 2Cermes3 (Inserm
U988/CNRS UMR8211/EHESS/Université Paris Descartes), Paris, France and 3UMR Inserm U1259, Université de
Tours, & CNR VIH, CHU Bretonneau, Tours, France

Abstract

Seroprevalence estimation using cross-sectional serosurveys can be challenging due to inad-
equate or unknown biological cut-off limits of detection. In recent years, diagnostic assay
cut-offs, fixed assay cut-offs and more flexible approaches as mixture modelling have been
proposed to classify biological quantitative measurements into a positive or negative status.
Our objective was to estimate the prevalence of anti-HCV antibodies among drug users
(DU) in France in 2011 using a biological test performed on dried blood spots (DBS) collected
during a cross-sectional serosurvey. However, in 2011, we did not have a cut-off value for DBS.
We could not use the values for serum or plasma, knowing that the DBS value was not neces-
sarily the same. Accordingly, we used a method which consisted of applying a two-component
mixture model with age-dependent mixing proportions using penalised splines. The compo-
nent densities were assumed to be log-normally distributed and were estimated in a Bayesian
framework. Anti-HCV prevalence among DU was estimated at 43.3% in France and increased
with age. Our method allowed us to provide estimates of age-dependent prevalence using DBS
without having a specified biological cut-off value.

Introduction

In epidemiology, accurately estimating indicators such as prevalence is crucial to study and
monitor a disease in the general public and specific populations, and to implement appropriate
public health measures. One approach to estimate the prevalence of a specific infection is to ask
people to self-report their infection as part of a survey [1]. However, only people aware of their
infection, who fully understand the question and who agree to disclose their status, can do so.
Therefore, the most suitable way to estimate prevalence is to conduct an epidemiological survey
in which a biological assay specific to this infection is performed on all survey participants. Such
assays are most often performed by laboratories on biological samples (or matrices) from well-
defined populations (such as blood donors). The assay cut-off value – established using refer-
ence material and standard conditions (biological matrices (traditionally, serum or plasma),
commercial biological kits and storage) – is often provided by the manufacturer. This cut-off
value allows the classification of biological quantitative measurements into a ‘positive’ result
(infection or past infection), a ‘negative’ result (not infected) or an ‘inconclusive’ result. In
the latter, a reanalysis of the biological sample is necessary, otherwise the sample is considered
positive or negative or excluded from the epidemiological study, or remains inconclusive.

According to this classification, estimating seroprevalence is usually straightforward if the
assay is performed under the conditions recommended by the manufacturer [2].

The sensitivity and the specificity of a biological assay can be modified if not performed
according to the manufacturer’s instructions. In an epidemiological survey, the choice of the for-
mat of biological/serological assay to use depends on several factors. The most important of these
are: target population, ease of use, implementation conditions of the survey (whether within
dedicated care/prevention services or outside of such services), testing laboratory and cost.
Seroprevalence estimates may be biased when a biological assay is applied to a population
and/or to a biological matrix different from those used to calibrate and validate the assay [2–5].

To avoid inconclusive classifications arising from the use of fixed or arbitrary biological
cut-off values, an approach using a mixture of distributions – to model the distribution of
the biological quantitative measurements – was proposed in the literature [6]. Called the ‘direct
approach’, it differs from the classic cut-off approach [7].

In this article, our objective was to estimate the prevalence of anti-HCV antibodies (anti-HCV)
among drug users (DU) in France, from a biological test performed on dried blood spots (DBS)
collected during the ANRS-Coquelicot survey in 2011 [8, 9]. However, in 2011, we did not have
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a cut-off value for DBS and we could not use the values for serum or
plasma, knowing that the DBS value was not necessarily the same.
The distribution of the biological quantitative measurements
(signal-to-cut-off (s/co) ratios) used to detect anti-HCV antibodies
was estimated using a Bayesian framework incorporating a two-
component mixture model with age-dependent mixing proportions
using penalised splines [10]. We compared our results with three
other approaches (two model-based approaches published recently
[8] and the classic biological cut-off approach).

