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Abstract: The COVID-19 pandemic has led to over 2.26 million deaths for almost 104 million
confirmed cases worldwide, as of 4 February 2021 (WHO). Risk factors include pre-existing conditions
such as cancer, cardiovascular disease, diabetes, and obesity. Although several vaccines have been
deployed, there are few alternative anti-viral treatments available in the case of reduced or non-
existent vaccine protection. Adopting a long-term holistic approach to cope with the COVID-19
pandemic appears critical with the emergence of novel and more infectious SARS-CoV-2 variants. Our
objective was to identify comorbidity-associated single nucleotide polymorphisms (SNPs), potentially
conferring increased susceptibility to SARS-CoV-2 infection using a computational meta-analysis
approach. SNP datasets were downloaded from a publicly available genome-wide association studies
(GWAS) catalog for 141 of 258 candidate COVID-19 comorbidities. Gene-level SNP analysis was
performed to identify significant pathways by using the program MAGMA. An SNP annotation
program was used to analyze MAGMA-identified genes. Differential gene expression was determined
for significant genes across 30 general tissue types using the Functional and Annotation Mapping
of GWAS online tool GENE2FUNC. COVID-19 comorbidities (n = 22) from six disease categories
were found to have significant associated pathways, validated by Q–Q plots (p < 0.05). Protein–
protein interactions of significant (p < 0.05) differentially expressed genes were visualized with the
STRING program. Gene interaction networks were found to be relevant to SARS and influenza
pathogenesis. In conclusion, we were able to identify the pathways potentially affected by or affecting
SARS-CoV-2 infection in underlying medical conditions likely to confer susceptibility and/or the
severity of COVID-19. Our findings have implications in future COVID-19 experimental research
and treatment development.
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1. Introduction

The COVID-19 pandemic’s first identified cases can be traced back to Wuhan, China,
in December of 2019 [1]. As of 4 February, 2021 (WHO), there have been over 103.9 million
confirmed COVID-19 cases affecting over 200 countries [2]. This staggering number of
cases includes more than 2.26 million deaths, with the U.S. representing roughly one fourth
of cases and deaths. A study at Stanford University estimated the infection fatality rate
to be between 1.54 and 1.63%, which is significantly higher than the reported average
mortality rate of 0.1% for influenza [3].

COVID-19 is caused by severe acute respiratory syndrome coronavirus-2, SARS-CoV-
2. This highly pathogenic coronavirus can cause severe respiratory illness and is highly
contagious. The incubation period for SARS-CoV-2 can last up to 14 days with a median
range of 4 to 5 days from exposure to onset of symptoms [4]. Transmission of the infection
is due to the inhalation of droplets or contact with contaminated surfaces. Symptoms
include fever, cough, shortness of breath, fatigue, and body aches [5]. In addition to
recently developed and deployed vaccines and monoclonal antibody therapies, treatment

J. Clin. Med. 2021, 10, 1666. https://doi.org/10.3390/jcm10081666 https://www.mdpi.com/journal/jcm

https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://doi.org/10.3390/jcm10081666
https://doi.org/10.3390/jcm10081666
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcm10081666
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm10081666?type=check_update&version=2


J. Clin. Med. 2021, 10, 1666 2 of 23

for severe SARS-CoV-2 illness includes the management of complications associated with
the disease and supportive care [1,6]. There are currently few treatment options proven
sufficiently effective for COVID-19 patients which complement vaccination strategies or
ensure a milder course of the disease [7,8]. Thus, many drugs are being evaluated for
effectiveness in reducing disease progression, severity, or mortality [7,8].

Multiple studies have demonstrated the influence of comorbidities on disease severity,
quality of life, 1-year mortality, or altogether, in patients subject to viral infections [9,10].
Risk factors for the severity of SARS-CoV-2 infection include being aged 65 or above,
and/or combined with a pre-existing condition [11,12]. Thus, patients with pre-existing
cardiovascular disease, diabetes, kidney dysfunction, obesity, and pulmonary diseases may
have worse clinical outcomes when infected with SARS-CoV-2 [13].

Understanding pathways which could determine the COVID-19 degree of susceptibil-
ity and severity are critical for drug development. Alternative drug combinations might
act in synergy to complement vaccination strategies, because no vaccination provides
absolute and indefinite protection [14]. Indeed, protection by vaccination against viral
diseases may range from 9 to 90%, yet up to 60% of people vaccinated against influenza
still fall ill due to the virus [15,16]. The current COVID-19 vaccines developed by Pfizer and
Moderna have been reported to be nearly 95% effective at preventing severe disease and
death [17,18]. However, vaccination may face some resistance among certain communities,
is not systematically mandatory across countries, and presents a significant challenge for
worldwide large-scale implementation. Moreover, novel emerging SARS-CoV-2 variants
may evade vaccine protection over time [19].

Computational approaches may be utilized to identify candidate target molecules
for the development of tailored drug treatments [8,20–22]. Drug targets can be predicted
by gene expression or genetic polymorphism profile analysis using publicly available
databases such as Gene Expression Omnibus (GEO) [23,24]. Computational tools may
(i) help elucidate or compare drug mechanism(s) of action; (ii) assist in the identification
and characterization of interactions between a drug and its target; and (iii) provide a
better understanding of the mechanisms dictating cellular reactions to a drug response
at the molecular level [25]. Furthermore, multiple overlapping genome-wide association
studies (GWAS) have allowed researchers to determine the impact of single nucleotide
polymorphisms (SNPs) on protein–protein interaction networks and the prediction of
disease [26].

Computational approaches can serve in the investigation of viral susceptibility and
contribute to the development of improved vaccines [27–29]. For instance, machine learning
has been used in the development of viral vaccines (e.g., influenza) and in the investigation
of genetic adaptation of the virus to the host [30]. Indeed, the genetic variability of
SARS-CoV-2 will likely impact vaccine development in future outbreaks. Additionally,
an appropriate computational model accounting for the complex network of molecular
interactions between COVID-19 infection and various comorbidities would enhance the
prediction and assessment of the mechanisms surrounding drug or vaccine treatment.

The aim of this study was to complete an SNP meta-analysis to identify genes associ-
ated with comorbidities/underlying medical conditions, potentially conferring increased
susceptibility to SARS-CoV-2 infection or leading to the manifestation of severe viral symp-
toms. To this end, we conducted a generalized gene set analysis using single nucleotide
polymorphisms (SNPs) data from genome-wide association studies (GWAS) of a compre-
hensive list of possible comorbidities using Multi-Marker Analysis of Genomic Annotation
(MAGMA) [31]. This analysis was complemented with (i) the investigation of predicted
effects from the significant SNPs identified by MAGMA and (ii) the determination of
differential human gene expression, most likely relevant to the pathogenesis of the viral
respiratory illnesses, severe acute respiratory syndrome (SARS) and influenza. A similar
study has investigated host-interactome regulatory networks and pathway enrichment
using publicly available data to identify the possible genes targeted by SARS-CoV-2 [32].
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2. Methods
2.1. Multi-Marker Analysis of Genomic Annotation (MAGMA)
2.1.1. GWAS Catalog and Gene Mapping

An initial list, representing 258 mostly chronic diseases, was determined using the
Centers for Disease Control and Prevention (CDC) website information [33] and conven-
tional literature searches grouped into 8 major disease categories (Data File S1). This list
of 258 subcategories represented comorbidities/underlying medical conditions possibly
associated with increased SARS-CoV-2 infectivity or disease severity. Due to the lack of
published work for some subcategories, if the CDC stated that individuals with underlying
heart conditions were at an increased risk for COVID-19, other cardiovascular conditions
were included as subcategories. The intent of this list was not to represent all existing
diseases, or all possible subcategories associated with the major categories, but to be repre-
sentative of the available CDC information, overall, and to capture a broader repertoire of
relevant GWAS data.

Using the initial list, SNP datasets from the online GWAS catalog database [34] were
identified using the disease name. All associated SNPs were downloaded from the GWAS
Catalog for each comorbidity and parsed to only include those with a p-value less than
0.05. SNPs from each comorbidity were mapped to genes separately using MAGMAv1.07b
(CNCR, VU University, Amsterdam, The Netherlands) with the publicly available gene
reference file NCBI37.3.gene.loc (https://ctg.cncr.nl/software/magma, accessed on 10 May
2020) containing 19,724 genes [31]. The locations of each SNP in each comorbidity file
were mapped to a gene’s location from the gene reference file to produce an annotation file
(https://ctg.cncr.nl/software/magma, accessed on 10 May 2020) [31].

