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Abstract

Recent years have seen rising incidence of dengue and large outbreaks of Zika and chikun-

gunya, which are all caused by viruses transmitted by Aedes aegypti mosquitoes. In most

settings, the primary intervention against Aedes-transmitted viruses is vector control, such

as indoor, ultra-low volume (ULV) spraying. Targeted indoor residual spraying (TIRS) has

the potential to more effectively impact Aedes-borne diseases, but its implementation

requires careful planning and evaluation. The optimal time to deploy these interventions and

their relative epidemiological effects are, however, not well understood. We used an agent-

based model of dengue virus transmission calibrated to data from Iquitos, Peru to assess

the epidemiological effects of these interventions under differing strategies for deploying

them. Specifically, we compared strategies where spray application was initiated when inci-

dence rose above a threshold based on incidence in recent years to strategies where spray-

ing occurred at the same time(s) each year. In the absence of spraying, the model predicted

361,000 infections [inter-quartile range (IQR): 347,000–383,000] in the period 2000–2010.

The ULV strategy with the fewest median infections was spraying twice yearly, in March and

October, which led to a median of 172,000 infections [IQR: 158,000–183,000], a 52% reduc-

tion from baseline. Compared to spraying once yearly in September, the best threshold-

based strategy utilizing ULV had fewer median infections (254,000 vs. 261,000), but

required more spraying (351 vs. 274 days). For TIRS, the best strategy was threshold-

based, which led to the fewest infections of all strategies tested (9,900; [IQR: 8,720–

11,400], a 94% reduction), and required fewer days spraying than the equivalent ULV strat-

egy (280). Although spraying twice each year is likely to avert the most infections, our results
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indicate that a threshold-based strategy can become an alternative to better balance the

translation of spraying effort into impact, particularly if used with a residual insecticide.

Author summary

Over half of the world’s population is at risk of infection by dengue virus (DENV) from

Aedes aegypti mosquitoes. While most infected people experience mild or asymptomatic

infections, dengue can cause severe symptoms, such as hemorrhage, shock, and death. A

vaccine against dengue exists, but it can increase the risk of severe disease in people who

have not been previously infected by one of the four DENV serotypes. In many places,

therefore, the best currently available way to prevent outbreaks is by controlling the mos-

quito population. Our study used a simulation model to explore alternative strategies for

deploying insecticide in the city of Iquitos in the Peruvian Amazon. Our simulations

closely matched empirical patterns from studies of dengue’s ecology and epidemiology in

Iquitos, such as mosquito population dynamics, human household structure, demogra-

phy, human and mosquito movement, and virus transmission. Our results indicate that

an insecticide that has a long-lasting, residual effect will have the biggest impact on reduc-

ing DENV transmission. For non-residual insecticides, we find that it is best to begin

spraying close to the start of the dengue transmission season, as mosquito populations can

rebound quickly and resume previous levels of transmission.

Introduction

Dengue incidence is rising [1–3]. Current estimates indicate that over half of the world’s popu-

lation is at risk of dengue virus infection (DENV) [4]. The last decade has also seen explosive

outbreaks of Zika and chikungunya viruses, which are transmitted by Aedes aegypti, too.

Because the only licensed dengue vaccine is contraindicated in individuals without prior

DENV exposure [5], and there are no therapeutic options for Zika and chikungunya, the only

intervention available to address these diseases in most settings is vector control. The most

common method for controlling adult Ae. aegypti is ultra-low volume (ULV) spraying, defined

as a treatment with minimum effective volume of the active ingredient [6–8]. It can be imple-

mented outdoors by plane [9] or trucks [10], or indoors by handheld devices. Indoor applica-

tion is considered most effective, because Ae. aegypti lives primarily inside human habitations

[6,11]. In Iquitos, Peru, where our study was focused, ULV is the most commonly used

method and has been repeatedly applied city-wide in response to past Aedes-transmitted virus

outbreaks [12].

Apart from the Western hemisphere-wide Ae. aegypti control program, which focused on

yellow fever prevention during the 1950s and 1960s [13], there have been two vector control

programs that have successfully controlled dengue: Cuba, which used ULV spraying comple-

mented by larval source reduction [14], and Singapore, which utilized larval source reduction

and community engagement [15]. A 2010 systematic review found five studies on indoor ULV

[6], with generally high (up to 100%) mosquito mortality effects that were sustained for only

about one month [16–19]. An exception was a study in Thailand, which found a sustained

drop in Ae. aegypti landing rates out to six months [20]. A more recent 2016 systematic review

found no randomized controlled trials assessing the impact of ULV spraying. A recent study

in Iquitos reported that city-wide indoor ULV spraying reduced the Ae. aegypti population by

PLOS COMPUTATIONAL BIOLOGY Optimizing the deployment of city-wide spraying for dengue outbreak response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007743 April 20, 2020 2 / 28

Funding: SMC, GE, GMV-P, ACM, TWS, RCR, and

TAP were supported by grant P01AI098670 (TWS,

PI) from the National Institutes of Health, National

Institute for Allergy and Infectious Disease (https://

www.niaid.nih.gov). The funders had no role in the

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007743
https://www.niaid.nih.gov
https://www.niaid.nih.gov


60%, but effects were only sustained for a short period, also about one month [11]. The sum of

all this evidence indicates that indoor ULV spraying is effective at reducing adult mosquito

numbers in the short term [16–18], but with mixed evidence on its impact on virus transmis-

sion and disease [6,21,22] and a lack of information on best practices for how to deploy ULV

at a city level [21,23].

Traditionally, indoor residual spraying (IRS) has been widely used against malaria, but has

not been recommended for control of Aedes-borne diseases [6]. In recent years, however,

there has been increased interest in utilizing IRS to combat Aedes-borne diseases. A 2016 sys-

tematic review found no evidence of an effect of IRS on DENV infection risk [21], though only

two studies were included in that analysis. A more recent study using contact tracing reported

a large epidemiological effect, reducing the probability of future transmission by 86–96% in

Cairns, Australia [24]. A study of IRS in Iquitos found more than 80% mosquito mortality in

24 hours for eight weeks after spraying [12]. Recent work to develop targeted IRS (TIRS),

where insecticide is sprayed only where Ae. aegypti are likely to rest, led to gains in speed of

application, without significant declines in effectiveness [25]. Increased speed coupled with the

relatively small size of Iquitos makes it a feasible location to undertake city-wide TIRS spray-

ing. The primary drawback is that, there are no published details on best practices for under-

taking this approach.

