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Metabolic drift in the aging nervous 
system is reflected in human 
cerebrospinal fluid
Kristian Peters1,2, Stephanie Herman1, Payam Emami Khoonsari1,3, Joachim Burman4, 
Steffen Neumann2* & Kim Kultima1*

Chronic diseases affecting the central nervous system (CNS) like Alzheimer’s or Parkinson’s disease 
typically develop with advanced chronological age. Yet, aging at the metabolic level has been explored 
only sporadically in humans using biofluids in close proximity to the CNS such as the cerebrospinal 
fluid (CSF). We have used an untargeted liquid chromatography high-resolution mass spectrometry 
(LC-HRMS) based metabolomics approach to measure the levels of metabolites in the CSF of non-
neurological control subjects in the age of 20 up to 74. Using a random forest-based feature selection 
strategy, we extracted 69 features that were strongly related to age (page < 0.001, rage = 0.762, 
R2

Boruta age = 0.764). Combining an in-house library of known substances with in silico chemical 
classification and functional semantic annotation we successfully assigned putative annotations to 59 
out of the 69 CSF metabolites. We found alterations in metabolites related to the Cytochrome P450 
system, perturbations in the tryptophan and kynurenine pathways, metabolites associated with 
cellular energy (NAD+, ADP), mitochondrial and ribosomal metabolisms, neurological dysfunction, 
and an increase of adverse microbial metabolites. Taken together our results point at a key role for 
metabolites found in CSF related to the Cytochrome P450 system as most often associated with 
metabolic aging.

Advanced chronological age is considered as one of the most important risk factors for various kinds of diseases, 
especially chronic diseases and neurodegenerative diseases like Alzheimer’s and Parkinson’s disease. Aging in 
humans is the combined result of genetic and non-genetic predispositions and extrinsic factors including lifestyle 
(i.e., physical activity, occupational stress, food diet) and environmental exposures (i.e., exposure to chemicals, 
pesticides and sun)1,2. As a result, human individuals age differently and physiological functions that determine 
health deteriorate highly variably among individuals2. Nevertheless, several attempts have been made to define 
a biological age using a multitude of physiological and metabolic traits3.

The metabolome is defined as a snapshot of the sum of small molecules (molecular weight between, i.e., 
60–1500 Da) that characterizes a biological system. It changes considerably with chronological age and in human 
blood and urine the physiological changes that occur with aging have been demonstrated3–10. Recently, advances 
have been made to link advancing age with increasing chronic disease risk using metabolomics techniques 
to account for the physiological variation in the trajectory of human aging for various types of chronic and 
neurodegenerative diseases3,11–14. This is being achieved by determining multiple biomarkers that are highly 
correlated with age and are known to play a role with certain types of diseases. While this has previously been 
assessed in blood13 and plasma3, limited work has so far only explored chronological aging in cerebrospinal fluid 
(CSF) in children15, HIV positive patients16, or targeting a limited number of metabolites17,18 . The cerebrospinal 
fluid provides mechanical protection to the brain and prevents damage due to collision between the brain and 
skull. The CSF also influences metabolic homeostasis of the central nervous system (CNS) by maintaining the 
electrolytic environment and systemic acid base balance19. The CSF also serves as a medium for the supply of 
nutrients to neuronal cells and functions as a lymphatic system for removal of degradation products of cellular 
metabolism and transports hormones, neurotransmitters and other releasing factors throughout the CNS19. 
Moreover, the CSF serves as an important diagnostic tool in the evaluation of diseases affecting the CNS which 
typically develop with chronological aging20.
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In this study, we aim to identify the metabolite features that show the strongest association with aging and to 
provide a systemic view on aging by identifying major pathways and metabolic systems involved. Using high-
resolution mass spectrometry, we investigated the CSF metabolic content in a cohort of 41 subjects, ranging from 
the age of 20 up to 74, that do not suffer from any neurodegenerative disorders. To provide a systemic view on 
changes that occur with aging, we perform in silico classification and combine it with functional semantic annota-
tion. This approach can give insight into mechanistic processes on how the CSF differs from blood or serum, and 
which types of metabolites and associated molecular pathways and systems are affected by aging at a global level.

Results
The CSF metabolome of 41 non-neurological control subjects between the age of 20 up to 74 was investigated 
using untargeted high-resolution mass spectrometry. A total of 1169 metabolite features in positive mode and 672 
metabolite features in negative mode were successfully quantified and matched across at least 75% of the samples. 
To analyze the overall effect of aging, distance-based ReDundancy Analysis (dbRDA)21 was performed. This type 
of test allows to assess the impact and direction of aging in the data using multivariate analysis. Permutation 
tests on the dbRDA model showed overall strong effects of age and a less pronounced but significant effect of 
gender in the data (Empirical p-values: page < 0.001, pgender < 0.001. Goodness of fit statistics: Squared correlation 
coefficients: rage = 0.618, rgender = 0.582), which were largely independent of each other (Fig. 1a). Furthermore, 
gender explained less total variance (≅ 1.59%, which was largely linearly corresponding to the y-axis) than age 
(≅ 29.49%, largely corresponding to the x-axis) (Fig. 1a).