2.1.2. Determination of Multiple SNPs Significance

The significance of SNPs (p-values) and derived sample sizes pertaining to the genetic
studies of comorbidities were extracted from the GWAS catalog datasets to compute
correlations between neighboring genes and gene-level metrics via MAGMAv1.07b. [31].
To this end, the publicly available 1000 Genomes datasets (https://ctg.cncr.nl/software/
magma, accessed on 10 May 2020) were used as reference files, considering the ethnicities
associated with the possible comorbidity tested (European, East Asian, African, South
American) [31]. MAGMAv1.07b was also used for gene-level analysis. To perform the gene-
set SNP analysis, the ‘ncol’ flag was set to the to the sample size column in the SNP p-value
file where each sample size corresponds to a p-value for the GWAS study completed. These
values are used within MAGMAv1.07b to correct for the total number of samples tested in
each comorbidity analysis. The flag for the “multi = all” model was used to perform the
‘linreg’, ‘mean’, and ‘top1′ model analysis. A Bonferroni-corrected significance threshold of
p < 3.57 × 10−4 (0.05/140) was set for each comorbidity analyzed separately.

2.2. Pathway Analysis Using Enrichment Map and MAGMAv1.07b Programs
2.2.1. Reactome Pathway Analysis

To conduct the pathway analysis, Reactome [35] human pathways were downloaded
from Enrichment Map program [36] using Entrez gene IDs [37–39]. Computationally
derived Gene Ontology (GO) biological terms and “No Data” were excluded. Based on
the Bonferroni-corrected significant (p < 3.57 × 10−4) SNPs in comorbidity genes per
MAGMAv1.07b analysis, the significant pathways also underwent a per-gene analysis with
the MAGMAv1.07b model flag set to ‘alpha = 0.05’ where a gene-level matrix was computed
with SNPs they contain as continuous variables. All analyses completed were one-sided,
testing for positive associations. Associations of the genes with a phenotype is then
calculated as a Z-score and transformed as a p-value to show whether genes in a gene-set
are associated jointly with a phenotype [31]. The p-values of the genes used for downstream
analysis were not corrected using a Bonferroni correction (threshold p < 2.53 × 10−6) but
were corrected for multiple testing using the built-in automatic false discovery rate (FDR)

https://ctg.cncr.nl/software/magma
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cut-off function of MAGMAv1.07b (threshold p < 9.0 × 10−6). MAGMAv1.07b Intercept-
only linear regression was then calculated for each gene set for further analysis.

2.2.2. Interaction Networks

Visualization of protein–protein interaction networks was completed using
STRINGv11.0 [40] program by testing different confidence levels to identify ontologies
of biological significance for the significant pathways associated with comorbidities. A
confidence level of 0.9 was used for all genes found significant by MAGMA to reduce the
likelihood of false positives and to show the most probable interactions from the gene sets.
A confidence level of 0.15 was also used to display the maximum number of protein–protein
interactions possible for the VEP genes matched to MAGMA significant genes.

2.2.3. Quality Control

Possible comorbidities significantly associated with gene sets/pathways were checked
for quality control by generating quantile–quantile (Q–Q) plots using observed quantiles
and residual Z-scores of genes within the gene set, based on the MAGMAv1.07b publicly
available Rv3.6.2 script (posthoc_qc_107a.r, accessed on 20 July 2020) [41,42].

2.3. Prediction of SNP Effects

Ensembl’s Variant Effect Predictor program (VEP, European Bioinformatics Institute,
Cambridge, UK) [43] was used to analyze MAGMAv1.07b annotation files for each gene set
associated with comorbidities [44]. MAGMAv1.07b annotation files were converted into
VEP format using a bash script. All converted annotation files were uploaded into VEP
online tool separately. VEP summary statistics and analysis tables were downloaded for
the 22 comorbidities’ associated genes and pathways found significant by MAGMAv1.07b.
Corresponding tables were merged via Pythonv3.8.2 (Python Software Foundation, Freder-
icksburg, VA, USA) and SNPs containing a Sorting Intolerant from Tolerant (SIFT) score of
0 and a Polymorphism Phenotyping2 (PolyPhen2) score of 1, were removed (Data File S3).
Human Genome Organisation (HUGO) gene symbols were extracted from the table with
remaining SIFT and PolyPhen2 scores. Duplicate HUGO gene symbols were removed
using Rv4.0.2 (R Foundation for Statistical Computing, Vienna, Austria). The most recently
updated Affymetrix HG-U133A/B Human Genome Files [45,46] containing annotated
gene symbols and Entrez gene identifiers for all human genes were used to retrieve missing
gene identification [47]. These tabular (.csv) files were merged and loaded into Rv4.0.2.
Entrez (National Center for Biotechnology Information (NCBI), Bethesda, MD, USA) gene
IDs were matched to gene symbols from VEP analysis files to identify Affymetrix gene
symbols. Genes and their corresponding Entrez ID’s were then matched to the significant
genes’ Entrez IDs found through combined MAGMAv1.07b-STRING analysis (Institute of
Molecular Life Sciences and Swiss Institute of Bioinformatics, Zurich, Switzerland).

2.4. Transcriptional Gene Expression Analysis

Functional Mapping and Annotation of Genome-Wide Association Studies (FUMA
GWAS) GENE2FUNC online tool (https://fuma.ctglab.nl, accessed on 4 January 2021) was
used to test the differential expression of genes based on MAGMAv1.07b (n = 119) and VEP
(n = 50) significant genes [48]. All background genes were selected using “Ensemblv92”
with “Genotype-Tissue Expression (GTEx)v8” representing “30 general tissues”. p-values
were Benjamini–Hochberg corrected and set to a maximum of 0.05 with a minimum of two
overlapping genes with gene sets [47]. Heatmaps were generated with GENE2FUNC online
tool (VU University Amsterdam, Amsterdam, The Netherlands) using log2-transformed
expression values clustering genes and tissue types.

2.5. Gene Involvement in Influenza and/or SARS

Significant genes of comorbidities’ associated pathways were compared to those found
significant using GEO2R on a Gene Expression Omnibus (GEO) dataset for SARS (https:

https://fuma.ctglab.nl
https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE1739
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//www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE1739, accessed on 7 January 2021) [49].
Genes resulting from FUMA analysis that were highly upregulated in the lungs or blood,
were used as input for STRINGv11.0 to confirm the possible comorbidities from significant
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Furthermore, significant
genes identified by MAGMAv1.07b (n = 119) were investigated to determine their roles in
relation to influenza and/or SARS respiratory viral infections. Genes were cross-referenced
using PubMed [50] literature searches, DisGeNETv6 (Integrative Biomedical Informat-
ics Group, Barcelona, Spain) [51], Influenza Research Database [52] and GeneCodisv4.0
(Genyo Bioinformatics Unit, Granada, Spain) [53] including HUGO gene symbol and either
“influenza” or “SARS” [54,55]. The risk of bias was assessed according to “Cochrane’s
Handbook for Systematic Reviews of Interventions” [56]. Human tissue expression relevant
to COVID-19 for genes with direct involvement was validated using Ensembl Expression
Atlas [57,58]. Genes not generally expressed in the central nervous, cardiovascular, or
pulmonary systems were removed from the dataset. Visualization of the protein–protein
interaction network of genes directly involved with influenza and SARS (caused by SARS-
CoV-1) was completed using STRINGv11.0 using an interaction score of 0.400 [40].

3. Results

The overall computational analytical design and associated primary results are pre-
sented in Figure 1.

