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Abstract

In a recent study of Multiple Sclerosis (MS), we observed additive effects and epistatic 

interactions between variants of four genes that converge to induce T cell hyper-activity by 

altering Asn-(N) linked protein glycosylation: namely, the Golgi enzyme MGAT1, cytotoxic T-

lymphocyte antigen 4 (CTLA-4), interleukin-2 receptor-α (IL2RA) and interleukin-7 receptor-α 

(IL7RA). As the CTLA-4, IL2RA and IL7RA variants are associated with Type 1 Diabetes (T1D), 

we examined for joint effects in T1D. Employing a novel conditional logistic regression for 

family-based datasets, epistatic and additive effects were observed using 1,423 multiplex families 

from the Type 1 Diabetes Genetic Consortium dataset. The IL2RA and IL7RA variants had 

univariate association in MS and T1D, while the MGAT1 and CTLA-4 variants associated with 

only MS or T1D, respectively. However, similar to MS, the MGAT1 variant haplotype interacted 

with CTLA4 (p=0.03), and a combination of IL2RA and IL7RA (p=0.01). The joint effects of 

MGAT1, CTLA4, IL2RA, IL7RA and the two interactions using a multiple conditional logistic 

regression were statistically highly significant (p<5×10−10). The MGAT1 - CTLA-4 interaction was 

replicated (p=0.01) in 179 trio families from the Genetics of Kidneys in Diabetes study. These 

data are consistent with defective N-glycosylation of T cells contributing to T1D pathogenesis.

Introduction

With the advancement of high-throughput genotyping technologies, hundreds of common 

genetic variants have been identified for human complex traits, such as Type 1 Diabetes 

[T1D, MIM 222100]. However, it has been reported that these genetic variants explain only 

a small proportion of heritability1. Gene-gene interactions are likely a major factor in 

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms
* Corresponding Author. Tel.: 949-824-9775; fax: 949-824-9847; mdemetri@uci.edu. 

Conflict of Interest
None reported.

HHS Public Access
Author manuscript
Genes Immun. Author manuscript; available in PMC 2014 October 01.

Published in final edited form as:
Genes Immun. 2014 April ; 15(4): 218–223. doi:10.1038/gene.2014.7.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



explaining the mystery of missing heritability1 and thus, characterizing gene-gene 

interactions is of fundamental importance in unraveling the etiology of complex human 

diseases. However, successfully detecting gene-gene interactions faces many challenges. For 

example, a major constraint is the issue of multiple hypothesis testing. In a genome-wide 

search for gene-gene interactions, correcting for the very large number of tests greatly 

diminishes the power to detect interactions with moderate effects.

Single-gene disorders displaying Mendelian inheritance disrupt molecular pathways at a 

single step. However, a similar degree of pathway disruption may be obtained through small 

defects in multiple genes/environmental inputs that combine to disrupt a single pathway. 

These interactions may be epistatic or additive and may promote disease only when 

combined, and therefore poorly detected by GWAS. A functional approach that groups 

candidate variants based on a shared ability to alter a common molecular pathway provides 

an alternative method to identify interactions. Indeed, we recently reported that multiple 

environmental factors (vitamin D3 deficiency and metabolism) and multiple genetic variants 

(IL-7RA, IL-2RA, MGAT1, MGAT5 and CTLA-4) converge to dysregulate Golgi N-

glycosylation and T cell function in Multiple Sclerosis (MS) 2-4. Causality of defective N-

glycosylation in MS is supported by animal data, where genetic and metabolic induced 

alterations control T cell growth, TH1/TH17 differentiation and autoimmunity, including 

development of a spontaneous MS-like disease in Mgat5 deficient PL/J mice5-9. In MS, 

epistatic interactions and additive effects were observed between the four variants and 

environmental factors resulting in dysregulated N-glycosylation. For example, a haplotype 

of the Golgi N-glycosylation enzyme MGAT1 promotes MS, alters N-glycosylation, T cell 

activation thresholds, and surface expression of anti-autoimmune cytotoxic T-lymphocyte 

antigen 4 (CTLA-4) in a manner that is sensitive to metabolic conditions, Vitamin D3 

signaling, the number of N-glycans attached to CTLA-4 (CTLA-4, rs231775) and 

interleukin-7/interleukin-2 signaling modulation by the IL-7R (rs6897932) and IL-2RA 

(rs2104286) variants. The interaction between the MGAT1 and CTLA-4 variants was 

epistatic, as CTLA-4 (rs231775) lacks univariate association with MS. In contrast, a non-

additive interaction was observed between the MGAT1 risk variant and a combination of the 

IL-7R and IL-2RA risk variants, a result consistent with their opposing effects on mRNA 

levels of the MGAT1 enzyme. These data suggest that studies only examining univariate 

association, such as GWAS, are unlikely to adequately define heritability.