Next, we investigated which metabolite features showed the strongest association with age and gender. Using a 
random forest-based feature selection strategy utilizing the Boruta algorithm22, we extracted 69 features that were 
strongly related to age (Fig. 1b) and 41 features that were related to gender (Fig. S4). Selected metabolite features 
showed a strong relationship and a good representation of the predicted vs. actual models for age (page < 0.001, 
rage = 0.762, R2

Boruta age = 0.764) and gender (pgender < 0.001, rgender = 0.549, R2
Boruta gender = 0.469). Also, in this limited 

subset of features, age and gender were largely orthogonal. As the selected gender-associated features were not 
overlapping with the age-associated features, gender was not investigated any further (Fig. 2, Fig. S4).

Using hierarchical clustering on the selected features we found three major groups of subjects: “Young age” 
(ages ranging from 20 to 37), “Middle aged” (ages 40 to 59) and “Old age” (ages 59 to 74) (Fig. 2). We applied 
Dynamic Time Warping (DTW) to the data and it showed that most relationships with aging were linear (Fig. S1). 
Thus, the relationship between the metabolite abundance and age were tested with linear regression (Fig. S2). 
Looking at the age-dependencies, most of the selected features were increasing with aging, whereas only five 
were significantly decreasing (Ethynylphosphinic acid (ned227) and four unknown compounds (neg5, neg446, 
neg311, neg441) in Table 1, Fig. 2, S2).

Identification and chemical classification of selected features.  Identification of CSF metabolites 
that showed the strongest relationship with age was carried out with the tools SIRIUS and MetFrag from the 
msPurity workflow suite23–25. Using this approach, we assigned putative annotations to 59 out of the 69 selected 
features, resulting in a large diversity of different metabolites (Table 1, Fig. 3a). To further investigate whether 
specific compound classes were more often associated with aging, we applied in silico classification and assigned 

Figure 1.   Distance-based redundancy analysis (dbRDA) constrained to the factors age and gender. The age 
of the subjects is color-coded, ranging from blue color (young subjects starting from the age of 20) to red 
color (older subjects with the oldest one being 74), whereas gender is displayed by the gender symbols. (a) The 
multivariate regression analysis on all 1841 metabolite features demonstrated a strong effect of aging on the 
direction of the x-axis and a weaker effect of gender on the direction of the y-axis. The directions of the factors 
age and gender were projected on the plot as arrows. Gender was largely orthogonal from age. (b) Random 
forest-based feature selection resulted in 69 features that were strongly related to age.
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chemical classes to 49 out of 69 features. The represented compound classes showed a similarly large diversity, 
where the most entities related to aging were found in the superclasses organic acids and derivatives, organo-
heterocyclic compounds, organic oxygen compounds, benzenoids and lipids and lipid-like molecules (Fig. 3b, 
Table S1).

When comparing the classification of the 69 selected features (Fig. 3b) with the entire set of MS2 DDA spectra 
found in the CSF samples (Fig. 3a), enriched compound classes (Fisher’s exact test, p < 0.005) related to aging 
were organoheterocyclic compounds (like ureas, imidazoles, diazines, azoles), phenylpropanoids and polyketides 
(flavonoids, cinnamic acids), carbohydrates (especially monosaccharides), organic carbonic acids (like ethers), 
nucleosides and nucleotides (including purines and pyrimidines) and various phenols (Fig. 3c). Organic oxygen 
compounds were less often associated with aging when compared to the entire set.

Classification of functional roles.  To investigate whether there were functional roles that were more often 
associated with aging, we combined the information from the chemical identities of the annotated features with 
the semantic information extracted from public resources, including metabolic pathways, connected proteins 
and enzymes, biological locations and roles, and associated disorders and diseases. The results were filtered and 
grouped into a total of 374 ontology terms (Fig. 4). The more often a specific ontology term was associated with 
our identified set of metabolites, the larger the area is in the treemap. The most frequently annotated biological 
locations were blood, urine and faeces, whereas only a few of the identified features had been previously detected 

Figure 2.   Heatmap showing selected metabolite features clustered in rows and the samples clustered by age in 
columns. The last letter of the sample name indicates the gender of the subject (M: Male, F: Female). A red color 
indicates a higher concentration of a metabolite feature and a blue color indicates a lower concentration. Three 
major groups of subjects were found, “Young age” (ages 20–37), “Middle age” (ages 40–59) and “Old age” (ages 
59–74), of which each could be broken down into several subgroups.
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ID m/z rt (s) p-value Putative name Corresponding identifiers Putative functional/biological roles MSI level

pos1168 98.05 37.58 0.040 Cyano-hydroxy-butene HMDB: HMDB0031339, PUBCHEM: 
91586

Food source, amino acid metabolism, 
edema, necrosis, pancreatic diseases 2

pos207 120.04 265.57 0.026 S-Acetylthioethanolamine KEGG: C03537, PUBCHEM: 28643, 
CHEBI: 17853 Microbial metabolism 2

pos245 143.11 43.03 0.024 Unknown -

pos175 157.04 39.88 0.018 Hydroxyoxoheptdienoate KEGG: C06210, PUBCHEM: 9776837, 
CHEBI: 1132 Microbial metabolism 2

pos726 158.08 145.80 0.019 N-Acetylproline HMDB: HMDB0094701, PUBCHEM: 
66141, CHEBI: 21560