3.1. MAGMA Analysis of Multiple SNPs Associated with Candidate COVID-19 Comorbidities

To conduct a generalized gene set analysis, we retrieved publicly available GWAS
catalog datasets for 141 out of 258 COVID-19 possible comorbidities/underlying medical
conditions (Data File S1). The 141 comorbidities were grouped into eight major categories
by disease type, based on the organ most affected (Table S1). Following our MAGMA
analysis (Figure 1A), of 141 comorbidities, MAGMAv1.07b was able to annotate SNPs to
genes for each comorbidity input. Gene set analysis using MAGMAv1.07b then determined
5671 genes (3216 duplicates) to be significant (p < 3.57 × 10−4) from 140 comorbidities
with chromosome 1 representing the highest number of unique genes and chromosome 6
representing the highest number of duplicates across all comorbidities (Table S2). Further-
more, roundabout guidance receptor 1 (ROBO1), BTB domain containing 9 (BTBD9), and
teneurin transmembrane protein 3 (TENM3) all contained twenty or more SNPs used in
analysis. The 140 merged output files with gene analysis results of the 140 comorbidities
via MAGMAv1.07b are presented in Data File S2. Gene level analysis yielded 69 pathways
which were derived from the 140 comorbidities analyzed separately. These pathways
corresponded to 119 significant genes (p < 9.0 × 10−6) using MAGMAv1.07b automatic
FDR correction, including 111 significant genes (p < 2.53 × 10−6) using Bonferroni cor-
rection. The pathways were significant for 22 COVID-19 comorbidities representing six
disease categories, namely cancer (n = 9); cardiovascular (n = 4); neurologic/mental (n = 3);
respiratory (n = 2); skin/musculoskeletal (n = 1); and autoimmune/endocrine/metabolic
(n = 3).

https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE1739
https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE1739
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Figure 1. Computational analytical design for the determination of genes/pathways associated with
comorbidities, possibly contributing to COVID-19 severity/infectivity. (Section A) A list of candidate
comorbidities possibly associated with the increased severity/infectivity of COVID-19 were curated.
Single nucleotide polymorphisms (SNPs) associated with curated comorbidities with available
genome-wide association studies (GWAS) catalog data were analyzed separately. Multi-Marker
Analysis of Genomic Annotation (MAGMA) was performed. SNPs were annotated to genes using
NCBI gene reference file (NCBI37.3.gene.loc). In MAGMAv1.07b, gene set/pathway analysis was
performed. Gene-level analysis was completed using Reactome pathways reference file retrieved from
Enrichment Map program in MAGMAv1.07b. STRINGv11.0 protein–protein interaction program
was used to visualize a network of 70 clustered genes. Quantile–quantile (Q–Q) plots in Rv3.4.2 were
used for quality control. (Section B) MAGMAv1.07b annotation files were converted for Ensembl
Variant Effect Predictor (VEP) format for 93% of datasets. Gene symbols were extracted for VEP
analysis from the significant comorbidity-associated genes/pathways per MAGMAv1.07b analysis.
Entrez gene IDs were matched to gene symbols using Affymetrix gene symbols annotation files
(HG-U133A/B Human Genome Files). STRINGv1.0 protein–protein interaction program was used
to visualize the network of significant genes. (Section C) Functional Mapping and Annotation of
Genome-Wide Association Studies (FUMA) GENE2FUNC online tool was performed for 118 of
119 of MAGMAv1.07b identified genes. Differential gene expression (DEG) was visualized with
a clustering of genes and tissue type. Significantly enriched DEG was determined and gene sets
with at least two overlapping genes were identified. Gene Expression Omnibus (GEO) online
tool, GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r, accessed on 7 January 2021), was used to
compare significant genes from a SARS dataset (GSE1739) with significant genes from MAGMAv1.07b.
Genes overexpressed in tissue types “lung” and “blood” were entered into STRINGv11.0 to validate
significant possible comorbidities from MAGMAv1.07b with significant Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways. Tissue expression relevance to SARS and influenza was determined
using DisGeNETv6 and Ensembl Expression Atlas databases.

Reactome significant pathways and genes obtained through MAGMAv1.07b gene-level
analysis from Enrichment Map are shown in Tables 1 and 2. Using STRINGv11.0 program
with the highest confidence interaction score (CIS) of 0.9, processing the 119 genes yielded
a protein–protein interaction network of 70 genes, which was found to be highly signifi-
cant based on hypergeometric test with Benjamini–Hochberg correction (p = 4.36 × 10−11)
(Figure 2a). The top Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, identi-
fied by using STRINGv11.0, corresponded to the Epstein–Barr virus infection with FDR of
6.72 × 10−9.

https://www.ncbi.nlm.nih.gov/geo/geo2r
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Table 1. Significant COVID-19 comorbidity-associated genes via MAGMAv1.07b. (a) SARS-CoV-2 infection-related possible comorbidity name having significant genes analyzed using
MAGMAv1.07b (n = 22). (b) Entrez gene unique identifiers found to be significant (c) Gene symbol identified using DAVIDv6.8 (https://david.ncifcrf.gov/tools.jsp, accessed on 26 August
2020) from Entrez gene ID.* (d) p-value minimum and maximum; (e) p-value median; Comorbidities: (f) Cancer (non-head and neck cancer) group (n = 9), (g) Respiratory group (n = 2), (h)
Cardiovascular/blood group (n = 4), (i) Neurologic/mental group (n = 3), (j) Autoimmune/metabolic/endocrine group (n = 3), and (k) Skin/musculoskeletal group (n = 1). Note: Bolded
gene symbols (n = 50) represent matched genes from VEP analysis to significant genes found through MAGMAv1.07b analysis; Synonymous gene symbols include HLA-DRB1 with
HLA-DRB5; HLA-DQA1 with HLA-DQA2; ADAMTS9 with PPARGC1A; IFI30 with PIK3R2.

Comorbidity a Entrez Gene ID/s b Gene Symbol c p-Value Min; Max d p-Value Median e

Acute myeloid leukemia f
3065; 256435; 51377; 6670; 5468; 57599; 56999;
10891; 4306; 9972; 1780; 55958; 23287; 1075;
84259; 50863; 4287; 123624; 641; 9491; 7109

HDAC1; ST6GALNAC3; UCHL5; SP3; PPARG;
WDR48; PPARGC1A; NR3C2; NUP153; KLHL9;

AGTPBP1; CTSC; DCUN1D5; NTM; ATXN3;
AGBL1; BLM; PSMF1; TRAPPC10

1.53 × 10−22; 3 × 10−6 1.70 × 10−10

Asthma g 55289; 2181; 79993; 47 ACOXL; ACSL3; ELOVL7; ACLY 6.26 × 10−41; 4 × 10−7 3.94 × 10−24

2181; 79993; 47 ACSL3; ELOVL7; ACLY 1 × 10−50; 6.41 × 10−9 1.69 × 10−10

2520; 5578; 6196 GAST; PRKCA; RPS6KA2 1 × 10−50; 6.41 × 10−9 3.21 × 10−9

3122; 3127; 3117; 3119; 3120 HLA-DRA; HLA-DRB5; HLA-DQA1; HLA-DQB1;
HLA-DQB2 1 × 10−50; 6.41 × 10−9 4.72 × 10−24

2181; 79993 ACSL3; ELOVL7 1.72 × 10−23; 5.85 × 10−8 1 × 10−8

Atherosclerosis h 6580; 6857 SLC22A1; SYT1 2 × 10−43; 1 × 10−9 5 × 10−10

6580; 6564; 23446 SLC22A1; SLC15A1; SLC44A1 2 × 10−43; 2.67 × 10−6 7 × 10−7

3773; 5577; 6580; 6857 KCNJ16; PRKAR2B; SLC22A1; SYT1 2 × 10−43; 1 × 10−9 1.2 × 10−10

6580; 23446 SLC44A1; SLC22A1 2 × 10−43; 2.67 × 10−6 1.33 × 10−6

6580; 23446; 23457; 5577; 6564 SLC44A1; SLC22A1; ABCB9; PRKAR2B; SLC15A1 2 × 10−43; 2.67 × 10−6 4 × 10−7

Bipolar disorder i 11311; 23046; 26153; 25970 VPS45; KIF21B; KIF26A; SH2B1 1 × 10−24; 2 × 10−6 1 × 10−6

Breast cancer f 64682; 983 ANAPC1; CDK1 1 × 10−50; 3 × 10−8 1.5 × 10−8

983; 23112 CDK1; TNRC6B 1 × 10−50; 9.99 × 10−35 5 × 10−35

64682; 983 ANAPC1; CDK1 1 × 10−50; 2 × 10−9 1 × 10−9

23446; 57419; 9497 SLC44A1; SLC24A3; SLC4A7 9.58 × 10−51; 9 × 10−6 3 × 10−45

57419; 9497 SLC24A3; SLC4A7 3 × 10−45; 9 × 10−6 4.5 × 10−6

Colorectal cancer f 3915; 64759 LAMC1; TNS3 6.36 × 10−14; 2 × 10−11 1 × 10−11

3915; 8936; 64759 LAMC1; WASF1; TNS3 6.36 × 10−14; 1 × 10−6 2 × 10−11

Heart failure h 6570; 366 SLC18A1; AQP9 2 × 10−44; 2 × 10−35 1 × 10−35

Hypertension h 57085; 27044 AGTRAP; SND1 4 × 10−34; 5 × 10−7 2.5 × 10−7

3752; 776; 783; 4633 KCND3; CACNA1D; CACNB2; MYL2 1 × 10−21; 7 × 10−12 6.59 × 10−16

3752; 776; 783 KCND3; CACNA1D; CACNB2 1 × 10−21; 1.31 × 10−15 1.08 × 10−17

57085; 200734; 27044 AGTRAP; SPRED2; SND1 4 × 10−34; 5 × 10−7 2 × 10−7

https://david.ncifcrf.gov/tools.jsp
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Table 1. Cont.