Methods

Data sources

ANRS-Coquelicot was a French cross-sectional serosurvey per-
formed in 2011 among DU recruited in five French metropolitan
cities (Lille, Strasbourg, Paris, Bordeaux and Marseille) and two
administrative departments in the Paris area (Seine-Saint-Denis
and Seine-et-Marne) [9]. Inclusion criteria were as follows: indivi-
duals >18 years who had injected or snorted drugs ‘at least once
in his/her life’, spoke French and agreed to participate in the survey
(providing informed consent). The survey’s main objectives were to
estimate the prevalence of anti-HIV and anti-HCV antibodies, to
assess at-risk practices associated with HCV transmission and to
evaluate the dynamics of the HIV and HCV epidemics in this popu-
lation. DU were selected using time-location sampling [11] and
interviewed about their socio-demographic situation, health status,
access to HIV and HCV screening, knowledge of HIV and HCV
transmission modes, drug use in their lifetime and in the previous
month, at-risk practices and access to care. In the present sub-study,
we focus on the estimation of anti-HCV prevalence. Blood samples
on blotting paper were collected during the interview by participants
who agreed to provide self-obtained finger-prick blood samples on
DBS for anti-HIV and anti-HCV antibody testing.

Biological samples

Screening for anti-HCV antibodies was performed using ELISAwith
the HCV 3.0 Ortho assay (Raritan, NJ, USA). Details on the sero-
logical data analysis are available in a previous paper [8]. Briefly,
the DBS were cut out with a punch to obtain a circle 6 mm in diam-
eter, which was first placed in 250 µl of 0.01 M sodium phosphate
buffer containing 10% bovine serum albumin and 0.05% Tween
20, then incubated at room temperature for 1 h in an ultrasonic
cleaner. The eluted serum samples were directly used to fill the
wells of ELISA microplates (200 µl per well). Subsequent steps
were carried out in strict compliance with the manufacturer’s
recommendations. We used the s/co ratios (i.e. absorbance over
the manufacturer’s cut-off) to measure the concentration of
anti-HCV antibodies. For quantitative analysis, absorbance, also
known as optical density (a measure of the quantity of light
absorbed by a sample), was measured using spectroscopy.
Manufacturers establish cut-off values from absorbance readings
of negative (and sometimes positive) controls. The s/co ratio enables
serological samples to be normalised, as slight variations may arise
from one set of manipulations to another. Manufacturers usually
define samples with an s/co ratio of ≥ 1.0 as positive.

Mixture modelling

For each DU i (i = 1, …, n), let us consider his age ai and the vari-
able of interest yi corresponding to the log-transformed

concentration of anti-HCV antibodies. We modelled the variable
of interest using a two-component mixture model, each compo-
nent representing seropositive or seronegative DU for HCV.
Following the methodology and the notations used by Vink
et al. [10], each DU i contributes to the likelihood: f ( yi) = (1−
Ii) f0 ( yi) + Iif1 ( yi) with Ii equals zero if i belongs to the seronega-
tive component f0 and Ii equals one if i belongs to the seropositive
component f1. We assumed that the random variable Ii followed a
Bernoulli distribution of parameter pi where pi was the age-
dependent probability of being seropositive. To estimate pi, we
performed a logit regression including age modelled by penalised
splines:

logit (pi) = s (ai),

where the smooth function of age s is a B-penalised-spline model.
The term s (a) can be expressed by: s (a) = BXβ + BZb. Here B is a
n × k cubic-B-spline with k equally spaced knots, X is a d × kmatrix
such as X β is a polynomial of degree d− 1 and Z =DT (DDT)−1 is
ak × (k− d) matrix, where D is a (k− d) × k difference matrix of
order d. β is a vector of length d and b is a vector of length k− d.
In our study, we put knots on 10 equally distributed age groups
and penalised second-order differences (i.e. k = 10 and d = 2).

Each component density fj was assumed to be normally dis-
tributed, independent of age, with mean μj and standard deviation
σj where j = 0 (resp. j = 1) was associated with the seronegative
component (resp. seropositive component).

We used weakly-informative priors for the unknown para-
meters. Parameters were estimated using the Bayesian framework
through Gibbs sampling, using Just another Gibbs Sampler
(JAGS) [12]. We ran four parallel Markov chain Monte Carlo
(MCMC) models and retained 5000 samples in total. Details of
the estimation procedure are available elsewhere [10] and our R
code is provided in the Appendix.

Mixture model validation

To assess whether the model provided a reasonable fit of the data
by age group (18–25, 26–35, 36–45 and 46–55), first, we calculated
the empirical cumulative distribution function (ECDF) of the data
with the 95% confidence intervals. The procedure to generate the
confidence intervals consists of using an asymptotic approximation
(Approximate Critical Values for Kolmogorov–Smirnov’s D) [13].
Second, we plotted the ECDF, the 95% CI and the predicted
ECDF obtained from the posterior predictive distribution of the
data according to the log concentration of anti-HCV antibodies.
For the latter model, we used the estimated parameters
m̂0, m̂1, ŝ0, ŝ1 and the estimated seroprevalence per age group, cal-
culated as the weighted mean of the age-specific seroprevalences.