Field trials to measure effectiveness and compare different strategies are logistically chal-

lenging and in some cases prohibitively expensive due to the complex interplay of mosquito

population dynamics, seasonal dynamics, human movement, and fine-scale heterogeneities

[21,26–34]. Mathematical modeling can be helpful in multifaceted cases like this for predicting

the best intervention strategies. Additionally, the rebound in adult mosquito abundance fol-

lowing spraying [11,18,21], due to immature emergence and movement, and feedbacks caused

by reduced egg-laying due to increased adult mortality, mean that it is important to capture

mosquito population dynamics when modeling vector control strategies. For example, models

have been used for many diseases to analyze causes of outbreaks and to help optimize response

strategies; increasingly, this is happening in real-time during outbreaks [35]. Examples include

diphtheria among Rohingya refugees [36], where real-time modeling informed resource allo-

cation and transmission mechanisms; the 2013–16 west African Ebola outbreak [37,38]; opti-

mum vaccination strategies in response to measles outbreaks [39–42]; and seasonal malaria

prophylaxis [43,44]. Recent modeling studies evaluated the impact on dengue of outdoor,

truck-mounted ULV spraying in Porto Alegre, Brazil and IRS in Merida, Mexico [10,45]. The

former reported that 24% of cases were averted and the latter found that IRS strategies initiated

early in the transmission season were generally superior to those initiated late in the season.

One challenge associated with ULV and IRS campaigns is determining the criteria for initi-

ating such a response. Brady et al. [46] discussed a variety of ways to determine when a dengue

outbreak is occurring, predominantly based on comparison of current incidence from patterns

in recent years. An alternative to initiating an intervention when a threshold has been

exceeded would be to start the intervention at the same time each year in an effort to prevent

transmission from reaching outbreak levels. Hladish et al., considered campaign start date for

IRS, finding that deploying IRS four months before the seasonal peak produced the greatest

impact on infections [45]. Several studies of malaria also found that IRS timing was important

[44,47], and one study assessed ULV timing in relation to Triatoma dimidiata, the vector for

Chagas disease [48]. Few studies have compared alternative methods for initiating outbreak

response though, and none, to our knowledge, did so for the impact of indoor ULV on dengue.

An added complication is the characteristic variation in seasonal patterns of DENV transmis-

sion [22], which along with the aforementioned complex interplay of heterogeneities can result
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in vector control strategies with the biggest impact on mosquitoes not necessarily correspond-

ing to the biggest reduction in human infections.

To address these challenges, in this study we used a transmission model to investigate the

optimal application of indoor ULV or TIRS for dengue control in Iquitos, Peru. Because the

timing of DENV transmission seasons can vary considerably across years, we sought criteria

that were optimal in the sense of being robust across multiple years, rather than optimizing

outbreak response for a single outbreak year. We compared several possible threshold-based

strategies, based on a variety of outbreak definitions, to strategies in which insecticide was

sprayed regularly on the same date, either once or twice a year, starting at different times each

year.

Methods

Ethics statement

The study protocol was approved by the Naval Medical Research Unit No. 6 (NAMRU-6)

Institutional Review Board (IRB) (protocol #NAMRU6.2014.0028), in compliance with all

applicable Federal regulations governing the protection of human subjects. IRB relying agree-

ments were established between NAMRU-6, the University of California, Davis, Tulane Uni-

versity, Emory University and Notre Dame University. The protocol was reviewed and

approved by the Loreto Regional Health Department, which oversees health research in Iqui-

tos. This study represents historical data analysis using data without personal identifiers.

Study area and synthetic location generation

Our model was calibrated to data from Iquitos, which has a population of about 450,000 people

in the Peruvian Amazon [49,50] and where all four DENV serotypes are endemic. We cali-

brated the initial level of population immunity, number of imported infections, and the abso-

lute mosquito abundance using a particle filtering approach to an estimate of the serotype-

specific number of infections based on a longitudinal cohort study in Iquitos [51]. Results of

this calibration procedure are shown in S1 Fig, S2 Fig and S3 Fig, including a comparison of

model predicted numbers of infections and the estimated number to which we calibrated in S1

Fig. Full details of this calibration procedure are given in Perkins et al. [49]. Several other com-

ponents of the model were independently calibrated to data from Iquitos, including the spatio-

temporal pattern in mosquito abundance [52] and human movement [53]. Our analysis

focuses on the period 2000–2010, in which DENV-3 and DENV-4 were introduced (in 2001

and 2008, respectively). During this period, household spraying efforts were ongoing in Iquitos

[52]. The spatio-temporal pattern in mosquito abundance was calibrated to a counterfactual

surface, which removed the effect of this spraying, though it was present in the particle filter

calibration of the number of imported cases. Locations and coordinates of almost half (40,839/

92,891) of the locations in the city were collected during surveys conducted as part of prospec-

tive cohort studies [52]. For the remaining locations, we randomly assigned them to ministry

of health zones, so that the total number within each zone matched that recorded in past city-

wide spraying campaigns [11]. The location type (e.g., home, shop, etc.) of each of these new

locations was randomly assigned so that the final distribution of location types matched that

from the aforementioned surveys. Their positions were distributed using the rSSI algorithm in

the spatstat package in R [54,55], so that they were evenly distributed, and at least 5m separated

each location.
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Model overview

We simulated outbreak response strategies using an established agent-based model of dengue

virus dynamics in Iquitos (Fig 1B). This model has been shown to accurately recreate the

dynamics of all four DENV serotypes in Iquitos, and has previously been used to answer ques-

tions relating to DENV vaccination [49,50,56]. Human agents in the model move according to

realistic movement patterns in Iquitos [53]. Household composition and demographic pat-

terns match those seen in Iquitos and Peru as a whole, respectively. Mosquito agents move

with fixed probability of 0.3 to a nearby location [57] and have a propensity to bite that

depends on temperature, the host’s body size, and whether it is the mosquito’s first bite. Four

stages of mosquito development are explicitly modeled (eggs, larvae, pupae, and female adults),

with density-dependent mortality occurring in the larval stage. Mosquito population dynamics

were calibrated, via an additional mortality rate acting on pupae and larvae, so that adult

female abundance matched a spatiotemporal estimate of abundance in Iquitos [52]. The

model assumed that all four DENV serotypes can be transmitted when either a mosquito or

human is infectious, the other susceptible, and the mosquito takes a bloodmeal. Transmission

occurs with probability 0.9 from mosquitoes to humans and a time-varying probability from

humans to mosquitoes [58,59]. Following infection with one DENV serotype, human agents

exhibit permanent immunity to that serotype and temporary immunity to the other serotypes

for a period of 686 days on average [60]. The rate of introduction of each DENV serotype into

the population was calibrated so that serotype-specific incidence of infection matched that pre-

dicted for Iquitos in a previous study [51]. All features of the model have been thoroughly

described in a prior publication [49], and further details are described in the S1 Text.