Comorbidity a Entrez Gene ID/s b Gene Symbol c p-Value Min; Max d p-Value Median e

Hypothyroidism j 10213; 26275; 2131; 960; 8898; 113; 5296 PSMD14; HIBCH; EXT1; CD44; MTMR2; ADCY7;
PIK3R2 3 × 10−39; 3 × 10−10 2 × 10−17

Interstitial lung disease g 4583; 54472 MUC2; TOLLIP 7 × 10−34; 4.45 × 10−13 2.23 × 10−13

Kawasaki’s disease h 55521; 6891; 208 TRIM36; TAP2; AKT2 5 × 10−11; 2 × 10−8 4 × 10−10

55521; 6981 TRIM36; TAP2 5 × 10−11; 2 × 10−8 1 × 10−8

Lung cancer f 374986; 79888; 22876 MIGA1; LPCAT1; INPP5F 8 × 10−35; 9 × 10−6 4 × 10−7

Multiple sclerosis k 942; 5602; 3575; 3123; 3119 CD86; MAPK10; IL7R; HLA-DRB1; HLA-DQB1 6.08 × 10−24; 1 × 10−11 5 × 10−20

Obesity j 25791; 5924 NGEF; RASGRF2 1 × 10−50; 5 × 10−6 2.5 × 10−6

8648; 25791; 5915; 57698 NCOA1; NGEF; RARB; SHTN1 1 × 10−50; 8 × 10−6 2 × 10−6

25791; 57698 NGEF; SHTN1 1 × 10−50; 8 × 10−6 4 × 10−6

25791; 1062; 10788; 5924 NGET; CENPE; IQGAP2; RASGRF2 1 × 10−50; 8 × 10−6 2.5 × 10−6

Ovarian cancer f 114884; 22876 OSBPL10; INPP5F 8 × 10−35; 2 × 10−6 1 × 10−6

Pancreatic cancer f 2263; 6776; 6774 FGFR2; STAT5A; STAT3 1 × 10−50; 7 × 10−6 1 × 10−6

Prostate cancer f 22876; 55697 INPP5F; VAC14 8 × 10−35; 2 × 10−8 1 × 10−8

2629; 22876; 55697; 83394; 8714 GBA; INPP5F; VAC14; PITPNM3; ABCC3 1 × 10−50; 2 × 10−6 2 × 10−8

Renal cell cancer f 5581; 8793 PRKCE; TNFRSF10D 1.5 × 10−25; 6 × 10−9 3 × 10−9

Schizophrenia i 8294; 8341; 3009 HIST1H4I; HIST1H2BN; HIST1HIB 5 × 10−27; 2 × 10−21 9 × 10−27

192669; 8294; 8341; 3009; 10919 AGO3; HIST1H4I; HIST1H2BN; HIST1H1B; EHMT2 5 × 10−27; 2 × 10−6 3.51 × 10−19

Small cell lung cancer f 10919; 55466 EHMT2; DNAJA4 5 × 10−21; 5 × 10−6 2.5 × 10−6

Type 1 diabetes mellitus j 10213; 3559 PSMD14; IL2RA 3.71 × 10−31; 4 × 10−18 2 × 10−18

Unipolar depression i 64326; 5500; 8347; 8294; 8348; 23345; 8379;
11064; 8945; 5702; 23279; 8655; 91750; 3837

RFWD2; PPP1CB; HIST1H2BC; HIST1H4I;
HIST1H2BO; SYNE1; MAD1L1; CNTRL; BTRC;

PSMC3; NUP160; DYNLL1; LIN52; KPNB1
4 × 10−25; 7 × 10−6 6.75 × 10−11
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Table 2. Reactome significant COVID-19 comorbidity-associated pathways from EnrichmentMap program via MAGMAv1.07b. (a) SARS-CoV-2 infection-related possible comorbidity
name having significant pathways and genes analyzed using MAGMAv1.07b (n = 22). (b) Reactome pathway unique identifier; (c) Reactome pathway name, (d) p-value minimum and
maximum; (e) p-value median; (f) Genes overlapping in Gene Sets via Functional Mapping and Annotation of Genome Wide Association Studies (FUMA GWAS) GENE2FUNC online tool
(https://fuma.ctglab.nl/, accessed on 4 January 2021) results. Comorbidities: (g) Cancer (non-head and neck cancer) group (n = 9), (h) Respiratory group (n = 2), (i) Cardiovascular/blood
group (n = 4), (j) Neurologic/mental group (n = 3), (k) Autoimmune/metabolic/endocrine group (n = 3), and (l) Skin/musculoskeletal group (n = 1).

Comorbidity a R-HSA Pathway ID b Reactome Pathways c p-Value Min;
Max d p-Value Median e GENE2FUNC Overlapping

Genes f

Acute myeloid leukemia g 597592 Post-translational protein modification 1.2 × 10−4 1.2 × 10−4 HDAC1, RFWD2, NCOA1,
PSMD14, DYNC1I1

Asthma h 1222499; 75105; 881907;
202433; 389948; 75876; 202430

Fatty acid metabolism; Fatty acyl-CoA biosynthesis
and synthesis of very long-chain fatty acyl-CoAs;

Gastrin-CREB signaling pathway via PKC and
MAPK; Generation of second messenger molecules;

PD-1 signaling; Translocation of ZAP-70 to
immunological synapse

2.72 × 10−10;
6.93 × 10−6 2.27 × 10−7 HLA-DRA, HLA-DRB1;

Atherosclerosis i 112310; 181430; 425407;
112315; 425366; 382551

Neurotransmitter release cycle & Norepinephrine
neurotransmitter release cycle; SLC-mediated

transmembrane transport; Transmission across
chemical synapses; transport of bile salts and

organic acids, metal ions and amine compounds,
transport of small molecules

6.32 × 10−9;
4.18 × 10−4 4.36 × 10−6 ND

Bipolar disorder j 983231 Factors involved in megakaryocyte development
and platelet production 1.8 × 10−6 1.8 × 10−6 HDAC1, AGO3

Breast cancer g

176814; 174048; 176409;
174143; 179419; 174048;

113507; 5687128; 176412;
176408; 453276; 425407;

425393

Activation of APC C and APC C: Cdc20 mediated
degradation of mitotic proteins; Cyclin B; mitotic

proteins; cell cycle proteins; cell cycle protein prior
to satisfaction of cell cycle checkpoint;

Phospho-APC C mediated degradation of Cyclin A;
Phosphorylation and regulation of APC C between
G1 S and early anaphase; E2F enabled inhibition of
pre-replication complex formation; MAPK MAPK4

signaling; Regulation of mitotic cell cycle;
SLC-mediated transmembrane transport; Transport

of inorganic cations anions and amino acids
oligopeptides

3.57 × 10−11;
3.32 × 10−5 1.34 × 10−5 ANAPC1, PSMD14, AGO3

Colorectal cancer g 8875878; 6806834; 9006934 MET promotes cell motility; Signaling by MET and
receptor tyrosine kinases

1.52 × 10−4;
5.67 × 10−4 3.6 × 10−4 ND

https://fuma.ctglab.nl/
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Table 2. Cont.

Comorbidity a R-HSA Pathway ID b Reactome Pathways c p-Value Min;
Max d p-Value Median e GENE2FUNC Overlapping

Genes f

Heart failure i 382551 Transport of small molecules 4.77 × 10−5 4.77 × 10−5 ND

Hypertension i 5576891; 397014; 6802957;
6802952

Cardiac conduction; Muscle contraction; Oncogenic
MAPK signaling

1.67 × 10−6;
3.03 × 10−4 3.70 × 10−5 ND

Hypothyroidism k 1430728 Metabolism 3.08 × 10−4 3.08 × 10−4 HDAC1, NCOA1, PSMD14

Interstitial lung disease h 168249 Innate immune system 6.06 × 10−6 6.06 × 10−6 CD44, PRKCE, PSMD14,
HLA-DRA, HLA-DRB1

Kawasaki’s disease i 1280218; 983169; 168256 Adaptive immune system & immune system; Class
I MHC mediated antigen processing & presentation

8.02 × 10−5;
5.06 × 10−4 2.93 × 10−4

ANAPC1, PSMD14, CD86,
TRIM36, HLA-DRA,

HLA-DRB1, DYNC1I1
Lung cancer g 1483257 Phospholipid metabolism 1.06 × 10−4 1.06 × 10−4