Proline metabolism, nervous system, 
pulmonary disease, chronic obstructive, 
inflammation, colorectal cancer

1

pos171 158.08 58.84 0.022 Paramethadione
HMDB: HMDB0014755, KEGG: 
C07411, PUBCHEM: 8280, CHEBI: 
7921

Cytochrome P450, NADPH-related, 
monooxygenase activity, ion channels, 
antiepileptic

2

pos441 166.07 51.89 0.010 N-Methylguanine
KEGG: C02242, HMDB: 
HMDB0001566, PUBCHEM: 70315, 
135398679, CHEBI: 2274

Immune system, purine metabolism, 
colorectal cancer, catalytic activity, 
microbial ribosomal role

1

pos1046 180.08 257.27 0.021 7-Aminomethyl-7-carbaguanine
KEGG: C16675, CHEBI: 45126, 
PUBCHEM: 135398563, HMDB: 
HMDB0011690

NAD+-related, pyrimidine metabolism, 
tRNA-related, microbial metabolism, 
folate biosynthesis

2

pos266 195.07 72.04 0.014 N-Dimethyluric acid PUBCHEM: 91,611, CHEBI: 68,449, 
HMDB: HMDB0011103, KEGG: C16356

Caffeine metabolism, Cytochrome P450, 
xanthine dehydrogenase/oxygenase, 
colorectal cancer

2

pos170 195.11 319.97 0.026 N-Hydroxypseudooxynicotine KEGG: C01297, PUBCHEM: 439476, 
CHEBI: 37754, HMDB: HMDB0240264

NAD+-related, nicotinamide metabo-
lism, microbial metabolism 2

pos537 196.06 317.68 0.020 Dopaquinone
HMDB: HMDB0001229, KEGG: 
C00822, PUBCHEM: 439316, CHEBI: 
16852

Neurodegeneration, Parkinson’s disease, 
melanin-precursor, several other meta-
bolic disorders, tyrosine metabolism, 
DOPA

2

pos121 197.08 451.26 0.024 Unknown -

pos1075 197.13 421.64 0.030 Alpha amino acid CHEMONT: C0002404 4

pos1147 197.13 413.42 0.029 C10H16N2O2 Unknown -

pos477 203.08 63.90 0.023 α,β-Didehydrotryptophan KEGG: C06732, CHEBI: 15802, 
PUBCHEM: 5280990 Tryptophan and kynurenine pathway 2

pos102 209.13 340.59 0.037 Pilocarpine
KEGG: C07474, HMDB: 
HMDB0015217, CHEBI: 8207, 
PUBCHEM: 5910

Vascular related, inflammation, histidine 
and purine pathways, nervous system: 
acetylcholine-receptor, epilepsy, 
Cytochrome P450, acetylcholine 
receptor

3

pos324 212.10 71.87 0.017 N,N-Dideoxycytidine
KEGG: C07207, CHEBI: 10101, 
PUBCHEM: 24066, HMDB: 
HMDB0015078

Immune system, anti-viral drug, RNA/
DNA polymerase related 2

pos1061 213.16 419.33 0.027 Bipiperidine carboxylic acid
CHEBI: 80763, KEGG: C16836, 
PUBCHEM: 11367848, HMDB: 
HMDB0060336

Lipid transport and metabolism, liver 
detoxification 2

pos568 221.09 63.86 0.022 5-Hydroxy-l-tryptophan
KEGG: C00643, ChEBI: 17780, 
PUBCHEM: 439280, HMDB: 
HMDB0000472

Tryptophan and kynurenine pathway, 
neurodegeneration, neurological, 
neurotransmitter-precursor, DOPA

1

pos296 226.08 44.75 0.018 Acycloguanosine/hypoxanthine CHEMONT: C0000246
DNA-synthesis, neurological, 
NAD+-related, poisoning, uremia (waste 
product degeneration), colorectal cancer

3

pos180 227.14 340.68 0.036 Barbiturate/pyrimidone CHEMONT: C0000291 Neurological: ion channels, Cytochrome 
P450, inflammation 3

pos99 227.17 488.20 0.037 Diazacyclotetradecanedione KEGG: C04277, CHEBI: 16968, 
PUBCHEM: 16, HMDB: HMDB0033567

Microbial metabolism, caprolactam 
degradation 3

pos75 238.11 417.12 0.021 Cyclocytidine/alkyl aryl ether CHEMONT: C0000128 Neurological: ion channels 3

pos697 258.66 339.78 0.012 Unknown -

pos588 266.14 338.12 0.042 N-Benzyloxycarbonyl-l-leucine KEGG: C04335, CHEBI: 28282, 
PUBCHEM: 74840