Hypothetical spraying protocol

We set in place an outbreak response intervention based on a zonal spraying strategy. Spraying

takes place on Monday through Saturday. There are 35 Ministry of Health zones in Iquitos,

and the outbreak response sprays these 35 zones in batches of a fixed number, until all zones

are sprayed (Figs 1A and 2). In the baseline scenario, we start in zone 1 and spray zones

sequentially, though we explore other orderings in a sensitivity analysis. Immediately after all

zones are sprayed, another cycle of spraying the 35 zones in batches is initiated, and this pro-

cess is repeated until a fixed number of cycles have been completed (three cycles for ULV, or

one cycle for TIRS). We explore the effect of leaving a gap between spray cycles in the sensitiv-

ity analysis. The number of houses to spray per day is limited by a maximum number of houses

that can be sprayed each day. The probability that occupants will be at home and allow the out-

break response team to spray is represented by a compliance probability. The form of vector

control is assumed to be an adult insecticide that increases the baseline mortality of mosqui-

toes by a fixed hazard, called thoroughness. For ultra-low volume (ULV) spraying, the increase

in mortality decays exponentially following spraying with a half-life of one day. The most real-

istic parameterization, based on internal US Naval records of past city-wide spraying cam-

paigns that took place in 2014, involved attempting to spray 11,000 houses per day on average,

of which ~6,800 (62%) were compliant. Six or seven zones were sprayed simultaneously so that

each zone was sprayed three times over a 3–4 week period. There was no training period, no

waiting periods between spray cycles, and no repeat visits to houses. We calibrated the inter-

vention thoroughness such that the intervention campaign would generate an approximately

60% drop in total city-wide mosquito abundance following spraying, consistent with empirical

estimates for Iquitos by Gunning et al. [11]. Spraying parameters are given in Table 1).

We also simulated city-wide TIRS spraying. In this case, we changed the number of houses

sprayed per day, the thoroughness (i.e., the increase in mosquito mortality), and the residuality
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of the insecticide. Based on the estimate that it takes 5–6 times longer to spray a house using

TIRS compared to ULV (~3 minutes vs. ~15 minutes) [25], we used 2,000 as an upper limit on

the number of houses sprayed daily for TIRS. We calibrated the thoroughness and the resi-

duality so that the 24-hour mortality matched that observed for TIRS in Dunbar et al. [25].

This led to a function which had an increase in mosquito mortality of nine deaths/mosquito-

day (i.e., increased the daily risk to close to 1), which decayed exponentially after 90 days fol-

lowing treatment, with a half-life of 11 days (Fig 3). In the TIRS scenario, each campaign con-

sisted of just one city-wide cycle, compared to three spray cycles for ULV campaigns.

Experiments

We considered three ways in which spraying could be initiated: when incidence exceeds a

threshold, once yearly, or twice yearly. In the threshold-based strategies, spraying is initiated

when the weekly or monthly incidence rises one or two standard deviations above the mean

incidence from the corresponding week or month from the previous five years (henceforth,

adaptive threshold strategies), or when weekly or monthly incidence rises above a fixed thresh-

old (henceforth, fixed threshold strategies) [46]. This leads to a total of four possible adaptive

threshold strategies. Note that for the purposes of initiating threshold strategies, incidence rep-

resents cases that are symptomatic, whereas in the results, we generally report the number of

infections a particular strategy leads to, irrespective of symptoms. The yearly and twice yearly

Fig 1. (a) Example of a block of houses that were sprayed. 70% of houses are compliant and were sprayed in the baseline. Both humans and

mosquitoes moved between locations. Mosquitoes moved to nearby locations, whereas humans moved around the city according to a movement

model calibrated to a location survey in Iquitos. (b) On any given day, mosquitoes could move, emerge, die, or take a bloodmeal. Humans had different

levels of attractiveness to mosquitoes based on their body size (represented here by line-width). Icons in this figure are taken from thenounproject.com.

https://doi.org/10.1371/journal.pcbi.1007743.g001
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strategies begin at the same time(s) each year. We tested yearly spraying starting in each

month (12 strategies) and twice-yearly spraying in each pair of months (66 strategies)

(Table 1). Due to the residual effect of TIRS and the longer roll-out of the campaign we did not

explore twice-yearly strategies for this intervention. We compared the number of infections

predicted under each of these initiation strategies to the number predicted had there been no

spraying over the years 2000–2010. To focus on the effect of the strategy for initiating spraying,

we sprayed the Ministry of Health zones in the same order in each simulation. For the same

reason, we used the same time series of DENV introduction in each simulation; namely, the

trajectory associated with the highest likelihood following the calibration procedure. We chose

the number of simulations so that in the absence of spraying, the change in the coefficient of

variation of the number of human infections as new simulations were added was less than

0.1% (about 400 simulations) [61]. For model outputs we present the median and the inter-

quartile range (IQR). We use the IQR as the model is highly stochastic and this measure of dis-

persion is robust to the presence of outliers.

Fig 2. Map of Iquitos showing the boundaries of the Ministry of Health zones, which are numbered 1–35. Inset

shows location of Iquitos in Peru. In the baseline scenario spraying begins in zone 1 and continues in ascending order

through the zones. The inset map in this figure is taken from thenounproject.com.

https://doi.org/10.1371/journal.pcbi.1007743.g002
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Sensitivity analysis

For each of the optimum adaptive threshold, yearly, and, in the case of ULV, twice yearly strat-

egies, we undertook a global sensitivity analysis of the total number of human infections and

mosquito abundance. For each of the parameters governing spraying (thoroughness, delay

between cycles, for ULV only, and compliance), we selected a range of plausible values using

the sampling approach of Saltelli et al. [62] (Table 1), and simulated the best outbreak response

strategies for each of these [63]. We then decomposed the variance in the output into first

order effects of the sampled parameters using the SALib package in Python [64]. Because the

data used to parameterize the TIRS strategy were from a controlled experiment, we also

reduced the thoroughness in the TIRS adaptive threshold strategy to the value used for ULV

spraying (1.5) and to half this value (0.75), while keeping all other parameters the same. Finally,

we simulated the adaptive threshold strategies for both IRS and ULV in scenarios where (a)

only 10% of cases were reported, and (b) there was a lag of 2 weeks between infection and noti-

fication. These scenarios were chosen to explore how under-reporting or reporting delays

would affect the adaptive threshold strategies, and only relate to when and whether infections

are counted towards the threshold for spraying. They do not affect the model calibration.