Estimation of the prevalence

To produce estimates in the DU population, all the analyses took
into account the sampling design (sampling weights, stratifica-
tions, primary sampling units).

A biological result was indicated ‘over’ when the quantitative
measurement exceeded the upper limit of absorbance of the spec-
trophotometer (≥10.0). It is a very frequent phenomenon with
any ELISA. The signal reaches quickly a plateau when a sample
is strongly positive. There is a continuous antigenic stimulation
by HCV antigens in any chronically infected individual that
leads to a high level of antibody. This is why most of the positive
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samples are ‘over’ the plateau. ‘Over’ results were excluded from the
mixture model for two reasons: (1) they did not need to be classified
because they were obviously defined as positive; (2) keeping them
would involve an artificial distribution of the quantitative results
with right censored data impacting the mixture model (Fig. 1).
We defined nover as the number of DU with an anti-HCV concen-
tration result indicated ‘over’. Furthermore, anti-HCV prevalence
was estimated in two steps: (1) estimation of prevalence, p̂

′
using

the mixture model excluding the ‘over’ results, and then (2) estima-
tion of the final prevalence p̂ including the ‘over’ results.

Step 1. Estimation of prevalence p̂′ using the mixture model
excluding the ‘over’ results
We estimated the probability of being seropositive at age a, p̂ (a),
by the mean probability of being seropositive for age a from the
5000 generated samples. Using p̂ (a) and the estimated proportion
of DU by age, we calculated the prevalence p̂

′
. The proportion of

DU of age a, denoted by q (a), was estimated using the Horvitz–
Thompson estimator q̂ (a) = ∑n−nover

i wixi (a) /
∑n−nover

i wi,
where wi is the sampling weight of the individual i, xi (a) = 1 if
the individual i is of age a and 0 otherwise, and where n is the
survey sample size [14]. The prevalence was expressed by
p̂
′ = ∑

a
q̂ (a) p̂ (a).

Step 2. Estimation of the final prevalence p̂
The final estimated prevalence p̂ was obtained with the formula:
p̂ = n̂′p̂′ + n̂over/ n̂′ + n̂over.

n̂′ is the estimated number of DU with a biological quantitative
result and n̂over is the estimated number of DU with a concentra-
tion result indicated ‘over’.

Comparison of different approaches proposed to estimate
the prevalence

Four methods were compared:

• Model 1: estimation using the two-component Bayesian mixture
model presented above,

• Model 2: estimation using a five-component EM mixture model.
Each component corresponded to a level reactivity. Levels 1–3,
corresponding to the lowest reactivity, represented the negative
results of the anti-HCV test. Levels 4–5 were assumed to
represent the positive results of the test [8],

• Model 3: estimation using a logistic regression model as a func-
tion of age and time [8],

• Model 4: estimation using the classic biological cut-off method,
using a cut-off value of one. Indeed, there was no cut-off value
for DBS assay but the cut-off value for serum was equal to 1.
We used this cut-off value assuming that the cut-off value
was the same on DBS or serum which is a strong assumption.

All analyses were performed using R 3.3.2 software and the run-
ning time to perform computations was about 3 min using a
standard personal computer.

Results

In the ANRS-Coquelicot survey, 1568 DU were included and 92%
of the respondents agreed to provide a finger-prick blood sample,
corresponding to 1442 blotting papers collected. Two hundred blot-
ting papers were excluded due to insufficient or inadequate bio-
logical material. A total of 1242 DBS samples were retained for

Fig. 1. Results of the 2-component mixture model performed on the log transformed-concentration (log(x+0.001)) without the results over the upper limit of
absorbance of the spectrophotometer. The dashed curve represents the component for the seronegative results and the solid curve represents the component
for the seropositive results. The solid bars represent the distribution of quantitative results and the last hashed bar represents the results over the upper limit
of absorbance of the spectrophotometer (≥ 10.0).
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the analysis [8]. Among them, 289 DU had a concentration result
indicated ‘over’, and were thus classified anti-HCV seropositive.