Multiple sclerosis l 1280215 Cytokine signaling in immune system 4.86 × 10−5 4.86 × 10−5
FGFR2, CD44, PSMD14,

CD86, HLA-DRA,
HLA-DRB1

Obesity k

422475; 204998; 73887;
1266738; 416482; 9675108;

193648; 193704; 194840;
194315

Axon guidance; Cell death signaling via NRAGE,
NRIF, and NADE; Death receptor signaling;

Developmental biology; G alpha (12/13) signaling
events; Nervous system development; NRAGE

signals death through JNK; P75 NTR
receptor-mediated signaling; Rho GTPase cycle;

Signaling by Rho GTPases

5.78 × 10−7;
1.42 × 10−4 6.44 × 10−7 ND

Ovarian cancer g 1483257 Phospholipid metabolism 9.76 × 10−7 9.76 × 10−7 ND
Pancreatic cancer g 1226099 Signaling by FGFR in disease 2.4 × 10−4 2.4 × 10−4 ND

Prostate cancer g 556833; 1483255; 1660516 Metabolism of lipids, PI; Synthesis of PIPs at the
early endosome membrane

1.78 × 10−5;
8.64 × 10−5 5.21 × 10−5 ND

Renal cell cancer g 109582 Hemostasis 1.71 × 10−3 1.71 × 10−3 ND

Schizophrenia j 2559583; 2559586 Cellular senescence; DNA damage telomere stress
induced senescence

1.16 × 10−6;
2.07 × 10−6 1.61 × 10−6 AGO3, ETS1, ANAPC1,

EHMT2

Small cell lung cancer g 8953897; 2262752 Cellular responses to external stimuli & stress 1.05 × 10−3 1.05 × 10−3 AGO3, ETS1, ANAPC1,
PSMD14, EHMT2, DYNC1I1

Type 1 diabetes mellitus k 4086398; 9607240; 5683057;
5673001; 8878171

ERK1 ERK2 pathway; FLT3 signaling, MAPK family
signaling cascades; RAF MAP kinase cascade;

Transcriptional regulation by RUNX1
2.77 × 10−4 2.77 × 10−4 HDAC1, AGO3, PSMD14

Unipolar depression j 1640170 Cell cycle 9.12 × 10−5 9.12 × 10−5 HDAC1, RFWD2, ANAPC1,
PSMD14, MCM8, DYNC1I1
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genes. (a) MAGMA significant genes (CIS = 0.9). Significant genes were identified via MAGMAv1.07b gene-
level analysis (https://ctg.cncr.nl/software/magma, accessed on 10 May 2020) using Reactome human path-
ways (https://reactome.org, accessed on 22 July 2020) obtained from Enrichment Map (http://ba-
derlab.org/Software/EnrichmentMap, accessed on 22 July 2020) for 22 COVID-19 possible comorbidities 
with 119 significant genes. In STRINGv11.0 program, the confidence interaction score (CIS) was set to the 
maximum of 0.9, resulting in a network of 70 connected genes. Clustering by biological functions is repre-
sented by outlines. Green (…): cell regulation and immune response. Red (__): cell transport and nervous 
tissue function. Blue (--): protein homeostasis and gene expression. Orange (-..-): transcriptional regulation 
and RNA-mediated silencing. (b) Matched MAGMA and VEP significant genes (CIS = 0.15). Significant 
genes (n = 50) were identified for 22 COVID-19 possible comorbidities in both VEP SNP and MAGMAv1.07b 
gene-level analyses. CIS was set to low value of 0.150, which resulted in network integration of all 50 genes. 
Clustering by biological functions is outlined. Red (__): antigen-specific immune response. Blue (--): cell 
division and molecule formation/development. Green (--.--): cell growth, survival, proliferation, motility, 
and morphology. Purple (…): voltage gated ion channel transmembrane proteins. Note: Three gene symbols 
had other synonymous gene symbols (HLA-DRB1 and HLA-DRB5, HLA-DQA1 and HLA-DQA2, PIK3R2 
and IFI30), which were also entered into STRINGv11.0 program for verification. 

Verification of the significant pathways using Q–Q plots showed a high 
association between genes and their relative gene ontology-defined path-
ways, since all plots show a distribution of residual z-scores deviating from 
the diagonal early on. There were no Q–Q plots with any ambiguous feature. 
Significant genes had high levels of association with each pathway. Q–Q plots 
of more than five genes, representing the pathway ontologies “post-transla-
tional protein modification”; “translocation of ZAP-70 to immunological syn-
apse”; “metabolism”; and “cell cycle” and associated possible COVID-19 
comorbidities (including asthma), are described in Figure S1. 

3.2. VEP Analysis of MAGMA-Identified COVID-19 Comorbidity-Associated 
Genes 

Annotation files were converted for 134 of the 141 comorbidities with 
GWAS catalog datasets available (Figure 1b). Of 3704 HUGO gene symbols 

Figure 2. STRING protein–protein interaction network for significant COVID-19 comorbidity-associated genes. (a) MAGMA
significant genes (CIS = 0.9). Significant genes were identified via MAGMAv1.07b gene-level analysis (https://ctg.cncr.
nl/software/magma, accessed on 10 May 2020) using Reactome human pathways (https://reactome.org, accessed on 22
July 2020) obtained from Enrichment Map (http://baderlab.org/Software/EnrichmentMap, accessed on 22 July 2020) for
22 COVID-19 possible comorbidities with 119 significant genes. In STRINGv11.0 program, the confidence interaction score
(CIS) was set to the maximum of 0.9, resulting in a network of 70 connected genes. Clustering by biological functions is
represented by outlines. Green ( . . . ): cell regulation and immune response. Red (__): cell transport and nervous tissue
function. Blue (–): protein homeostasis and gene expression. Orange (-..-): transcriptional regulation and RNA-mediated
silencing. (b) Matched MAGMA and VEP significant genes (CIS = 0.15). Significant genes (n = 50) were identified for 22
COVID-19 possible comorbidities in both VEP SNP and MAGMAv1.07b gene-level analyses. CIS was set to low value
of 0.150, which resulted in network integration of all 50 genes. Clustering by biological functions is outlined. Red (__):
antigen-specific immune response. Blue (–): cell division and molecule formation/development. Green (–.–): cell growth,
survival, proliferation, motility, and morphology. Purple ( . . . ): voltage gated ion channel transmembrane proteins. Note:
Three gene symbols had other synonymous gene symbols (HLA-DRB1 and HLA-DRB5, HLA-DQA1 and HLA-DQA2,
PIK3R2 and IFI30), which were also entered into STRINGv11.0 program for verification.

Verification of the significant pathways using Q–Q plots showed a high association
between genes and their relative gene ontology-defined pathways, since all plots show a
distribution of residual z-scores deviating from the diagonal early on. There were no Q–Q
plots with any ambiguous feature. Significant genes had high levels of association with each
pathway. Q–Q plots of more than five genes, representing the pathway ontologies “post-
translational protein modification”; “translocation of ZAP-70 to immunological synapse”;
“metabolism”; and “cell cycle” and associated possible COVID-19 comorbidities (including
asthma), are described in Figure S1.

3.2. VEP Analysis of MAGMA-Identified COVID-19 Comorbidity-Associated Genes

Annotation files were converted for 134 of the 141 comorbidities with GWAS cat-
alog datasets available (Figure 1B). Of 3704 HUGO gene symbols extracted from VEP,
2996 corresponding Entrez gene IDs were identified using Affymetrix human genome
annotation file. Of these gene IDs, 50 were matched with the 119 significant genes iden-
tified by MAGMAv1.07b for the 22 comorbidities with significant pathways (Table 3).
Of the 50 genes, all were included in a protein–protein interaction network of 54 genes
using a low CIS in STRINGv11.0 (Figure 2b). The top KEGG pathway identified using
STRINGv11.0 was HTLV-1 infection with an FDR of 4.38 × 10±7 using a hypergeometric
test with Benjamini–Hochberg correction.

https://ctg.cncr.nl/software/magma
https://ctg.cncr.nl/software/magma
https://reactome.org
http://baderlab.org/Software/EnrichmentMap
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Table 3. VEP genes and SNPs matched to significant MAGMAv1.07b COVID-19 comorbidity-associated genes. Total of 54 gene IDs from STRINGv11.0 analysis (50 genes after synonyms
processed) were matched with significant genes from 22 comorbidities with significant pathways identified by MAGMAv1.07b. a Variant effect predictor (VEP) analysis of significant
MAGMAv1.07b comorbidities; b Entrez gene unique identifiers found to be significant from STRINGv11.0 matched gene analysis; c Human Genome Organisation (HUGO) gene symbol
identified using most recently updated Affymetrix HG-U133A/B Human Genome Files (http://www.affymetrix.com/Auth/analysis/downloads/na35/ivt/HG-U133A.na35.annot.csv.zip,
http://www.affymetrix.com/Auth/analysis/downloads/na35/ivt/HG-U133B.na35.annot.csv.zip, accessed on 20 July 2020); d Single nucleotide polymorphism (SNP) identifiers of
upload variant numbers from MAGMAv1.07b and VEP analysis (rs number); e Consequence of SNP variants on sequence; IV—intron variant; NMD—nonsense-mediated decay transcript
variant; NC-T—noncoding transcript; NC-TV—noncoding transcript variant; 3prime—3 prime untranslated region variant; DGV—downstream gene variant; UGV—upstream gene
variant; NC-EV—noncoding exon variant; IV-NC—intron variant, non-coding transcript; MS—missense variant; * Note: Comorbidities without significantly matched genes include
mucocutaneous lymph node syndrome, renal cell cancer, and small cell lung cancer.