Leucine metabolism, uremia (waste 
product degeneration) 2

pos285 277.12 425.06 0.024 Pentalenolactone KEGG: C20407, PUBCHEM: 24199350, 
CHEBI: 70816 Microbial metabolism 2

pos1054 580.06 408.41 0.013 Mannopinic acid PUBCHEM: 126642 Microbial metabolism, immune system 2

pos328 312.15 330.58 0.016 Morphinan CHEMONT: C0000058 Neurological, neurotransmitter (G 
protein-coupled receptors) 3

pos865 316.16 461.10 0.026 Nitroestrone CHEBI: 79864, PUBCHEM: 233497, 
KEGG: C15362 Hormone 2

pos361 326.04 340.04 0.021 Urothion HMDB: HMDB0002377, PUBCHEM: 
135804811, CHEBI: 50152 Uremia (waste product degeneration) 2

pos513 330.17 330.70 0.016 Unknown -

Continued
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ID m/z rt (s) p-value Putative name Corresponding identifiers Putative functional/biological roles MSI level

pos927 393.16 346.68 0.021 Ethyl-hydroxy-camptothecin
KEGG: C11173, CHEBI: 94969, 
PUBCHEM: 104842, HMDB: 
HMDB0060510

Cancer, irinotecan metabolism, Waste 
product degeneration 2

pos928 415.22 361.01 0.015 Deacetylvindoline PUBCHEM: 260534, KEGG: C01091, 
CHEBI: 18362

Microbial metabolism, food source, 
indole alkaloid metabolism 3

pos887 422.21 310.11 0.039 Fenpyroximate KEGG: C11098, PUBCHEM: 9576412, 
CHEBI: 5011

NAD+-related, ubiquinone pathway, Par-
kinson disease, microbial metabolism 2

pos719 425.20 354.18 0.019 Unknown -

pos820 456.19 421.86 0.019 Unknown -

pos1148 469.16 653.96 0.018 Unknown -

pos1035 742.33 401.81 0.018 Benzenesulfonamide analog PUBCHEM: 5278358, CHEMONT: 
C0000031

Microbial metabolism, anti-viral (HIV 
protease inhibitor) 4

pos1064 745.35 409.10 0.038 Cyclic peptide PUBCHEM: 74223411, CHEMONT: 
C0001995 Inflammation, viral related 4

pos1033 745.51 409.00 0.037 Asparagine and derivatives PUBCHEM: 189479, CHEMONT: 
C0004312

Anti-inflammation, asparagine derived 
neurotransmitter 4

pos1037 790.15 414.75 0.049 Benzenesulfonamide analog PUBCHEM: 123600247, CHEMONT: 
C0000031 Inflammation, microbial metabolism 4

pos1109 807.77 400.24 0.056 Unknown -

neg5 125.87 47.04 − 0.005 Unknown -

neg446 132.88 32.29 − 0.002 Unknown -

neg553 133.04 49.06 0.038 2-Deoxy-d-ribose CHEBI: 28816, HMDB: HMDB0003224, 
PUBCHEM: 5460005, KEGG: C01801

DANN, ATP, cancer, pentose phosphate 
pathway 1

neg436 147.04 351.62 0.023 N-Nonatriene-N-diol PUBCHEM: 101408974, CHEMONT: 
C0001334 Microbial metabolism 2

neg230 165.05 351.48 0.019 N,N-Dihydroxyphenyllactic acid KEGG: C01207, PUBCHEM: 439435, 
HMDB: HMDB0003503

Food source, cerebral ischemia, cardio-
vascular diseases, hormone synthesis 2

neg227 184.94 40.23 − 0.012 Ethynylphosphinic acid PUBCHEM: 118,074,783 2

neg301 187.00 299.82 0.016 P-cresol sulfate
PUBCHEM: 4615423, HMDB: 
HMDB0011635, CHEBI: 82914, KEGG: 
C01468

Neurodegeneratiion (multiple sclerosis), 
Crohn’s disease, cardiovascular diseases, 
microbial metabolism, uremia, colorec-
tal cancer

2

neg273 205.03 54.29 0.014 N-methylcitrate
KEGG: C02225, CHEBI: 10860, 
PUBCHEM: 12898022, HMDB: 
HMDB0000379

Crohn’s disease, immune system, 
Vitamin B12 deficiency, microbial 
metabolism, propanoate metabolism

2

neg466 215.13 81.75 0.018 Valine and derivatives PUBCHEM: 54064935, CHEMONT: 
C0004310 microbial metabolism 4

neg461 219.07 63.12 0.028 N-Hydroxy-l-tryptophan KEGG: C19716, PUBCHEM: 23657839, 
CHEBI: 47992, HMDB: HMDB0000472

Neurological, neurodegenerative 
(Parkinson’s disease), neurotransmitter, 
DOPA, AADC deficiency, inflammation, 
tryptophan metabolism, cancer

1

neg306 225.08 157.82 0.016 N,N-Dihydroxy-alpha-methylstilbene PUBCHEM: 69933604, CHEMONT: 
C0002279 Microbial metabolism 2

neg334 236.09 409.59 0.022 Tetrahydroisoquinoline PUBCHEM: 442315, CHEMONT: 
C0002955 Microbial metabolism 2

neg417 240.05 306.99 0.023 N,N-Dihydroxybenzoylserine KEGG: C04204, CHEBI: 17455, 
PUBCHEM: 151483