Studies have shown that genetic risk factors and pathways are frequently shared across 

different autoimmune diseases, albeit not always in the same direction10-14. For example, 

the IL2RA gene is significantly associated with both MS and T1D10; 11; however, the 

direction of the effect may be the same or opposite depending upon the specific variant 

examined11; 15. Similarly, HLA-DR15 is a risk marker for MS but is protective in T1D. 

These considerations, along with a common molecular target (ie N-glycosylation), 

motivated us to hypothesize that the four MS variants we detected2 may also interact in T1D 

to determine disease susceptibility. By borrowing the interaction information learned from 

MS, the burden of multiple testing present in a random genome-wide search is significantly 

reduced. The most common test for genetic association is the case-control design; however, 

this can be biased by population stratification. In contrast, a family-based design, such as the 
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Type 1 Diabetes Genetics Consortium (T1DGC), provides inference of association that is 

robust against population stratification. A common way to analyze family data is with 

conditional logistic regression (CLR)16; 17. Cordell et al. 18 proposed the use of CLR to test 

genetic interaction between two variants by constructing 15 pseudo controls for each 

affected child. This approach is difficult to be generalized to examine multiple variants as 

the number of pseudo controls for each affected child grows exponentially with the number 

of variants. In addition, analyzing linked variants requires knowledge of recombination rates 

between variants. One way to avoid these complications is to match each affected child to 

the pseudo control whose genotype is formed by all of the other non-transmitted alleles by 

parents. Kotti et al. 19 used this matching strategy to test gene-gene interactions. We have 

recently shown that Kotti's matching strategy is suboptimal for testing gene-gene 

interactions20. Therefore, to test both additive and non-additive genetic effects using the 

multiplex family data collected by the T1DGC, we utilized an easy-to-implement yet 

efficient method of constructing pseudo controls. Using this method, we identified additive 

and non-additive effects of MGAT1, CTLA4, IL2RA, and IL7RA on T1D risk, with an overall 

p-value less than 5×10−10.

Results

A novel matching strategy

In recent theoretical work20 we examined and compared conditional logistic regressions 

under two matching strategies: 1:1 matching and exhaustive matching. Suppose that we are 

interested in testing L loci. In 1:1 matching, each affected child is matched to its “anti-self”, 

a pseudo control whose genotype is formed by the non-transmitted alleles. In exhaustive 

matching, each affected child is matched to 4L-1 pseudo controls. The two matching 

strategies at two loci for a case-parent trio are illustrated in Figure 1(a). Compared with 

exhaustive matching, the 1:1 matching strategy is simpler, more straightforward to 

implement, and computationally easier. Furthermore, 1:1 matching does not require 

knowledge of recombination rates between markers, whereas exhaustive matching does. 

Intuitively, 1:1 matching utilizes less information from the data. However, we found that 1:1 

matching is as efficient as exhaustive matching when the true underlying genetic effects are 

additive, which requires that there are no intra- or inter-locus interactions20. Thus, when the 

focus is on additive genetic effects, we can safely use 1:1 matching; on the other hand, when 

the focus is non-additive effects, we should consider exhaustive matching.

Based upon our prior understanding of MGAT1 and other genetic variants altering N-

glycosylation in MS2, we expected both additive effects and gene-gene interactions between 

variants of the following four genes: MGAT1 (rs7726005 and rs2070924), CTLA4 

(rs231775), IL2RA (rs2104286) and IL7RA (rs6897932). At the individual gene level, our 

studies in MS indicate that the MGAT1 IVA/VT-T haplotype (rs7726005 and rs2070924) has 

a dominant effect while SNPs rs231775 (CTLA4), rs2104286 (IL2RA), and rs6897932 

(IL7RA) demonstrate additive effects. Between genes, we found that the MGAT1 IVA/VT-T 

haplotype interacts with two sets of SNPs, rs231775 (CTLA4), and a combination of 

rs2104286 (IL2RA) and rs6897932 (IL7RA). In the following, we show how this prior 
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information can be used to facilitate our construction of pseudo controls for each affected 

child in the T1DGC study.