Moreover, as the model was calibrated to serotype-specific estimates of infections based on

serology from longitudinal cohort studies, the calibration was unaffected by surveillance

underreporting and delays [49,51].

Results

Unsurprisingly, TIRS was able to prevent more infections overall than ULV (Table 2). The

best adaptive threshold strategies for TIRS started more quickly following a rise in incidence

than the best ULV strategies and earlier in the year for the best yearly strategy. Due to its

higher efficacy and long-lasting effect, TIRS had an order of magnitude greater impact than

ULV on the number of infections predicted.

Ultra-low volume spraying

In the absence of spraying, the model predicted a median of 361,000 infections [IQR: 347,000–

383,000] across the four serotypes in Iquitos in the period 2000–2010. The adaptive threshold

Table 1. Summary of simulation experiments. Thoroughness refers to the initial increase in mosquito mortality in

sprayed houses. In the case of TIRS this begins to decay with the given half-life after the length of full effect.

Strategy Ultra-low volume Targeted indoor residual spraying

Adaptive threshold Based on mean and standard deviation from recent years.

4 strategies, 400 simulations each.

Fixed threshold Vary threshold between 1 and 1,000 per month, and 1 and 230 per week.

2,000 simulations.

Yearly Start at the beginning of each month.

12 strategies, 400 simulations each.

Twice yearly All pairs of months.

66 strategies, 400 simulations each.

N/A

Baseline spraying parameter values (explored ranges)

Thoroughness 1.5 /day (0.5/day, 10/day) 9 /day (0.5/day, 10/day)

Length of full effect 1 day 90 days

Half-life 0 11 days

Delay between cycles 0 (0 days, 31 days) 0

Compliance of households 70% (30%, 100%) 70% (30%, 100%)

https://doi.org/10.1371/journal.pcbi.1007743.t001
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strategy performed best when the incidence was monitored on a monthly basis and when

spraying was initiated when incidence exceeded the mean plus one standard deviation from

the last five years (254,000 infections; IQR: 210,000–277,000). The difference in the impact on

incidence between the adaptive threshold strategies was small (Fig 4A). When spraying was

initiated yearly, our model predicted that starting in September would lead to the fewest infec-

tions (261,000; IQR: 250,000–277,000), although spraying in October produced slightly higher,

but similar results (262,000; IQR: 253,000–275,000) (Fig 4B). In the case of yearly spraying,

timing was important; we saw large differences between the best and worst strategies. It is also

worth noting that the yearly strategy which led to the lowest average mosquito abundance was

spraying in November, not September (S4 Fig). The best strategy for spraying twice yearly was

spraying in September and November (172,000; IQR: 158,000–183,000) (Fig 4C). Generally,

Fig 3. Mortality over time following TIRS spraying. Circles represent data from Dunbar et al. [25], line represents

mortality function fitted by least squares (R2 = 0.995).

https://doi.org/10.1371/journal.pcbi.1007743.g003

Table 2. Summary of results and predicted number of infections. N/A denotes not applicable, numbers in cells represent the number of infections over the 11 year

period in 1,000s, and the numbers in brackets represent the inter-quartile range (IQR).

None Adaptive threshold Yearly Twice yearly

ULV Best strategy N/A When monthly incidence is 1σ above mean September September & November

Number of infections, 2000–2010 (1,000s) [IQR] 361 [347, 383] 254 [210, 277] 261 [250, 277] 172 [158, 183]

Days spent spraying [IQR] 0 351 [341, 371] 274 [272, 277] 549 [545, 552]

TIRS Best strategy N/A When weekly incidence is 1σ above mean September N/A

Number of infections, 2000–2010 (1,000s) [IQR] 361 [347, 383] 9.90 [8.72, 11.3] 11.8 [9.75, 14.1] N/A

Days spent spraying [IQR] 0 280 [175, 315] 385 [385, 385] N/A

https://doi.org/10.1371/journal.pcbi.1007743.t002
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undertaking the first spray in August or September (typically, just before the dengue season)

and the second in October or November (typically, near the start of the dengue season) led to

the fewest infections (Fig 4C). In this case, the strategy that led to the fewest infections also led

to the lowest average mosquito abundance: spraying in September and November (S4 Fig).

Fig 4. Predicted human infections following city-wide ULV spraying. (a) Comparison of adaptive threshold strategies for initiating spraying;

spraying began when the monthly or weekly incidence was one or two standard deviations above the mean for that period from the last five years,

as shown on the x-axis. (b) Comparison of yearly city-wide spraying strategies, beginning on the first day of the shown month. (c) Comparison of

the median predicted infections for twice yearly spraying strategies, beginning on the first days of the shown month. Darker colors correspond to

fewer infections, and the diagonal shows yearly spraying strategies. (d) Comparison of the best strategies in each category: adaptive threshold

corresponds to starting when monthly incidence was more than one standard deviation above the mean, once yearly corresponds to spraying in

September, twice yearly corresponds to spraying in September and November.

https://doi.org/10.1371/journal.pcbi.1007743.g004
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Comparing the best strategies, spraying twice yearly (in October and March) averted the

most infections, but required the most spraying campaigns: 22 campaigns of spraying, spend-

ing a median of 549 days spraying in total over 11 years. The best adaptive threshold strategy

typically led to fewer infections than the best yearly strategy, but required more spray cam-

paigns (a median of 14 [IQR: 14–15] compared to 11 for a yearly strategy). In seasons with a

large outbreak (2000–01, 2001–02, 2002–03, 2008–09, and 2009–10), the adaptive threshold

strategy typically performed better than the yearly strategy (Fig 5 and S5 Fig). In years without

a large outbreak, the adaptive threshold strategy performed worst, even worse than not spray-

ing at all, because herd immunity was reduced from previous years of spraying, while no spray-

ing happened in that year because the threshold was not met (See, for example, the 2003–2004

and 2006–2007 seasons, S5 Fig).