Microbial metabolism, microbial 
ribosomal role 2

neg214 260.02 50.71 0.014 Phosphotyrosine KEGG: C06501, PUBCHEM: 30819, 
CHEBI: 37788, HMDB: HMDB0006049

Food source, microbial metabolism, 
accumulation of waste products, 
tyrosine and phenylalanine metabolism, 
carcinogenesis

2

neg279 263.10 312.55 0.048 Phenylacetyl-l-glutamine KEGG: C04148, PUBCHEM: 92258, 
CHEBI: 17884, HMDB: HMDB0006344

Microbial metabolism, phenylacetate 
metabolism, uremia, cancer, neurode-
generation,, immune system

2

neg474 264.98 351.54 0.022 Naphthalene sulfonic acid PUBCHEM: 142667787, CHEMONT: 
C0003599 Microbial metabolism 3

neg523 275.10 417.93 0.032 Pyroglutamyl-phenylalanine PUBCHEM: 7408331
Cancer, phenylalanine pathway, micro-
bial metabolism, neurodegeneration, 
immune system

2

neg304 283.06 92.23 0.027 Xanthosine
KEGG: C01762, CHEBI: 18107, 
PUBCHEM: 64959, HMDB: 
HMDB0000299

Purine metabolism, leukaemia, colo-
rectal cancer, uremia (waste product 
degeneration), Crohn’s disease, immune 
deficiency, NAD+-related, nucleotide 
binding

2

neg540 302.05 58.02 0.015 Benzo-1,2,3-triazine PUBCHEM: 142469963, CHEMONT: 
C0004659 3

neg407 310.11 247.37 0.017 Kainoid PUBCHEM: 5282253, CHEMONT: 
C0001801 Neurotoxin, food source 3

neg207 310.96 47.31 0.014 Benzeneacetic acid analog PUBCHEM: 826412, CHEMONT: 
C0003864 Inflammation 4

Continued
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in CSF and reported as such in HMDB. Only 5-hydroxy-L-tryptophan, mannopinic acid, N-methylcitrate, and 
phenylacetyl-L-glutamine had previously been reported in HMDB as detected in CSF.

We found that those metabolites were most often associated with aging that were related to the cytochrome 
P450 system, microbial metabolism, the immune system and gamma-aminobutyric acid (GABA). We also 
observed specific metabolic pathways that were associated with aging: purine-, pyrimidine-, caffeine-, tryp-
tophan- and phenylalanine metabolisms, and nicotinamide (NAD+) related substances and derived enzymes 
(Fig. 4a–c). Many metabolites have been associated with neurodegenerative disorders and diseases affecting the 
CNS. The most pronounced non-neurological disease found was colorectal cancer (Fig. 4b). Besides relationships 
to pharmaceutical products and drug metabolism, we found biological roles to be related to cellular waste and 
toxic products and cellular energy- and membrane-metabolism (Fig. 4d).

Discussion
Aging is the single greatest risk factor associated with numerous diseases including cancer, metabolic and cardiac 
disorders and diseases affecting the CNS such as Alzheimer’s disease. As the population is continuously getting 
older, age-related or age-mediated diseases will be an increasing problem and will become a greater burden to 
healthcare systems worldwide.

To get a better understanding of the naturally occurring aging process in the CNS of humans, we have ana-
lyzed the concentrations of metabolites found in the human CSF from 41 non-neurological control subjects in the 
age span of 20 to 74 years of age using high-resolution mass spectrometry. Using a random forest-based variable 
selection strategy we found 69 features that showed strong age dependence. Using hierarchical clustering, the 
subjects could be divided into three distinct age groups: young, middle-aged and elderly subjects. This is in line 
with previous findings which studied the aging murine brain, where a metabolic drift was found as a result of 
aging in different parts of the brain26. Here, we demonstrate that metabolic drifts occurring in the aging human 
CNS can be reflected in a localization of CSF. Metabolic studies of blood collections (serum or plasma)3–9 and 
urine10 have previously demonstrated that metabolite levels are influenced by aging. Aging has been assessed in 
relation to the CSF metabolome, where HIV positive patients were compared with HIV negative controls and 
the results suggested that the HIV positive patients exhibited accelerated aging, since their CSF metabolomes 
overlapped with the controls of advanced age16. A different study performed metabolic screening in CSF pro-
files of juveniles and compared to patients with known neurometabolic disorders. They found a subset of 17 
metabolites to be different between age groups in children up to the age of fifteen15. They found many amino 
acids like L-glutamine, L-leucine, L-phenylalanine and metabolites related to tryptophan metabolism such as 
L-tryptophan and 5-hydroxy-L-tryptophan) and purine and pyrimidine metabolism (e.g., hypoxanthine), to show 
different concentrations between age-groups, which to a large extent agrees with findings made herein in adults. 
Furthermore, we were able to relate metabolites to specific intermediary components of pathways in humans as 
part of leucine, tyrosine, phenylalanine, tryptophan and kynurenine pathways. For most of the 69 metabolites that 
showed the strongest relationship with age we found a linear relationship between the metabolite concentration 
and age. Only five out of the 69 selected metabolites showed decreasing levels with aging.