The rs2070924 SNP in MGAT1 is almost in complete linkage disequilibrium with 

rs7726005. The haplotype formed by these two rare SNPs shows a dominant effect, 

indicating that exhaustive matching would be more efficient than 1:1 matching; however, 

the frequency of the haplotype is rare and in this case a dominant model is close to an 

additive model. To reduce the complexity of matching, we used 1:1 matching at MGAT1. 

Both rs2104286 (IL2RA) and rs6897932 (IL7RA) show additive individual effects in our 

previous MS study2; therefore, we used 1:1 matching at each of the two genes. As there was 

no evidence of genetic interaction between rs231775 (CTLA4) and rs2104286 (IL2RA), we 

assumed that the alleles at rs231775 (CTLA4) and rs2104286 (IL2RA) are co-transmitted 

from parents to offspring. In addition, there was no evidence of genetic interaction between 

rs231775 (CTLA4) and rs6897932 (IL7RA). Thus, we could also let rs231775 (CTLA4) co-

transmit with rs6897932 (IL7RA) when constructing pseudo controls. Indeed, the two 

methods give identical results. Finally, because we wanted to test gene-gene interactions, we 

considered exhaustive matching among the three groups (MGAT1), (IL2RA, CTLA4), and 

(IL7RA), leading to 1:7 matching. Note that the genes are in linkage equilibrium. Thus, 

under the null hypothesis, the 8 possible offspring genotypes, including that of an affected 

child and his/her 7 matched pseudo controls, are equally likely. We used H(GP) to denote 

the 8 genotypes given the parental genotype GP. The final matching strategy to identify both 

additive and non-additive multi-locus genetic effects of these genes is summarized in Figure 

1(b).

Conditional logistic regressions (CLR)

Matched case-control data are often analyzed by conditional logistic regressions. Let  be 

the genotype of the ith child among n total affected children and  be the genotype of the 

parents of the ith affected child. Using the matching strategy we described above, the 

likelihood function of association parameters is

The form of  and  depends upon our model. For example, when testing the association 

of the dominant MGAT1 IVA/VT-T haplotype in T1D, we assigned  to 1 if the offspring 

has at least one copy of the haplotype and 0 otherwise. Correspondingly,  is the log of the 

genotype relative risk (GRR) for carriers of the haplotype to those non-carriers. As another 

example, when testing interaction between the MGAT1 IVA/VT-T haplotype and rs231775 

(CTLA4),  is a vector of numerical values with three elements indicating the presence of 

the MGAT1 IV/V haplotype, the number of copies of the G allele (i.e. the risk allele) of 
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rs231775 (CTLA4) and the product of the first two numbers. Correspondingly,  is a vector 

of coefficients corresponding to the main effect of the MGAT1 IV/V haplotype, the main 

effect of rs231775 (CTLA4), and the interaction of the two variants, respectively.

We characterized the significance of additive and non-additive effects utilizing p-values. P-

values of individual terms in a multiple CLR were calculated using the Wald test. When 

examining the joint effect of multiple terms, we use the likelihood ratio test. Conditional 

logistic regressions were fitted using the “clogit” function in the Survival package in R 

(http://cran.r-project.org/package=survival).

Gene-gene interactions and joint effects in the T1DGC study

We first examined the individual effects of the four variants. We used the risk alleles 

(column 3 of Table 1) as the test alleles and the protective alleles as the reference alleles. 

Many groups have reported association between T1D and CTLA4, IL2RA, and IL7RA21; 22. 

All variants are significantly associated with T1D except the MGAT1 IVA/VT-T haplotype 

(Table 1). This differs from MS, where all variants were associated except CTLA-4.

Motivated by the interactions between MGAT1 and CTLA4, IL2RA, and IL7RA for MS 

susceptibility, we tested their genetic interactions for T1D susceptibility. Although the 

MGAT1 IVA/VT-T haplotype does not show univariate association with T1D, it is a 

protective, neutral, and risk allele for AA, AG, and GG CTLA-4 genotypes, respectively 

(Table 2). For subjects with the AG genotype at rs231775 (CTLA-4), the MGAT1 IVA/VT-T 

haplotype shows no association with T1D. For subjects with the AA genotype, i.e., the low 

risk group based on CTLA-4, the MGAT1 IVA/VT-T haplotype leads to increased risk of T1D 

with a GRR 1.53 (p-value=0.014). For subjects with the GG genotype, i.e., the high risk 

group based on CTLA-4, the MGAT1 VA/VT-T haplotype has a protective role for T1D with 

a GRR 0.58 (p-value=0.028). The different effects of the MGAT1 VA/VT-T haplotype under 

the three CTLA-4 genotypes suggest a gene-gene interaction between the two variants. The 

p-value for interaction is 0.029. Stratified point estimates of GRRs, 95% confidence 

intervals, and p-values can be found in Table 2.