Comorbidity a Entrez Gene ID b Gene Symbol c Variant ID (rs#) d Consequence e

Acute myeloid leukemia 2263; 5602; 55289; 56999;
9972; 50863

FGFR2; MAPK10; ACOXL;
ADAMTS9; NUP153; NTM

7090018, 2912759; 6838659; 4640633; 17524344; 4849120;
4849121; 13395354; 9868005; 13095235; 4371513; 4605539;
11714364; 9851598; 4716165; 4716167; 10949435; 2274136;
9383307; 6906499; 9350055; 9396787; 10949436; 1006066;

11753865; 16879902; 12199222; 11222631; 11222631; 11222647;
12278021; 7107326; 11222652; 11222653; 992564; 12419920;

12575010; 4937627

IV; NMD; NC-TDGV; NC-TV;
3prime; MS

Asthma 5581; 3575; 3117; 3123;
6891; 3118; 10919; 56999

PRKCE; IL7R; HLA-DQA1;
HLA-DRB1; TAP2; HLA-DQA2;

EHMT2; ADAMTS9

12622534; 281508; 7717955; 6881270; 114798579; 146668528;
9272105; 3104369; 3104367; 9272346; 9270911; 2760995; 7760841;

4713555; 3997868; 151027268; 3104369; 3104367; 9272346;
41267086; 9866261

IV; IV, NC-TV; DGV; UGV; IV,
NMD; 3prime; NC-EV

Atherosclerosis 114884; 50863 OSBPL10; NTM 1902341; 11827555 IV; IV, NC-TV

Bipolar disorder 25791; 783; 25970; 23345;
8379; 5578; 23046

NGEF; CACNB2; SH2B1;
SYNE1; MAD1L1; PRKCA;

KIF21B

778353; 2592118; 7071123; 3888190; 1203233; 17082664; 9371601;
7747960; 4523096; 4236274; 10275045; 4332037; 12668848;

3931398; 4721295; 1107592; 9895770; 2297909

IV; IV, NC-TV; IV, NMD; DGV;
UGV

Breast cancer 9497; 57419; 23287 SLC4A7; SLC24A3; AGTPBP1 4973768; 7619833; 113118767; 77674461 3prime; DGV; IV, NC-TV; IV; IV,
NMD

Colorectal cancer 4633; 3915; 64759; 57419;
2263

MYL2; LAMC1; TNS3; SLC24A3;
FGFR2

17550549; 6678517; 4546885; 10911251; 3801081; 113118767;
11200014 IV; IV, NC-TV; DGV; IV, NMD

Heart failure 64759 TNS3 192154334 IV; DGV
Hypertension 776; 783; 84515 CACNA1D; CACNB2; MCM8 3774427; 12715461; 9814480; 12258967; 4815879 IV; IV, NC-TV; IV, NMD

Hypothyroidism 113 ADCY7 78534766 IV; DGV; MS, NMD; NC-EV;
UGV

Interstitial lung disease 54472 TOLLIP 5743894; 5743890 IV; IV, NC-TV; UGV; IV, NMD
Lung cancer 79888; 8648 LPCAT1; NCOA1 4406174; 62140840; 11902506; 6710503 IV; IV, NMD; IV, NC-TV

http://www.affymetrix.com/Auth/analysis/downloads/na35/ivt/HG-U133A.na35.annot.csv.zip
http://www.affymetrix.com/Auth/analysis/downloads/na35/ivt/HG-U133B.na35.annot.csv.zip
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Table 3. Cont.

Comorbidity a Entrez Gene ID b Gene Symbol c Variant ID (rs#) d Consequence e

Multiple sclerosis 5296; 6774; 3575; 942;
3117; 5602; 3118; 3559

PIK3R2; STAT3; IL7R; CD86;
HLA-DQA1; MAPK10;

HLA-DQA2; IL2RA

11554159; 2293152; 6897932; 10063294; 6881706; 2681424;
3104373; 2040406; 72665771; 3104373; 2040406; 2104286;

3118470; 12722489

DGV; IV; UGV; MS; NC-EV; IV,
NMD; 3prime; IV, NC-TV

Obesity 5296; 10437; 25970; 5915 PIK3R2; IFI30; SH2B1; RARB 11554159; 7498665; 1435703 DGV; MS; NC-EV IV, NC-TV;
UGV; IV, NC-TV; IV

Ovarian cancer 114884 OSBPL10 28568660 IV; IV, NC-TV; DGV
Pancreatic cancer 64759 TNS3 73328514 IV

Prostate cancer 55697; 64759; 3752; 6580;
8379; 23112; 2263

VAC14; TNS3; KCND3;
SLC22A1; MAD1L1; TNRC6B;

FGFR2

875858; 56232506; 2788612651164; 4646284; 527510716;
11704416; 9623117; 58133635; 12628051; 4821941; 11200014

IV; IV, NC-TV; IV, NMD; DGV;
UGV

Schizophrenia 25791 NGEF 778371; 778353; 2944591 DGV; IV; UGV

Type 1 diabetes mellitus 3575; 3117; 3118; 3559 IL7R; HLA-DQA1; HLA-DQA2;
IL2RA

6897932; 9272346; 927234661839660; 12722495; 706778;
10795791

MS; IV; UGV; NC-EV; NMD;
NC-TV

Unipolar depression 25791; 783; 3123; 23345;
2131; 23279; 8379; 23046

NGEF; CACNB2; HLA-DRB1;
SYNE1; EXT1; NUP160;

MAD1L1; KIF21B

778353; 2799573; 7071123; 535777; 17082664; 9371601; 17506336;
11039409; 12668848; 1107592; 11514731; 2056477; 56072378;

3823624; 2297909
IV; NMD; NC-TV; UGV; DGV
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3.3. Transcriptional Gene Expression Analysis of MAGMA- and VEP-Identified Genes

FUMA GENE2FUNC was able to complete gene expression analysis for 118 of 119
and 50 genes found significant by MAGMAv1.07b with built-in FDR correction and VEP
analysis, respectively. FUMA also identified 35,142 unique reference genes for the MAG-
MAv1.07b input. Heatmaps showing clustering of genes with 30 general tissue types are
shown in Figure 3a,b. The tissue types, blood, heart, muscle, liver, and pancreas were
among the 30 tightly clustered together. Results show the genes Lysophosphatidylcholine
Acyltransferase 1 (LPCAT1), HLA Class II Histocompatibility Antigen, DR Beta 5 Chain
(HLA-DRB5), Signal Transducer and Activator of Transcription 3 (STAT3), and HLA Class
II Histocompatibility Antigen, DR1 Beta Chain (HLA-DRB1) were very upregulated in
the significant tissue types, blood, and lungs. Results show Nucleoporin 160 (NUP160)
had lower differential expression in the tissue types, blood, brain, liver, and heart for both
MAGMAv1.07b input. Fibroblast Growth Factor Receptor 2 (FGFR2) was shown to have
lower expression in tissue types: blood, heart, muscle, spleen, nerve, and adipose, from
MAGMAv1.07b input (Figure 3a,b). Nucleoporin 153 (NUP153), Karyopherin Subunit Beta
1 (KPNB1), and Signal Transducer and Activator of Transcription 3 (STAT3) had higher
expression compared to other genes in almost every tissue type (Figure 3a,b). Lower
expression across nearly all tissue types included but was not limited to Interleukin 2
Receptor Subunit Alpha (IL2RA), Solute Carrier Family 18 Member A1 (SLC18A1), Gastrin
(GAST), and Alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 3 (ST6GALNAC3)
from MAGMAv1.07b input (Figure 3a). GeneCodisv4.0 confirmed these genes, as well
as others, to be involved in lung or viral biological processes. FUMA determined the
significant upregulation of genes for the tissue types: blood and lung in MAGMAv1.07b
input. Significant downregulation of genes for tissue types from MAGMAv1.07b input
included liver, pancreas, kidney, breast, adrenal gland, testis, nerve, and muscle (Figure S2).
The upregulation of genes expressed in the blood and lungs confirm asthma, and type I di-
abetes as possible comorbidities via significant STRINGv11.0 KEGG pathway results (data
not shown). Gene sets with a minimum of two overlapping genes that match pathways
identified using MAGMAv1.07b are shown in Table 2.