To get an overview of which chemical classes, biochemical pathways and compartments were affected by 
aging, semantic annotations for the 59 identified metabolites were extracted from public databases. The results 
showed that the metabolites comprised a large diversity of compound classes, including organic acids and deriva-
tives, organic oxygen compounds, benzenoids, lipids and lipid-like molecules. We found a statistically significant 
enrichment of organoheterocyclic compounds, which is a high-level classification of compounds containing a 
ring with at least one carbon atom and one non-carbon atom, thus constituting a large variety of molecules. 

ID m/z rt (s) p-value Putative name Corresponding identifiers Putative functional/biological roles MSI level

neg336 315.95 92.45 0.011 C12H9Cl2NO3S -

neg291 328.15 318.92 0.015 Terpene glycoside PUBCHEM: 191872, CHEMONT: 
C0002049 Isoborneol glucuronide metabolism 4

neg176 332.95 46.51 0.011 Hydantoin CHEMONT: C0002273
Microbial metabolism, inflammation, 
non-opioid receptor related, DNA 
polymerase related, cancer

3

neg311 378.81 40.84 − 0.005 -

neg386 389.09 444.39 0.028 Iridoid O-glycoside CHEMONT: C0004081 Inflammation 3

neg441 498.72 40.79 − 0.005 -

Table 1.   List of metabolite features that showed the strongest relationship with aging in human CSF. The 
columns show the feature ID, mass-to-charge ratio including charge (m/z) (Da), retention time (s), the 
p-value of the linear regression model (positive values indicate an increase with progressing age, negative 
values indicate a decrease, p < 0.05 are considered to be significant), the annotated putative name, identifiers 
in the corresponding internet databases HMDB, KEGG, PubChem, and ChEBI, the manually curated 
putative functional and biological roles and MSI levels. We confirmed 4 compounds with our in-house 
library (conforming to MSI level 1 annotation according to58), we matched 32 compounds in public libraries 
(conforming to MSI level 2 annotation), we annotated 12 compounds using SIRIUS and MetFrag (MSI level 3 
annotation) and 8 compounds using our classification framework (MSI level 4 annotation). Three compounds 
were annotated with a sum formula and 10 metabolite features could not be annotated. Significantly decreasing 
features are illustrated in italic.
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Furthermore, the dominantly represented locations previously annotated for these compounds included blood, 
urine and faeces. CSF was less evident probably due to it being less characterized and annotated in public 
databases. Previous findings in blood have demonstrated that steroid lipids, amino acids and higher levels of 
fatty acids are metabolites showing the strongest association with aging3,8, whereas the results herein display a 
much more diverse group of metabolites. High-level analysis of the metabolites clearly demonstrated that the 
cytochrome P450 system, the immune system as well as substances related to the microbial system were associ-
ated most often with aging. We also observed a significant enrichment of nucleosides/nucleotides, metabolites 
typically involved in the purine-, pyrimidine- and NAD+ energy related-metabolism, as well as caffeine-, tryp-
tophan- and phenylalanine metabolisms. Multiple metabolites have also been associated with disorders of the 
CNS and neurodegeneration.

Figure 3.   Plots showing the difference in the chemical classification of (a) the entire set of MS2 DDA spectra 
found in CSF samples shown as a sunburst plot, (b) selected metabolite features that were related to aging 
(listed in Table 1) in human CSF shown as a sunburst plot, (c) differences between the two sunburst plots 
calculated with the Fisher’s exact test (p < 0.005). Shown are the 45 top-most enriched compound classes. The 
sunburst plots represent the hierarchy and richness of compound classes. Starting in the center with organic 
compounds and towards the edges the more specific subclasses are shown. The width and color of each (sub)
class correspond to the number of chemical entities assigned to this class.
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Figure 4.   Treemap plot showing the location, functional role and associations of the 69 CSF metabolites 
that were strongly associated to aging in humans as annotated in HMDB. (a) Treemap for the concepts on 
“Biological Location”. (b) Treemap for the concepts on “Disorders and Diseases”. (c) Treemap for the classes on 
“Pathways”. (d) Treemap for the classes on “Role”. The four treemaps are plotted equally to each other. Classes 
are emphasized by color. The areas correspond to the number of chemical entities assigned to this class. The 
label size represents the ontology level where large labels are shown for the superclass and smaller labels for 
subclasses and lower ontology levels. All figures and underlying data are available as PDF in the Supplement in 
Zenodo (doi:10.5281/zenodo.5082928).
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Microbial‑associated metabolites.  We found several metabolites annotated with microbial origin in 
CSF which were increasing with age (Table 1). Metabolites derived from the gut microbiome can be transported 
via blood into CSF through the gut-brain axis (GBA)27. Tryptophan-derived metabolites play a key role in the 
immune response as tryptophan is metabolized into kynurenine, tryptamine and indole. Tryptophan-derived 
tryptamine and serotonin have also been described to modulate degradation pathways of microbial products. 
The microbial-associated metabolites in CSF that we found to be increased with age may indicate an increasingly 
less effective catabolism.