In MS, the MGAT1 IVA/VT-T haplotype also interacts with a combination of the IL2RA and 

IL7RA risk alleles2. Our conditional logistic regression indicates that the MGAT1 IVA/VT-T 

haplotype also shows differential effects on T1D susceptibility between subjects with four 

risk alleles of IL2RA and IL7RA versus other subjects (Table 3). The MGAT1 IVA/VT-T 

haplotype increases T1D risk for subjects at high risk based on IL2RA and IL7RA. It has a 

protective risk in the rest of the population, as can be seen from the point estimates of the 

GRRs in Table 3. Testing the interaction between them leads to a p-value of 0.013.

Since the variants we considered here are in linkage equilibrium, the interactions we 

observed cannot be explained by each other. To confirm this and evaluate the overall impact 

of the variants, we fit a multiple CLR with the four variants and the two interactions. Table 
4 indicates that the point estimates of the GRRs and p-values for the four variants in the 

multiple CLR are similar to those from individual CLRs.
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The two interaction terms are significant in the multiple CLR, indicating they are still 

important after accounting for the main effects, consistent with what we observed in Tables 

2 and 3. Therefore, we used a likelihood ratio test of two degrees of freedom to examine the 

joint effects of the two interaction terms. The p-value based on the likelihood ratio test is 

0.002. Finally, we used a likelihood ratio test of seven degrees of freedom to test the joint 

effect of both main and interaction effects. The p-value is less than 5×10−10.

Replication analysis in the GoKinD study

The MGAT1 IVA/VT-T haplotype is not available in public GWAS datasets. Therefore, to 

attempt replicate the results above, we genotyped all 4 variants in 379 trios form the 

Genetics of Kidneys in Diabetes study (GoKinD). The results show that the only significant 

individual term is IL7RA (p-value 0.016). This is not surprising. First, the sample size is 

much smaller than that of the T1DGC study. Second, the T1D offspring in the GoKinD 

study have either clear-cut kidney disease or normal renal status despite long-term 

diabetes23. Thus, the combination of the two cohorts does not fully represent the T1D 

population. It has been estimated that about 30% of T1D patients have kidney disease23. We 

therefore hypothesized that those T1D patients without kidney disease are more similar to 

the general T1D population and conducted a separate analysis of the two cohorts. Due to the 

small sample size and the low frequency of the MGAT1 IVA/VT-T haplotype, we grouped 

the genotypes AG and GG at rs231775 (CTLA-4) when analyzing the interaction between 

the MGAT1 IVA/VT-T haplotype and CTLA-4.

Our results reveal that the MGAT1 IVA/VT-T haplotype has a significant interaction with 

CTLA-4 (p-value 0.012) in the cohort free from kidney disease, with the direction of 

interaction consistent with the one we found in the T1DGC study (Table 5). Specifically, in 

both the T1DGC study and the GoKinD trios free from kidney disease, the MGAT1 

IVA/VT-T haplotype increases the risk of T1D in patients with the AA genotype at CTLA-4 

and plays a protective role in patients with the AG or GG genotype. The interaction is not 

significant in the GoKinD trios with kidney disease and it is estimated that the MGAT1 

IVA/VT-T haplotype has a similar role in the AA and AG/GG groups (Table 5).

We also tested interaction between the MGAT1 IVA/VT-T haplotype and the IL2RA and 

IL7RA polymorphisms. No interaction was identified for either the separate or combined 

analysis of the GoKinD families. This is not surprising given the lower effect size of the 

interaction and reduced power relative to the T1DGC cohort.

Discussion

In this article, we presented two potential gene-gene interactions involved in regulating N-

glycosylation and possibly T1D susceptibility. Our analysis is knowledge-driven and is 

motivated by the fact that gene-gene interactions were observed in MS. It is known that both 

MS and T1D are autoimmune diseases and they share many common pathways. Different 

from a genome-wide search for gene-gene interactions, our analysis avoids multiple testing 

thus potentially improves power. We have observed gene-gene interaction between the 

MGAT1 IVA/VT-T haplotype and CTLA-4 in both the T1DGC study and the GoKinD study. 