When we initiated spraying with a fixed threshold (i.e., one that does not depend on the

mean and standard deviation from recent years), then the number of infections had a nonlin-

ear relationship with the magnitude of the threshold (monthly threshold is shown in Fig 6, left

column; weekly threshold is shown in S6 Fig and comparison of monthly and weekly in S7

Fig). Counterintuitively, we observed higher numbers of infections at lower thresholds for

spraying than at higher thresholds, even though for low thresholds we sprayed more (Fig 6,

top and bottom rows). We also see a linear increase in mosquito abundance as we increase the

threshold and reduce the amount of spraying, although the effect on average mosquito abun-

dance is weak due to the short-lived effect of ULV. Considering the relationship between total

infections and threshold, we saw what appeared to be two regimes: declining numbers of infec-

tions as we increased the threshold for spraying until about 400 cases per month (or 130 per

week), and a more modest increase in the number of infections as we increased the threshold

above that number. To explore this pattern, we stratified the simulations into those for which

the threshold was below 400 cases per month (or 130 cases per week), and those where the

threshold was above this (Fig 7). When the threshold was low, spraying often occurred too

soon, before outbreaks began in earnest, and, because we were limited to two spray campaigns

per year, we effectively used up our quota by the time the outbreak occurred (Fig 7; top row).

At higher thresholds, spray campaigns more closely corresponded to times when transmission

was ongoing and, consequently, the subsequent incidence was lower even though fewer days

spent spraying were required (Fig 6; bottom row). Essentially, as the effect of ULV is short-

lived, the timing of spraying is more important than the total amount of spraying over the

11-year period, meaning a lower threshold is not better if it means spraying occurs too early.

At low thresholds, there was bistability in the total number of infections. We explored this by

looking separately at those simulations for which the total number of infections was above

210,000, and those for which it was below this value (S8 Fig). In both cases, we limited our

analyses to simulations for which the threshold was between 125 and 400, the region in which

the bistability occurs. This additional analysis indicated that the bistability was due to the sto-

chastic nature of the model, and in particular, the extent to which the large epidemic in 2010 is

mitigated.

Targeted indoor residual spraying

The strategy for beginning city-wide TIRS that led to fewest infections was to begin when the

weekly incidence was one standard deviation above the mean, resulting in 9,900 infections

(IQR: 8,720–11,300). This strategy reacted more quickly than the best adaptive threshold ULV

strategy (i.e., monitoring incidence monthly). The result was many fewer infections (17-fold)

than the best ULV strategy, which led to a median of 172,000 infections. Because spraying the

whole city once with TIRS took longer than spraying the whole city three times with ULV (35
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Fig 5. Time-series of incidence of human infections for the best ULV strategy in each category. In each plot, the green lines represent predictions

without spraying, and purple represents the given strategy. The line represents the median of all 400 simulations and shading represents the inter-

quartile range. The vertical dotted lines represent the start of city-wide ULV campaigns (not displayed for the threshold strategy, as in this case

campaigns start at differing times depending on incidence).

https://doi.org/10.1371/journal.pcbi.1007743.g005
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days vs 25 days), the yearly strategy required spraying for more days for TIRS than for ULV.

When using an adaptive threshold strategy though, fewer days were spent spraying than any

other strategy tested (median of 280 days), despite it also having the largest impact on number

of infections (Table 2). The best yearly strategy was to begin spraying each September, which

resulted in 11,800 infections (IQR: 9,750–14,100). There were smaller differences between the

yearly TIRS strategies than for ULV spraying, particularly for the yearly strategies (Fig 8C).

Overall, all TIRS strategies had a much larger impact on the number of infections than did

ULV strategies, and were able to almost completely avert some outbreaks in later years (Fig 9).

Fig 6. Results when initiating ULV spraying according to a fixed threshold that was monitored on a monthly basis. The top row shows the

number of days spent spraying over the 11 year period, the middle row the mean mosquito abundance, and the bottom row the total number of

dengue infections. The left column is ULV spraying and the right column TIRS. Each point represents one model simulation, and the line represents

predictions by a fitted generalized additive model.

https://doi.org/10.1371/journal.pcbi.1007743.g006
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This is because repeated applications of IRS almost eliminate Ae. aegypti from Iquitos (S9 Fig).

When initiating TIRS after incidence exceeded a fixed threshold, the number of predicted

infections and the average mosquito abundance increased approximately linearly with the

threshold (Fig 6, right column). Unlike for ULV, increasing the threshold for TIRS initiation

tends to increase the number of cases. This is because timing is less important for TIRS, so

spraying earlier in the season is not as big of a disadvantage as for ULV. For thresholds above

500 cases per month, there was a tristability in the total number of infections. To explore this,

we stratified the simulations that had a threshold above 500 into three groups based on the

Fig 7. Comparison of frequency of ULV spraying and human incidence with different fixed thresholds to initiate spraying. In all panels, lilac bars

represent the proportion of simulations which were undertaking spraying on the given day, the green line represents median incident infections, and

the green shading represents the interquartile range. The left column shows when thresholds were monitored monthly, and the right column when they

were monitored weekly. In the top row, the threshold was low (400 and below for monthly, 130 and below for weekly), and in the bottom row, the

threshold was high (above 400 for monthly, and above 130 for weekly).

https://doi.org/10.1371/journal.pcbi.1007743.g007
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number of infections (S10 Fig). Similar to the bistability observed for ULV spraying, the differ-

ence between the simulations with intermediate number of infections and those with high

number of infections was due to whether the large epidemic in 2010 was averted or not. Simu-

lations with low total number of infections were due to total elimination of Ae. aegypti from

Fig 8. Predicted human infections following city-wide TIRS spraying. (a) Comparison of adaptive threshold strategies for initiating spraying–

spraying began when the monthly or weekly incidence was one or two standard deviations above the mean for that period from the last five

years, as shown on the x-axis. (b) Comparison of yearly city-wide spraying strategies, began on the first day of the indicated month. (c)

Comparison of the best strategies in each category of both ULV and TIRS: for ULV, adaptive threshold corresponds to starting when monthly

incidence was more than one standard deviation above the mean, once yearly corresponds to spraying in September, and twice yearly

corresponds to spraying in September and November; for TIRS, adaptive threshold corresponds to starting when weekly incidence is more than

one standard deviation above the mean, and once yearly corresponds to spraying in September.

https://doi.org/10.1371/journal.pcbi.1007743.g008
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Iquitos in 2005 (S10 Fig). Hence, in those simulations, we observed no further dengue virus

transmission following the elimination.