The 119 genes analyzed for gene expression were also investigated for their possible
role in influenza and SARS-CoV-1 infection, as these might be relevant to SARS-Cov-2 infec-
tion. Comparing significant genes from MAGMAv1.07b to a SARS GEO dataset analyzed
by GEO2R, 92 of 119 genes were in common with 24 being a significant pre-Benjamini–
Hochberg correction (data not shown). Of the 24, we identified 12 as being involved in
SARS or influenza using conventional methods (Table S3). From MAGMAv1.07b, we iden-
tified three significant genes with a primary role in influenza infection: FGFR2, KPNB1 and
NUP153 [59–62]. We also identified three genes KPNB1, Signal Transducer and Activator of
Transcription 3 (STAT3), and Interleukin 2 Receptor Subunit Alpha (IL2RA) shown to play
a significant role in SARS [63–65]. Genes identified as being possibly directly associated
with influenza and/or SARS are shown in Table S3. STRING protein–protein interaction
network yielded 38/46 (82.6%) genes involved in influenza and 15/17 (88.2%) genes in-
volved in SARS, using an interaction score of 0.4 (Figure 4a,b). No GWAS study was found
for SARS-CoV-1 infection to identify possible susceptibility genes within the 119 genes.
However, genes overexpressed in blood and/or lungs for both MAGMAv1.07b and VEP
input determined significant KEGG pathways for asthma and type I diabetes mellitus.
Additionally, STRINGv11.0 concluded for both inputs that the genes upregulated in both
tissue types belong to a local network cluster of Major Histocompatibility Complex (MHC)
Class II protein complex (data not shown). No studies used for conventional searches were
found to be at high risk for bias (Table S4).
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Figure 3. Human gene expression heatmap of MAGMA and VEP genes of COVID-19-associated comorbidities. Functional
Mapping and Annotation of Genome-Wide Association Studies (FUMA GWAS) GENE2FUNC online tool was used to
create a heatmap showing differential gene expression datasets using log2 transformed expression values from (a) Heatmap
of MAGMAv1.07b significant genes. A total of 118 STRING significant genes were identified (p < 0.05) via MAGMAv1.07b
and (b) the heatmap of 50 VEP matched genes from Ensembl Variant Effect Predictor (VEP) using (a,b) Genotype-Tissue
Expression (GTEx) v8 representing 30 general tissue types. Red cells depict higher expression compared to cells filled in
blue and yellow represents expression that is not significantly different from other genes.
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Figure 4. STRING protein–protein interaction of COVID-19 comorbidity-associated genes with
involvement in influenza and/or SARS. STRING protein–protein interactions of MAGMAv1.07b
identified genes with direct involvement with (a) influenza (CIS = 0.4). Influenza (n = 46) and/ or
(b) SARS (CIS = 0.4). SARS (n = 17) are shown. Level of stringency in STRINGv11.0 program was set
to a medium confidence interaction score (CIS) of 0.4 in both influenza and SARS-related molecular
networks (a,b), resulting in a cluster of 38/46 (82.6%) and 15/17 (88.2%) genes, respectively.

4. Discussion

This is the first study conducting generalized gene set analysis on a broad spectrum
of possible COVID-19 comorbidities, with the prospect of identifying comorbidity-specific
genes that could impact infection by SARS-Cov-2. The assumption was made that, based
on available CDC information, by including representative diseases/underlying condi-
tions for eight major disease categories (Data File S1), we would analyze a broader and
more informative set of GWAS data, and increase the likelihood to identify relevant gene
expression signatures.

Thus, starting with a list of 258 diseases determined using CDC information, our
MAGMA pipeline was able to identify 69 significant Reactome pathways with 119 sig-
nificant genes using the automatic built-in FDR correction of MAGMAv1.07b, including
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111 significant Bonferroni-corrected genes. The 119/111 genes represented 22 comorbidi-
ties from six disease categories that might have implications in predicting the severity
of SARS-CoV-2 infection (Data File S1, Figure 1, Tables 1, 2 and S1) [33]. Of the 22 co-
morbidities, we were able to validate pathways associated with cardiovascular disease,
diabetes, obesity, and pulmonary diseases. Cardiovascular diseases identified included
heart failure, atherosclerosis, Kawasaki’s disease, and hypertension. Pulmonary diseases
included asthma and interstitial lung disease. Cancer has been reported as a possible risk
factor for COVID-19 [12]. We were able to identify nine cancers with GWAS data and
significant associated pathways including acute myeloid leukemia, renal cell cancer, small
cell lung cancer, and lung cancer. The known COVID-19 comorbidities—hypertension,
obesity and diabetes—had significant pathways and genes.

While Q–Q plots indicated validity for 69 pathways (>5 genes) corresponding to six
disease categories, caution for the interpretation of Q–Q plots must be used as these plots
are normally used for pathways containing many genes. To a certain degree, these allow
us to convey a certain level of confidence that there is a true association between the gene
and pathway [42]. In our analysis, however, less genes identified allowed us to narrow
possible gene targets and pathways. Indeed, certain genes identified in our study may have
significant biological relevance to infection by SARS-COV-2. For instance, sialyl transferase
ST6 N-acetylgalactosaminide alpha-2,6-sialyltransferase 3 (ST6GALNAC3) was found
significant in the post-translational protein modification pathway (Figure S1). Another
sialyl transferase, ST6GALNAC1, was previously investigated as a drug target against the
infection of smooth airways epithelial cells by influenza virus [66]. It remains, however,
to be determined whether ST6GALNAC3, generally expressed at high levels in renal cell
cancer [67], plays a significant role in COVID-19 pathogenesis. STRINGv11.0 analysis
produced significant enrichment for both MAGMAv1.07b genes and VEP matched genes
containing SNPs that had characteristics of deleterious effects (Table 3). Therefore, we
believe the interactions among the 119 genes from MAGMA and 50 matched VEP genes
are likely not due to chance and that these genes are biologically connected. Furthermore,
STRINGv11.0 analyses identified the top KEGG pathways including the Epstein–Barr virus
pathway (MAGMA genes) and HTLV-1 pathway (VEP-matched genes). STRING was able
to cluster 70 genes into four functional groups among the 119 MAGMA significant genes:
cell regulation and immune response, cell transport and nervous tissue function, protein
homeostasis and gene expression, and transcriptional regulation and RNA-mediated
silencing (Figure 2a). Within the network of 70 genes, NUP160, NUP153, and KPNB1
clustered tightly together in the cell transport and nervous tissue function group.

STRINGv11.0 analysis of the 50 VEP matched genes with a lower confidence interval
of 0.150 was required to obtain sufficient network connections for interpretation. Network
analysis/interpretation may be subjective, dependent on pre-set confidence levels and
established knowledge. It is, however, important to note that the enriched protein–protein
interaction p-values were statistically significant. For the VEP matched gene STRINGv11.0
analysis, there were four distinct biological groupings recognized within the mapped
network based on the closeness of protein interactions (Figure 2b). Those groupings were (i)
antigen-specific immune response; (ii) cell division and molecule formation/development;
(iii) cell growth, survival, proliferation, motility, and morphology, (iv) and voltage-gated
ion channel transmembrane proteins. Notably, one of the comorbidities with significant
associated pathways, breast cancer, contained SNPs affecting Solute Carrier Family 4
Member 7 (SLC4A7) and Solute Carrier Family 24 Member 3 (SLC24A3) genes. These
genes are involved with sodium, calcium, and potassium ion transport and play a role in
the malignant progression of breast cancer [68]. In addition, Euchromatic Histone Lysine
Methyltransferase 2 (EHMT2) was mapped within close protein interactions. EHMT2
is involved with post-translational histone modification and epigenetic transcriptional
repression. The orthologous gene (G9A) in drosophila is related to viral infection and
susceptibility [69]. EHMT2 has been associated with the asthma comorbidity [70].
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Heatmaps representing 118 MAGMA genes and 50 VEP genes across 30 general
tissue types show the tissue types of blood, heart, muscle, and liver are tightly clustered
(Figure 1C). Higher expression was seen across nearly all tissue types for the genes:
HLA-DRB1, HLA-DQB1, KPNB1, NUP153, and STAT3 for both heatmaps (Figure 3a,b).
FGFR2 was shown to have a very low expression in the tissue types of heart, muscle,
liver, and spleen. Our analysis coincides with previous findings linking the induced
inactivation of FGFR2 with increased mortality and influenza-induced lung injury [59].
Epithelial signaling by fibroblast growth factors is required for the effective recovery from
lung injuries resulting from influenza infection [59]. EHMT2 was shown to have a high
expression in nearly all tissue types except for blood, heart, muscle, liver, and pancreas.
SLC24A3 shows a lower expression in the blood, heart, liver, and pancreas but there was no
difference in expression compared to other genes in the tissue type of muscle. Furthermore,
IL2RA had a low expression in nearly all tissue types (Figure 3a,b).