This provides encouraging evidence that the observed interaction is likely to be true. The 
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interaction between the MGAT1 IVA/VT-T haplotype and IL2RA and IL7RA is observed in 

the T1DGC families but not in the GoKinD families. As the T1DGC study is larger than the 

GoKinD and identifying gene-gene interaction requires large sample sizes, it is likely that 

the interaction is true but the GoKinD study is not powerful enough to detect it. Independent 

studies are required to further examine how MGAT1, IL2RA, and IL7RA jointly affect T1D 

susceptibility.

There were several important differences between the results in MS and T1D. Univariate 

association of the MGAT1 IVA/VT-T haplotype was observed in MS but not T1D while the 

G allele of CTLA-4 (rs231775) associated with T1D but not MS. Yet, in both diseases 

epistatic interaction was observed between the two variants. The MGAT1 IVA/VT-T 

haplotype enhanced risk of MS in combination with the GG and AG genotypes of CTLA-4 

(rs231775), whereas a protective interaction with the GG genotype was present in T1D. 

These differences are not surprising as many confirmed loci of several autoimmune diseases 

often show opposite directions11; 13. Such differences may provide important clues and new 

tools for understanding the pathogenic process of complex traits. In this case, the observed 

differences may arise from variances in metabolism between T1D and MS, coupled with the 

molecular mechanisms by which the MGAT1 IVA/VT-T haplotype and CTLA-4 (rs231775) 

alter N-glycosylation and cell surface expression of the CTLA-4 protein in T cells. The 

MGAT1 IVA/VT-T haplotype is a gain of function that increases mRNA and protein levels of 

the Golgi enzyme Mgat1. When metabolism limits substrate availability (i.e. UDP-GlcNAc 

derived from glucose) to the Golgi, the MGAT1 IVA/VT-T gain of function haplotype 

paradoxically lowers N-glycan branching by limiting UDPGlcNAc availability to 

downstream Golgi enzymes, resulting in reduced cell surface expression of the anti-

autoimmune CTLA-4 protein. The G allele of CTLA-4 (rs231775) decreases the number of 

N-glycans attached to CTLA-4 by 50%, thereby also reducing surface expression of the 

CTLA-4 protein. Thus, when metabolism limits Golgi substrate (UDP-GlcNAc) availability, 

the MGAT1 IVA/VT-T haplotype and the G allele of CTLA-4 (rs231775) combine to both 

lower CTLA-4 cell surface expression2, consistent with the genetic interaction observed in 

MS. In contrast, when metabolism increases Golgi UDP-GlcNAc substrate supply, as occurs 

with high glucose levels7, the MGAT1 IVA/VT-T haplotype has the opposite effect on N-

glycan branching and CTLA-4 surface expression. Thus, under high glucose levels often 

present in early stages of T1D, the MGAT1 IVA/VT-T haplotype is expected to counteract the 

G allele of CTLA-4 (rs231775) to promote CTLA-4 protein expression and inhibit T cell 

function, consistent with the protective genetic interaction observed in T1D.

Most existing multi-locus methods for family data only provide an overall significance of 

multiple loci or specific combinations of alleles. Examples of such methods include 

haplotype-based methods24-30, genotype-based methods30-34, family-based multiple 

dimension reduction35, and contrasting linkage disequilibrium 36. In comparison, the method 

we utilized here has two advantages. First, most of the existing multi-locus methods are 

based upon 1:1 matching, which is not efficient for testing non-additive effects. Second, 

these methods are mainly for hypothesis testing. In contrast, our method not only provides 

the significance level of effects, but also provides point estimates of GRRs.

Yu et al. Page 7

Genes Immun. Author manuscript; available in PMC 2014 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods

Datasets

We analyzed Caucasian multiplex or trio families collected by the Type 1 Diabetes Genetics 

Consortium (T1DGC) and the Genetics of Kidneys in Diabetes (GoKinD)23. The SNPs were 

genotyped using a method previously described2. We excluded families with missing 

parents or genotyping errors at any of the four SNPs. For T1DGC, this lead to 2,858 affected 

offspring and their parents from 1,423 multiplex families. The original goal of the GoKinD 

study was to identify genetic factors associated with kidney disease within T1D patients. 