Sensitivity analysis

Keeping all other parameters the same, we jointly varied the thoroughness of spraying (i.e., the

increase in the daily mortality rate), the compliance of houses, and, in the case of ULV strate-

gies, the delay between spray cycles. For the best adaptive threshold strategy, surveillance effort

did not have a large effect on the predicted number of infections. This is because our threshold

is based on incidence from recent years, so if only a proportion of cases are notified, then the

threshold will be that proportion of its value if all cases were notified, and the time at which

spraying starts will be similar. Increasing the thoroughness of the spraying (or, equivalently,

the efficacy of the treatment) leads to fewer infections averted for small values of thoroughness

(Fig 10, left column). However, for values of thoroughness above 3 (a daily mortality risk of

Fig 9. Time-series of incidence of human infections for the best TIRS strategy in each category, for (a) an adaptive strategy and (b) a yearly

strategy. In each plot the purple lines represent the predictions without spraying, and the green represents the given strategy. The line represents the

median of all 400 simulations and the shading represents the inter-quartile range. The vertical dotted lines represent the start of city-wide TIRS

campaigns (not displayed for the threshold strategy as in this case campaigns start at differing times depending on incidence).

https://doi.org/10.1371/journal.pcbi.1007743.g009
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about 95%), increasing the thoroughness further does not lead to further gains. The probability

that a household complies with spraying has a strong negative relationship with the number of

infections predicted for all strategies (Fig 10, right column).

Fig 10. Sensitivity analysis jointly varying the thoroughness of ULV spraying (i.e., the increase in mosquito mortality rate on the day of spraying) (left

column), the delay, in days, between cycles (middle column), and the compliance of households. The first row shows the results using the best adaptive

threshold strategy (starting spraying when the monthly incidence is more than one standard deviation above the mean for that month for the last five years),

the second row using the best yearly strategy (spraying in September) and the bottom row the best twice yearly strategy (spraying in September and

November). Each point represents a model simulation, and the line represents a fitted generalized additive model. Vertical dashed lines show the value used

in the baseline simulation.

https://doi.org/10.1371/journal.pcbi.1007743.g010
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In the case of TIRS, reducing the thoroughness of spraying did not have a strong effect on

the number of infections (S11 Fig). Even for low thoroughness of 0.5, all TIRS implementa-

tions lead to fewer than 80,000 infections, a more than 4.5-fold reduction from the baseline

number of infections (361,000). For the adaptive threshold strategy, reduced household com-

pliance did not have a large effect on the number of infections above a compliance of 0.4

(much below the observed compliance of 0.7). Compliance had a stronger impact on the num-

ber of infections for the yearly strategy, in which improved compliance generally led to fewer

infections. For both TIRS and ULV spraying campaigns, the variance in compliance deter-

mined more than half of the overall variance in the number of infections in all cases except for

the adaptive threshold TIRS strategy (S12 Fig). In the case of adaptive threshold TIRS, there

was likely a substantial interaction between compliance and the thoroughness of the spraying,

with the interaction between these terms determining up to 39% of the variance in the output,

although it should be noted that only the first-order effects are accurate for stochastic models

[65].

When we reduced thoroughness of TIRS to 1.5 (i.e., the same as that used in ULV spraying),

then the best reactive threshold strategy was the same as when the thoroughness was 9: spray-

ing when weekly incidence is more than one standard deviation above the mean. Moreover, it

had only a small impact on the number of infections we predicted: 12,800 infections (IQR:

12,000–14,100) compared to 9,900 in the baseline case. When we reduced thoroughness fur-

ther (to 0.75), the best threshold strategy remained the same, and the impact of the number of

infections was still large: we predicted 14,300 infections (IQR: 13,500–15,700). In the case of

the once yearly strategy, reducing the thoroughness to 1.5 or 0.75 led to predictions of 35,800

(IQR: 32,500–38,500) and 45,300 (IQR: 41,900–49,700), respectively, and changed the best

month to spray to August (compared to September in the baseline case).

In the baseline case, we assumed that 100% of symptomatic cases were notified when calcu-

lating whether the threshold for response was reached. However, as the adaptive threshold was

itself based on past incidence of notified cases, it indirectly included reporting rate, and so a

fixed level under-reporting should not greatly affect response timing, beyond increasing sto-

chasticity. We tested this logic by decreasing the reporting rate to 10%. In this case we observed

248,000 (IQR: 197,000–275,000) and 6,370 (IQR: 5,030–7,620) infections for city-wide ULV

and IRS campaigns, respectively (recall this is the total number of infections and so is unaf-

fected by reporting rate). These values were both below the baseline median prediction for full

reporting. The best strategies in both instances remained the same as in the baseline, full-

reporting case. If surveillance of cases lagged by two weeks, the best adaptive strategies

remained the same for both IRS and ULV. For TIRS we observed slightly more infections than

when there was no lag (12,100, IQR: 10,300–14,500), whereas for ULV we actually observed

many fewer infections compared to when there was no lag (164,000, IQR: 156,000–172,000).

Discussion

Summary of main findings

We used an agent-based model of DENV transmission in Iquitos, Peru, to compare strategies

for initiating city-wide spraying with either ULV or TIRS. None of the city-wide ULV spraying

strategies were able to prevent outbreaks. The best strategies reduced the total number of infec-

tions over an eleven-year period by around a half. Strategies that used TIRS were able to almost

completely eliminate Ae. aegypti from Iquitos, and so prevent an order of magnitude more

infections than ULV. The best strategy for ULV spraying was to spray twice per year, in Sep-

tember and November. Spraying yearly in September prevented slightly fewer infections, but

required spraying slightly less, than the best adaptive threshold strategy. The yearly and twice
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yearly strategies also tended to lead to fewer infections than the adaptive threshold strategies in

those years when there was not a large outbreak. The best strategy tested for TIRS was an adap-

tive threshold, which had the biggest impact on the numbers of infections of all strategies

tested. Moreover, it also required the fewest days spent spraying compared to all other strate-

gies (280 days over 11 years).