KPNB1 overexpression has been reported in several cancers including comorbidities
we identified with significant genes and pathways (breast cancer, colorectal cancer, lung
cancer, ovarian cancer, and prostate cancer) [71–75]. Overexpression in five of the nine tis-
sue types observed in our heatmaps for KPNB1 and STAT3 may be due to having identified
four additional cancer types as significant comorbidities (Figure 3a,b). Furthermore, KPNB1
is involved in the early stage of influenza virus replication via nuclear trafficking, by way
of, nuclear import of viral cDNA or viral/host proteins into the host chromosome [60,61].
Both KPNB1 and NUP153 genes were found to be significantly upregulated in SARS with
a logFC of 0.9, agreeing with the overexpression in our heatmap (Figure 3a) [62,63].

Based on previous studies, the interaction between NUP153 and KPNB1 has been
investigated in relation to nuclear transport [76]. The degradation of NUP153 in influenza
virus A-infected cells, such as Madin–Darby canine kidney II and human lung epithelial
cells, results in an enlargement and widening of nuclear pores [62]. This disease process
allows viral ribonucleoprotein complexes to be exported from the nucleus to the plasma
membrane [62]. Additionally, NUP160 has been shown to work in conjunction with
NUP153 to mediate nuclear import and export [77]. Therefore, the degradation of one or
both can prevent the import of signal transducers and activators of transcription, reducing
effectiveness of the anti-viral interferon response [78].

GeneCodis was able to identify FGFR2 as being involved in mesenchymal cell dif-
ferentiation involved in lung development while NUP153 and NUP160 are involved in
a viral replication process and intracellular transport of viruses. STAT3 was identified
as being involved in primary miRNA binding and viral process and has been observed
to be downregulated in SARS-CoV-1 infected Vero E6 kidney epithelial cells extracted
from an African green monkey [64]. Additionally, IL2RA has been recently identified as
significantly upregulated in the plasma of patients with severe COVID-19 [65] (Figure 2a,b).
In our analysis, GeneCodis also identified Transporter 2, ATP binding Cassette Subfamily B
Member (TAP2), Major Histocompatibility Complex, Class II, DR Beta 1 (HLA-DRB1), and
Major Histocompatibility Complex, Class II, DQ Beta 1 (HLA-DQB1) as being involved
in Epstein–Barr virus infection. Further in vitro and in vivo experimentation is needed to
confirm these genes (or associated regulations) as possible drug targets for SARS-CoV-2
infection. Accordingly, this in silico analysis provides opportunities for researchers to
explore new means to tackle the COVID-19 pandemic.

FUMA GENE2FUNC identified blood and lungs as having significantly upregulated
differential gene expression (DEG) in both MAGMA and VEP inputs (Figure S2). Notably,
lung and heart complications in those infected with SARS-CoV-2 are common [79]. STRING
analysis identified genes upregulated in the blood and lungs for MAGMA and VEP inputs
as having significant KEGG pathways for asthma and type I diabetes and a local network
belonging to the MHC class II protein complex (data not shown). Asthma and type I dia-
betes were also identified by MAGMA as being significant comorbidities with significant
pathways (Table 2). The four genes in common that were overexpressed in blood and
lungs for both MAGMA and VEP inputs were Lysophosphatidylcholine Acyltransferase
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1 (LPCAT1), Major Histocompatibility Complex, Class II DR Beta 5 (HLA-DRB5), Major
Histocompatibility Complex, Class II DR Beta 1 (HLA-DRB1), and STAT3. LPCAT1 has
been suggested as being essential for perinatal lung function and survival and surfactant
homeostasis [80,81]. When LPCAT1 is overexpressed, the enzyme Carnitine palmitoyl-
transferase I (CPT1) is regulated in lung epithelial cells [81]. A knockdown of a subclass of
this enzyme (CPT1-alpha) has been shown to inhibit Human Immunodeficiency Virus-1
replication [82].

Comparison of MAGMA significant genes with a SARS GEO dataset analyzed using
GEO2R found 92 of 119 in common with 24 being significant prior to Benjamini–Hochberg
correction (data not shown). Additionally, 71% of genes were in common with genes from
the MAGMA string network. Interleukin Receptor 7 (IL7R) identified as significant in the
multiple sclerosis possible comorbidity was shown to be significantly upregulated by 2.11
log-fold change (logFC) in SARS. IL7R can be found in B cells, T cells, and monocytes
and is involved in the identity and defense of pathogens [83]. The heatmaps for MAGMA
and VEP analysis show this gene to be overexpressed in the lungs and blood (Figure 3a,b).
Other upregulated genes included SLC4A7, EHMT2, and Nuclear Receptor subfamily
3 group C member 2 (NR3C2) with logFCs of 2.33, 1.03, and 1.92, respectively. NR3C2
is a gene involved in the regulation of sodium levels and therefore blood pressure [83]
which may confer susceptibility and severity of cardiovascular complications seen in
patients with COVID-19. Significantly downregulated genes included Aquaporin 9 (AQP9)
and Solute Carrier Family 22 Member 1 (SLC22A1) with logFCs of −2.06 and −1.95,
respectively. Interestingly, Interleukin-7 (IL-7), encoded by IL7R, induces the expression of
AQP9 [84]. Both IL7R and AQP9 were found to be overexpressed in the lungs by FUMA,
AQP9 was under-expressed in the blood, and IL7R was overexpressed (Figure 3a,b). Thus,
overall, we were able to identify many genes and pathways involving SNPs associated with
comorbidities possibly altering gene expression and conferring increased susceptibility
and/or severity of COVID-19. The findings of our study should be investigated further for
their role of COVID-19.

5. Limitations

While there is no shortage of publicly available data, not all diseases have the same
level of dedicated research. Therefore, not all possible comorbidities had publicly available
SNP datasets from the GWAS catalog. This resulted in a large decrease from 258 possible
comorbidities to 141. Furthermore, there is no standard to account for SNPs/genes with
pleiotropic effects using MAGMAv1.07b. Another caveat is that FUMA GENE2FUNC
uses mRNA expression datasets that have been generated through different independent
studies using different analysis pipelines, so that the optimal normalization of raw data
cannot be implemented.

The impact of many underlying conditions on COVID-19 infectivity, severity, or long-
term consequences, is still unknown or the matter of current investigations. Additionally,
there is unequal representation of GWAS data across diseases. Finally, there is limited
knowledge about COVID-19 pathogenesis, although research on the matter has increased
greatly since the beginning of the pandemic.

6. Conclusions

Significant pathways were identified associated with comorbidities/underlying medi-
cal conditions conferring susceptibility and/or severity to SARS-CoV-2 infection, which
have been reported in conjunction with decreased clinical outcomes. Our findings may
have implications in development of COVID-19 therapies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jcm10081666/s1, Figure S1. Q–Q Plots of possible COVID-19 comorbidity pathway-gene
associations, Figure S2. Differential expression of genes by tissue specificity (a) regulation of DEG
from MAGMAv1.07b significant genes by tissue type; and (b) regulation of DEG from VEP significant
genes by tissue type, Table S1. Possible comorbidities associated with SARS-CoV-2 infectivity
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or disease severity, with available GWAS datasets, Table S2. Possible comorbidities associated
with SARS-CoV-2 infectivity or disease severity, with available GWAS datasets, Table S3 Human
COVID-19 comorbidity-associated genes involved in influenza and/or SARS pathogenesis, Table S4.
Risk of bias assessment per PRISMA guideline, Data File S1. List of 258 mostly chronic diseases
conferring possible susceptibility/severity of COVID-19 infection, Data File S2. Merged MAGMA
significant gene results from 140 of 141 comorbidity output files, Data File S3. VEP results for
significant comorbidities.
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