Here, we used these families to examine the four genes. The GoKinD analysis is based upon 

379 trio families with both parents genotyped, divided into two cohorts: (1) 200 T1D 

patients with kidney disease and their parents and (2) 179 T1D patients without kidney 

disease and their parents. Other information, such as genotyping, can be found in a report 

from the consortium23. To test genetic effects, we used conditional logistic regression with a 

novel matching strategy, as described in the following section.

Statistics

To test genetic effects, conditional logistic regression with a novel matching strategy was 

used and is described in detail in the results section. The significance of additive and non-

additive effects was characterized by p-values. P-values of individual terms in a multiple 

CLR are calculated using the Wald test. When examining the joint effect of multiple terms, 

we used the likelihood ratio test. Conditional logistic regressions were fitted using the 

“clogit” function in the Survival package in R (http:// cran.r-project.org/package=survival).
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Figure 1. 
(a) The 1:1 and the exhaustive matching strategies for a case-parents trio at two loci. Tf: the 

allele transmitted to the child by the father. Nf: the allele not transmitted to the child by the 

father. Tm: the allele transmitted to the child by the mother. Nm: the allele not transmitted to 

the child by the mother. H1: all possible offspring genotypes given the couple's genotypes 

under the 1:1 matching. HE: all possible offspring genotypes given the couple's genotypes 

under the exhaustive matching. Under the null hypothesis of no association, the two 

genotypes in H1 are equally likely; under the null hypothesis of no association and linkage 

equilibrium between the two SNPs, the 16 genotypes in HE are equally likely. (b) The 

matching strategy used to analyze the four SNPs in this study.
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Table 1

Individual genetic effects estimated from the T1DGC data.

alleles freq GRR (95% CI) p-value

MGAT1 IVA/VT-T (rs7726005, rs2070924) - 0.039 1.06 (0.87-1.29) 0.58

rs231775 (CTLA-4) A, G G: 0.414 1.17 (1.08-1.26) 5.3 ×10−5

rs2104286 (IL2RA) A, G A: 0.775 1.25 (1.14-1.36) 6.9 ×10−7

rs6897932 (IL7RA) C, T C: 0.751 1.12 (1.02-1.22) 1.3×10−2
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Table 2

Stratified analysis of MGAT1 IVA/VT-T using the T1DGC data. Stratification was based on CTLA4 genotypes.

CTLA-4 genotypes GRR (95% CI) p-value

AA 1.53 (1.09-2.15) 1.4×10−2

AG 1.00 (0.75-1.33) 1.0

GG 0.58 (0.36-0.95) 2.8×10−2

The p-value for interaction is 2.9×10−2.
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Table 3

Stratified analysis of MGAT1 IVA/VT-T using the T1DGC data. Stratification was based on the number of risk 

alleles in IL2RA and IL7RA.

IL 
* GRR (95% CI) p-value

4 1.30 (0.95-1.77) 0.10

<4 0.90 (0.69-1.16) 0.40

The p-value for interaction is 1.3×10−2.

*
IL is the number of risk alleles in IL2RA and IL7RA.
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Table 4

Multivariate analysis of the four genes, including main effects and two gene-gene interactions, using the 

T1DGC data.

Variable GRR (95% CI) P-value

MGAT1 IVA/VT-T 1.08 (0.80-1.46) 0.63

CTLA-4 1.19 (1.10-1.28) 2.5×10−5

IL2RA 1.21 (1.11-1.33) 2.1 ×10−5

IL7RA 1.10 (1.00-1.20) 4.0×10−2

MGAT1 IVA/VT-T × CTLA-4 1.58 (1.14-2.18) 6.0×10−3

MGAT1 VA/VT-T × (IL=4) 0.76 (0.60-0.97) 2.7×10−3

The p-value (LRT) for the two interaction terms is 2.0×10−3. The p-value (LRT) for the joint effect and additive and non-additive effects is 

3.9×10−10.
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Table 5

Stratified analysis of MGAT1 IVA/VT-T using the GoKinD data. Stratification was based on CTLA4 genotypes.

GRR of MGAT1 IVA/VT-T

CTLA-4 genotypes kidney patients
* kidney controls

GRR (95% CI) p-value GRR (95% CI) p-value

AA 1.75 (0.51-5.98) 0.37 0.83 (0.25-2.73 0.76

AG/GG 0.40 (0.08-2.06) 0.27 0.78 (0.29-2.09) 0.62

*
The p-value for interaction is 1.2×10−2.
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