Explanation and interpretation of results

When considering initiation of a city-wide ULV campaign, two factors stood out as optimizing

the impact of outbreak response: (1) begin spraying when the monthly incidence is one stan-

dard deviation above the mean, and (2) use a relatively high fixed threshold (for Iquitos: ~400

cases/month) for initiating outbreak response. Taken together, these observations indicate that

after an initial increase in incidence, not reacting too quickly can result in a more effective

city-wide ULV response. This makes sense, due to the short-term effect of ULV spraying and

the capacity of Ae. aegypti populations to rebound rapidly. If we instead consider TIRS, our

results indicate that timing is less important, due to the residual effect of the insecticide. More-

over, reductions in vector abundances and numbers of human infections would be even fur-

ther reduced with longer lasting insecticides, such as those with 150-day effects that are now

becoming available [45].

Our sensitivity analysis indicated that the level of surveillance effort did not have a strong

effect on the predicted number of infections, due to the fact that the adaptive threshold calcula-

tion inherently captures this under-reporting, if it occurs at a constant rate. This would not be

the case, however, if the rate of under-reporting changed over time. For instance, if reporting

rate increased through time, then thresholds would be based on a smaller proportion of cases

than the current year’s incidence, which would lead to us spraying too soon due to an artifi-

cially small threshold. This could happen if, for example, reporting of DENV cases became

more frequent as awareness of symptoms grew among the public and/or clinicians [66]. In

addition, a lag in reporting did not have a big impact on our model’s results about the number

of infections prevented by a city-wide TIRS campaign. This was not the case for ULV, though.

In that case, a lag of two weeks actually led to fewer infections, implying that, if there is not an

inherent lag in reporting, it may be worthwhile to wait once the threshold has passed before

beginning a city-wide ULV campaign.

Reassuringly, the impact of a city-wide TIRS campaign was robust to more pessimistic

assumptions about the thoroughness with which the insecticide is sprayed (or its efficacy) and

the compliance of households, in addition to under-reporting and lags in reporting. This

means that, even when the increase in mosquito mortality caused by TIRS at baseline was an

order of magnitude below that observed by Dunbar et al. [25], or when half as many houses

were treated as observed in city-wide ULV campaigns, then the effect of a city-wide IRS cam-

paign was not greatly impacted.

Because the seasonality of DENV transmission is highly irregular in Iquitos [22], a charac-

teristic of DENV transmission in general, yearly strategies can be expected to perform very

well in some years (e.g., 2002–03) but poorly in others (e.g., 2001–02), especially if spraying

occurs too soon. This implies that caution should be taken to not overinterpret our result that

September seemed to be the best month to initiate ULV spraying. September was largely best

because application at that time strongly mitigated the 2002–2003 season, which was specific

to the particular importation patterns that sparked local transmission during the 2000–2010

period of our analysis. Generalizing across ULV strategies though, it seems that strategies that

initiate just before or early in the season perform best.
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Comparison to the other studies

Our prediction that the optimal indoor ULV strategy could lead to a reduction of infections by

up to around 50% exceeds an estimate from a recent modeling study from Porto Alegre, Brazil,

which reported that outdoor truck-mounted ULV spraying reduced the number of secondary

infections by around 25% [10]. At the same time, our estimate is lower than the 85% reduction

in infections due to outdoor ULV spraying reported by Wahid et al. [67] in Malakar, Indone-

sia, although ULV was applied there in conjunction with other interventions (reactive ULV,

larviciding, and larval source reduction) [67]. A previous modeling study of IRS spraying in

Merida, Mexico found that proactive strategies (i.e., before the season) outperformed reactive

strategies [45]. That is commensurate with our results, as each of our threshold strategies and

the best performing yearly strategies all involve spraying before the high transmission season.

The observation of Hladish et al. [45] that campaigns that start after the peak in incidence can

still have a large effect is consistent with our result that the month when we started TIRS was

less important than for ULV. Our prediction of a 97% reduction in the number of infections

for repeated TIRS campaigns with about 70% coverage each year is greater than that found by

Haldish et al. [45] (79% reduction in infections over 5 years with 75% coverage in Merida,

Mexico) and Vazquez-Prokopec et al. [24] (86% reduction in transmission in treated houses in

Cairns, Australia). Comparing to Hladish et al. [45], our higher predicted impact may be

because our model incorporates a more detailed entomological component with immature

stages and spatial heterogeneity. This means that feedbacks caused by fewer mosquitoes laying

fewer eggs, and stochastic local fade-out of adult mosquitoes, allow the Ae. aegypti population

to be reduced to very low numbers after several years of TIRS application.

For all ULV strategies, the approach that led to the fewest infections was not necessarily the

same as the strategy that reduced mosquito abundance the most, reemphasizing the point

made by previous studies of the importance of measuring epidemiological endpoints when

assessing vector control [68,69]. This difference is likely due to DENV transmission being the

result of a complex interplay of factors, not simply a direct, positive relationship with Ae.
aegypti abundance. The best strategy also differed by year. In years with low incidence, the

adaptive threshold strategies performed poorly, because a response was not triggered.

Limitations and strengths

Although we have compared results of city-wide ULV spraying with results of city-wide TIRS,

there are some caveats to this comparison. First, we parameterized ULV spraying using a study

of actual city-wide spraying campaigns in Iquitos, while we parameterized TIRS using a con-

trolled study from a different country. It is possible that in reality TIRS may have lower effec-

tiveness, although we saw in our sensitivity analysis that if we reduced TIRS to the level of

thoroughness used for ULV, the impact on the number of infections was still much greater for

TIRS. Secondly, it may not be feasible to undertake city-wide TIRS campaigns, due to the

greater cost and time commitment associated with city-wide spray campaigns. On the other

hand, our results show that, in the long-term, we would actually need to spray less using TIRS

due to the reduced number of infections and large reduction in mosquito abundance.

A limitation of our study is that there are few published results on the impact of ULV or

TIRS on dengue incidence with which to validate our model [68,69]. This is mitigated some-

what by our model’s incorporation of mosquito population dynamics that match observed pat-

terns from Iquitos [52], as well as matching ULV mortality effects to a study carried out in

Iquitos and IRS effects to a controlled study in Mexico [11,12]. A second limitation is that,

because our model reproduces the seasonal patterns observed in the period 2000–2010, our

results may be somewhat specific to DENV transmission and mosquito population patterns at
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that particular place and time. While our results regarding threshold spraying strategies are

likely to be robust to this this concern, our predictions for when regular spraying should begin

may be less robust, and could, for example, differ if importation rates peak at different points

in the transmission season. A third limitation is that the force of importation and magnitude

of mosquito abundance is calibrated to an estimate of the force of infection, which includes

spraying events that took place in 2000–2010. This may mean that we overestimated the effect

of spraying, as our baseline in effect already includes spraying. On the other hand, grounding

of our model in data from Iquitos, which is an extremely well-characterized site for DENV

transmission and Ae. aegypti population dynamics, is a notable strength. Another strength is

our model’s level of detail, which is something that enables us to capture the interplay of two

important feedbacks in mosquito population dynamics following spraying: (1) density-depen-

dent mortality in the larval stage causing the population to rebound and (2) reduced egg-laying

by adults. We are also able to capture local mosquito population depletion to zero due to

demographic stochasticity and subsequent population rebounding due to mosquito

movement.