Mixture model and validation model

The estimated parameters of the mixture model are shown in
Table 1 and the normal density functions of the components ( f0-
and f1) in Figure 1. Figure 2 shows, for each age group, the ECDF
of the anti-HCV log concentration with the model-predicted
cumulative distribution function. For each age group, the model-
predicted result stands between the 95% confidence intervals of
the empirical results.

Estimation of the prevalence

We estimated anti-HCV prevalence among DU in France at
43.3% (95% CI 36.2–50.3). As expected, anti-HCV prevalence
increased with age (Fig. 3). We compared our current method
to estimate age-dependent prevalence of HCV with three other
methods: (1) estimation using a five-component mixture model
[8], (2) estimation using a logistic regression model [8] and (3)

estimation using the biological cut-off approach (Table 2 and
Figs 3 and 4). In the first of these three methods (model 2),
each of the five components corresponded to an anti-HCV
reactivity level. We observed similar results between our current
method and two other methods: model 2 and model 3. Using a
cut-off value of 1.0, the biological cut-off approach provided a
lower HCV prevalence, estimated at 39.9% (95% CI 35.9–44.1).
Most estimates by age group were lower using the third method
(model 4) than using our reference method (Table 2).

Discussion

In serosurveys, biological assays are used to estimate seropreva-
lence. The choice of specific biological assays and the practical
conditions have an impact on the estimation of seroprevalence.
Usually, they depend on diagnostic cut-off values, biological
matrices used and the studied populations. Traditionally, viro-
logical assays are assessed using serum or plasma samples col-
lected from venous puncture. The advent of alternative
biological matrices to venous blood samples, such as gingival cre-
vicular fluid (taken from the lip and gum), capillary blood (taken

Table 1. Parameters of the mixture model

Component Status μi Credible intervals σi Credible intervals

f0 Seronegative −2.54 −2.64 to −2.46 0.8 0.75–0.87

f1 Seropositive 0.99 0.53–1.15 0.69 0.56–0.84

Fig. 2. Model fit. Curves represent the empirical cumulative distribution function and 95% CI of the anti-HCV log-transformed concentration per age group (gray
curves) and the model predicted cumulative distribution function (black curve).
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from the finger), hair samples and home urine specimens, means
that biological testing can now occur in the patient’s home envir-
onment (point of care testing) [15, 16]. DBS samples are often
preferred for collecting biological measurements in hard to
reach or vulnerable populations at high risk of infectious diseases
[17]. For example, venipuncture is inadequate for epidemiological
studies on homeless people [18], men who have sex with men [19]
and injecting DU, due to venous access sometimes being difficult
because of repeated injections [20] and to study implementation
protocols (e.g. data collection for DU performed by outreach
teams in the streets). Cut-off values using these alternative bio-
logical matrices are usually different from those for sera samples.

They are not easy to obtain and sometimes are not provided by
the biologist [2, 3, 5, 17, 21]. If the cut-off value is unknown,
the serological status will be subject to misclassification due to
an arbitrary choice of the cut-off value. An inaccurate use of
the manufacturer’s instructions can lead to a different sensitivity
and specificity than those expected. This has a direct impact on
positive/negative classification, and in turn on the estimation of
seroprevalence [21]. When two cut-off values (upper and lower)
are provided by the manufacturer, individuals with a result
under the lower cut-off value are considered seronegative, those
with a result over the upper cut-off value seropositive and those
with a result between the two inconclusive [22].

Fig. 3. Age-dependent HCV prevalence estimates, from the 5-component mixture model (stars), from the 2-component Bayesian mixture model (squares) and using
the biological cutoff method (circles).

Table 2. Comparison of four different approaches to estimate HCV prevalence among drug users, ANRS-Coquelicot survey, France, 2011

Age
group Model 1 Model 2 Model 3 Model 4

Two-component
mixture

Credible
intervals

Five-component
mixture 95% CI

logit
regression 95% CI

Biological
cut-off 95% CI

Total 43.3 36.2–50.3 43.2 38.8–47.7 43.5 42.1–44.9 39.9 35.8–44.1

18–25 5.4 1.4–9.3 6.3 2.2–16.6 5.5 5.0–6.1 6.3 2.2–16.9

26–35 24.3 16.9–25.7 21.8 15.9–29.0 27.0 26.0–28.4 19.0 13.6–25.7

36–45 49.5 44.8–54.2 50.6 44.5–56.7 51.6 50.9–52.3 47.9 41.7–54.1

46–55 63.6 59.2–68.1 67.5 58.3–75.4 60.6 60.5–60.8 60.8 52.8–68.2
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In our point of view, the estimation of prevalence using bio-
logical measurements can be treated statistically without using a
cut-off value, and therefore can be viewed as a statistical challenge
rather than a biological one.