Cytochrome P450 system.  The cytochrome P450 system plays an important role in cellular metabolism 
and hormone homeostasis and it is also predominantly involved in detoxification of xenobiotics and therapeutic 
drugs in the liver28. The blood–brain barrier (BBB) and the blood–CSF barrier regulate the composition of the 
brain milieu. Through structural modifications, including the expression of tight junctions, these CNS barriers 
restrict the diffusion of drugs and xenobiotics into the brain29,30. Aging is an important factor leading to altera-
tions in the biotransformation, either by reduced expression or decreased function and age-associated changes 
in P450. Corresponding nuclear factors are a major determinant in regulation of drug metabolism, especially 
during development and in the elderly29. As such it is not surprising that we find a large fraction of the age-
related metabolites in CSF to be related to the P450 system. We found several substances that directly link to 
cytochrome P450: dimethyluric acid, barbiturates/pyrimidones, and benzenesulfonamides. Dysfunctional gene 
expression resulting in changes in mRNA gene regulation has been linked to a destabilization of the cytochrome 
P450 system with progressing age11. This ultimately causes disturbance in cellular energy metabolism, inflam-
mation, and changes in hormone signaling that further destabilize the homeostasis of the human system28. In 
plasma it has mainly been noted that certain xenobiotics (e.g., caffeine) were higher in older subjects, possi-
bly reflecting decreases in hepatic cytochrome P450 activity9. We also find metabolites associated with caffeine 
metabolism such as dimethyluric acid, to be increased in concentration with progressing age. However, the 
major connections to the P450 system and aging in CSF has, to our knowledge, not previously been demon-
strated using this approach.

Energy metabolism and the immune system.  There are clear links between the P450 system, energy 
metabolism and the immune system. Infection and inflammation, which are managed by the immune system, 
are also closely related to the P450 system. The abilities of the immune system to generate immune responses 
decrease gradually with aging leading to an increased susceptibility to infection31. The phosphorylated and 
reduced form of NAD+ , NADPH, serves as a cofactor for P450 enzymes for detoxification for the reduction of 
oxidized glutathione levels for oxidative defense, and is used for generating peroxides for release during oxida-
tive burst processes in the immune system32. Previously, the NAD+ pathway has been demonstrated to play 
a key role in aging12–14,33. NAD+ itself has been found to decrease with aging both in the CSF and cells of the 
CNS12,34 while we found increasing levels of NAD+ related metabolites with aging which may indicate dysfunc-
tion in the cellular energy metabolism (especially NAD+ and adenosine (purine) salvage pathways) and associ-
ated perturbations in mitochondrial and ribosomal activity (ubiquinone and guanine pathways)33,35. Altered 
gene regulation with aging and gene defects likely result in the accumulation of catabolites such as dimethyluric 
acid, hydroxypseudooxynicotine, alpha amino acids, acycloguanosines/hypoxanthines, and fatty alcohols that 
are normally located in the cytosol12,13,35. We also detected compounds which have not been annotated in CSF 
previously which are related to the ubiquinone pathway (deacetylvindoline, fenpyroximate, and pyrazoles) and 
are involved in electron transport chain function and influence the production of reactive oxygen species33. 
Taken together, the P450 system, energy metabolism and the immune system play key roles in the process of 
aging12 and metabolites related to these systems also displayed the strongest age association of the CSF metabo-
lites quantified herein.

Purine and pyrimidine metabolism.  Purines, pyrimidines and their intermediates are essential biomole-
cules that participate in diverse cellular functions, such as the synthesis of DNA, RNA, lipids, and carbohydrates36. 
We found increasing concentrations of purine and pyrimidine related intermediates with aging in human CSF. 
In mice models of the aging brain, accumulation of purines, pyrimidines and nucleosides have been observed26 
and decreased levels of pyrimidine intermediates in aged C. elegans37, suggesting that pyrimidine metabolism is 
affected in aging. In support of this, supplementation of pyrimidine intermediates can significantly prolong the 
lifespan of C. elegans 38.

We found a considerable increase in the quantity of 5-hydroxy-l-tryptophan, α,β-didehydrotryptophan, 
phenyllactic acids, hydantoins in CSF from older subjects that indicate perturbations in tryptophan, phenylala-
nine and tyrosine metabolisms and ultimately the kynurenine pathway39. We have previously found 5-hydroxy-
l-tryptophan to be increased in concentration with aging in a different cohort of individuals18 and kynurenine 
has been demonstrated to increase in concentration with age by others17. Deficiencies in tryptophan degradation 
lead to inflammation, immune response, excitatory neurotransmission, and have further been linked to several 
psychiatric health disorders like depression, dementia, and schizophrenia39,40. Disturbances in the kynurenine 
pathway have systemic impacts39. The kynurenine pathway and resulting quantity of tryptophan modulate the 
composition of the microbiome and affects the synthesis of NAD+ from tryptophan12. Tryptophan and its metabo-
lite kynurenine have more recently gained significant interest as an important factor related to aging that also 
impacts the P450 system through the aryl hydrocarbon receptor41, again indicating the P450 system plays a 
central role in the process of natural aging in humans.
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Methodological aspects and limitations of the study.  One of the major challenges in metabolomics 
studies is metabolite identification. In this study, we combined untargeted metabolomics measurements, in sil-
ico chemical classification and identification with semantic annotation. The majority of our annotations (see 
Table 1) reach level 2 according to the 2007 MSI guidelines58. In summary, we confirmed 4 compounds with 
our in-house library (conforming to MSI level 1 annotation), we matched 32 compounds in public libraries 
(conforming to MSI level 2 annotation), we annotated 12 compounds using SIRIUS and MetFrag (MSI level 3 
annotation) and 8 compounds using our classification framework (MSI level 4 annotation). Three compounds 
were annotated with a sum formula and 10 metabolite features could not be annotated. This top-down methodo-
logical approach allowed us to describe the major effects of aging on CSF metabolites in humans and link them 
mechanistically and functionally to pathways and diseases at a global level. For classification, we performed in 
silico classification with the MetFamily classifier in positive and negative ion modes42. The classifier was trained 
with ~ 57,000 spectra from the MassBank of North America (MONA) which cover the majority of metabolites 
that can be expected in CSF43.