Implications and next steps

Our results indicate that the city-wide ULV and TIRS campaigns would have reduced the

number of DENV infections in Iquitos by up to half relative to the baseline scenario that we

modeled. Although a well-timed campaign could be expected to mitigate transmission in a

particular season, it would be difficult to prevent an outbreak altogether using ULV or TIRS.

Similarly, selecting a single strategy that consistently mitigated outbreaks across multiple years

proved to be difficult. For example, our adaptive threshold strategies performed well during

the 2001–2002 transmission season, but poorly in 2002–2003. The opposite was true of the

yearly strategy. With indoor ULV spraying, the best strategy was with a fixed threshold of

around 400 cases per month. A downside of this approach is that it requires accurate, timely,

and potentially expensive surveillance. More field work is needed to better understand the fea-

sibility and effectiveness of city-wide TIRS, including its spatially targeted application in com-

bination with ULV. We predict, however, that city-wide TIRS, if feasible, will have a greater

impact than ULV without asking significantly more from surveillance.
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S1 Text. Further details of the agent-based model of dengue virus transmission.
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S1 Fig. Monthly, serotype-specific incidence of infection per capita, as estimated by Reiner

et al. [51](gray bands) and as reproduced by our calibrated model (colored bands).

(TIF)

S2 Fig. Median numbers of infections on a monthly basis for each serotype, stratified by

whether the infection was acquired through biting by an infectious mosquito (colored) or by

exogenously driven infections (gray) that were used to seed transmission in the model.

(TIF)

S3 Fig. Median proportion of the population immune to each dengue serotype. Dark gray

indicates permanent homologous immunity, light gray indicates temporary heterologous

immunity, and colored regions indicate susceptibility.

(TIF)

PLOS COMPUTATIONAL BIOLOGY Optimizing the deployment of city-wide spraying for dengue outbreak response

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007743 April 20, 2020 21 / 28

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007743.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007743.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007743.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007743.s004
https://doi.org/10.1371/journal.pcbi.1007743


S4 Fig. Predicted average mosquito abundance following city-wide ULV spraying. (a) Com-

parison of reactive strategies for initiating spraying; spraying began when the monthly or

weekly incidence was one or two standard deviations above the mean for that period from the

last five years, as shown on the x-axis. (b) Comparison of yearly city-wide spraying strategies,

beginning on the first day of the shown month. (c) Comparison of the median predicted cases

for twice yearly spraying strategies, beginning on the first days of the shown month. Darker

colors correspond to fewer cases, and the diagonal shows yearly spraying strategies. (d) Com-

parison of the best strategies in each category: adaptive threshold corresponds to starting when

monthly incidence was more than one standard deviation above the mean, once yearly corre-

sponds to spraying in September, twice yearly corresponds to spraying in September and

November.

(TIF)

S5 Fig. Predicted number of infections following city-wide ULV spraying, by season. Each

figure compares the best strategies in each category, for that season.

(TIF)

S6 Fig. Results when initiating ULV spraying according to a fixed threshold that is moni-

tored on a weekly basis. The top row shows the number of days spent spraying over the 11

year period, the middle row the mean mosquito abundance, and the bottom row the total

number of dengue infections. The left column is ULV spraying and the right column TIRS.

Each point represents one model simulation, and the line represents predictions by a fitted

generalized additive model.

(TIF)

S7 Fig. Results when initiating ULV spraying according to a fixed threshold that is monitored

on a monthly (purple) or weekly (teal) basis. The top row shows the number of days spent

spraying over the 11 year period, the middle row the mean mosquito abundance, and the bot-

tom row the total number of dengue infections. The left column is ULV spraying and the right

column TIRS. Each point represents one model simulation, and the line represents predictions

by a fitted generalized additive model.

(TIF)

S8 Fig. Timeseries showing median and 90% confidence intervals of simulations in different

regions of the bistability observed in Fig 6 (left column). All simulations include ULV spraying

with a fixed threshold between 125 and 400 cases/month. Simulations marked “high” (purple)

are those for which the total number of infections was above 210,000, and “low” are those

below this value. Panels (b) and (c) show detail of panel (a).

(TIF)

S9 Fig. Time-series of mosquito abundance for the best TIRS strategy for (a) the best adaptive

threshold strategy (starting when weekly incidence exceeds the mean by 1σ) and (b) the best

yearly strategy (starting in September). In each plot the purple lines represent the predictions

without spraying, and the green represents the given strategy. The line represents the median

of all 400 simulations and the shading represents the inter-quartile range.

(TIF)

S10 Fig. Timeseries showing median and 90% confidence intervals of simulations in differ-

ent regions of the tristability observed in Fig 6 (right column). All simulations include TIRS

spraying with a fixed threshold above 500 cases/month. Simulations marked “high” (purple)

are those for which the total number of infections was above 150,000, “medium” (teal) are

those between 75,000 and 150,000 and “low” (yellow) are those below 75,000. The top panel
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shows number of infections and the bottom panel mosquito abundance.

(TIF)

S11 Fig. The effect of varying household compliance and thoroughness of spraying on the

median number of infections for the best adaptive threshold strategy with TIRS (spraying

when monthly incidence exceeds one standard deviation above the mean). The vertical line

shows the value used in the baseline simulations. The solid line represents a fitted multivariable

generalized additive model.

(TIF)

S12 Fig. Pie charts showing the proportion of variance in the output that is explained by vari-

ance in the sampled input parameters for (a) adaptive threshold ULV strategies, (b) yearly

ULV strategies, (c) twice yearly ULV strategies, (d) adaptive threshold TIRS strategies, and (e)

yearly TIRS strategies. Higher-order terms include interactions between parameters as well as

aleatory uncertainty; in the case of TIRS the only interaction is the interaction between compli-

ance and thoroughness as only two parameters were varied.

(TIF)
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