Today, mixture models are used for various diseases to deter-
mine the cut-off value for diagnostic reasons [23], to estimate
seroprevalences [10, 24, 25] and to differentiate different levels
of antibody reactivity [24, 26]. This article presents a method
for estimating anti-HCV prevalence by age, without using an
assay cut-off, an arbitrary cut-off or a level reactivity of
anti-HCV detection. We used an age-dependent normal mixture
model on the log-transformed anti-HCV concentrations, without
classifying measurements as positive or negative. Parameters were
estimated using a Bayesian framework. We estimated anti-HCV
prevalence among DU in France at 43.3% (95% CI 36.2–50.3).
This work follows various attempts to estimate the prevalence
of hepatitis C among DU in France.

In 2011, because DBS had lower sensitivity to detect anti-HCV
antibodies and because of inconsistency in some classifications
(i.e. where some DU testing negative (i.e. s/co ratio ≤ 1.0) were
classified anti-HCV antibody seropositive or HCV cured, because
their s/co ratio was close to 1.0), the DBS cut-off value was modi-
fied. Specifically, a group was formed composed of biologists, epi-
demiologists, sociologists and biostatisticians to propose a DBS
cut-off value. This group proposed a classification algorithm
based on DU characteristics and s/co ratio values. The recommen-
dation was to choose a threshold value for DBS samples at 0.64
IU/l. Using this empirical cut-off value, Weill-Barillet et al. esti-
mated the HCV prevalence at 44% (95% CI 39.6–47.9), which
was very close to our estimate [9].

This first approach having shown that the choice of the
biological cut-off could be difficult, we tried other approaches.

The naïve approach (corresponding to model 4) was to choose
a cut-off value equal to 1 (as used for serum), knowing that it was
a highly improbable value.

We then tried to estimate the prevalence from a logistic regres-
sion including age and time as covariates (model 3). However, the
variable of interest was the result of a binary classification of the
biological quantitative measurements, which still did not allow to
estimate a prevalence by avoiding the choice of a cut-off value.

We then applied a five-component mixture model (model 2),
using the standard EM algorithm for normal mixtures, which
maximises the conditionally expected complete-data log-
likelihood at each M-step of the algorithm [8]. HCV prevalence
among DU using that model (model 2) was estimated at 43.2%
(95% CI 38.8–47.7), close to our HCV prevalence estimate
(model 1) [8]. The main limitation of this five-component
model is to have to choose, a posteriori, which components
should be considered as corresponding to the negative or the
positive HCV status. This choice is quite arbitrary and can be
influenced by the results obtained with the previous approaches.

The approach proposed in this paper overcomes this difficulty.
Unlike the five-component mixture model and the logit regres-
sion model, our model does not need a classification step (i.e.
classifying positive or negative status) to estimate anti-HCV anti-
body seroprevalence. We do not have to choose a threshold to
treat posterior probabilities.

However, fitting a mixture model to quantitative measure-
ments may be difficult for a number of reasons: the possibility
that a low proportion of measurements may belong to one of
the underlying components, the possibility of a visually unimodal
distribution of quantitative measurements, the difficulty to choose
normal distributions vs. other distributions (such as the skew-
normal) or the interest to take into account biological

Fig. 4. Age-dependent HCV prevalence estimates, from a 5-component mixture model (light gray circles), from a logit regression model (line) and from the 2-com-
ponent Bayesian mixture method (dark gray circles). The circles’ sizes are proportional to the number of participants.
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characteristics of individuals (vaccination, co-infection). For this
last point, these characteristics can be included as covariables in
a multivariate regression model to explain the probabilities of
being seropositive.

Despite limitations specific to the use of mixture modelling,
our approach remains a valid alternative method to estimate
prevalence from serosurvey data when one has no information
on assay cut-off value. Our method can be applied to populations
with special characteristics (e.g. at high risk of infectious diseases,
co-infected individuals and children) or with a serological
response different to the population(s) used to calibrate biological
tests. Furthermore, our approach allows a detection cut-off value
to be estimated, when the traditional conditions for using bio-
logical tests are modified or unavailable (blood samples, labora-
tory conditions, study populations, etc.) and may contribute to
help biologists, public health researchers and decision-makers.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268819001043.
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