We applied our classifier to the selected metabolite features that have a high impact on aging. Our classifier 
works on any kind of MS2 spectrum44. For example, our classifier annotated many chemical entities belonging 
to the classes of purines and pyrimidines. They are involved in DNA repair as they are the building blocks of 
nucleic acids. Applying functional semantic analysis, we found an increase in the abundance of these compounds 
with advanced chronological age which may indicate increased expression of genes that mediate stress responses 
and repair damaged DNA45. Similarly, classification found many entities belonging to the classes of tryptophan, 
phenylalanine, tyrosine, and guanidines without the need to explicitly identify or elucidate the structure of 
these unknown compounds. The presented methodological approach allows for a systemic view of aging and is 
suited to identify broad molecular patterns and metabolic pathways where flux may be altered42. Using CSF as 
an explorative source, further research is needed to elucidate the individual mechanistic components, i.e., the 
compounds that play a causative role in organismal aging44.

We conclude that the molecular processes of advanced chronological aging are caused by the complex inter-
play of alterations in various pathways which degrade immune function and may lead to an increase in adverse 
microbial catabolites with advancing age. We found the cytochrome P450 system to have a central role in the 
process of natural aging in humans. Dysfunctional gene regulation has been linked to a destabilization of the 
cytochrome P450 system with progressing age and ultimately causes disturbance in the cellular energy metabo-
lism, inflammation, and changes in hormone signaling that further destabilize the homeostasis of the human 
system. Conversely, we found increasing levels of NAD+ with advancing age which accounts for decreased levels 
of detoxification. Tryptophan-derived degradation products of microbial origin in CSF and tryptophan and its 
metabolite kynurenine also impact the cytochrome P450 system through the aryl hydrocarbon receptor 40, again 
indicating the P450 system to be of central role in the process of natural aging in humans. Deficiencies in tryp-
tophan degradation may lead to inflammation, immune response and excitatory neurotransmission which may 
be associated with neurological disorders like depression, dementia, and schizophrenia39. Taken together, this 
explains why the majority of metabolites increased with advancing age. We determined aging-induced changes 
in the CSF metabolome. Some of these changes in metabolite abundance may later be shown to be biomarkers 
for increased risk of neurodegenerative disorders such as Alzheimer’s disease, as brain aging is the largest risk 
factor for several neurodegenerative disorders. Treatments that delay the appearance of these biomarkers would 
therefore be promising therapies to delay neurodegenerative disease.

Methods
Sampling.  Samples were collected by lumbar punctures in routine health care and stored in accordance with 
the guidelines formed by the BioMS-eu network46. Enrollment of study participants, clinical assessment and 
CSF handling of samples are further described in47). The samples were centrifuged at 250 g for 5 min and stored 
in polypropylene tubes in aliquots of 240 µL at − 80 °C until analyzed. We used samples from a control group 
of subjects that entered the clinic for some reason to have their CSF sampled. We removed one outlier sample 
for clinical reasons that this subject may have had an undiagnosed neurological disease at the time of sampling.

Metabolite extraction and mass spectrometry.  A detailed description of the metabolite extraction 
and mass spectrometry analysis is described in47. In brief, samples were thawed on ice and 100 µL was mixed 
with ice-cold methanol spiked with a cocktail of internal standards. After vortexing and 30 min incubation in − 
20 °C followed by centrifugation in 12 min at 4 °C, the samples were dried down and reconstituted in 100 µL 5% 
MeOH, 0.1% formic acid and 94.9% deionized MilliQ water upon analysis. 10 µL was injected in a randomized 
order constrained to the factor age into a Thermo Ultimate 3000 HPLC equipped with a Thermo Accucore aQ 
RP C18 column (100 × 2.1 mm, 2.6 µm particle size) and coupled to a Thermo Q-Exactive Orbitrap. A global 
pool of all samples was injected repeatedly, followed by a blank injection for quality control and filtering pur-
poses. Finally, a twofold serial dilution series ranging from 0.5 to 32.0 µL QC was injected.

Data analysis.  Raw data were converted to mzML-format48 and data have been deposited in MetaboLights49 
under the study identifier MTBLS749. Peak picking was performed using msconvert from ProteoWizard50 and 
preprocessed using an OpenMS pipeline in the KNIME platform51. Quantification was done using FeatureFin-
derMetabo52 and the acquired features were aligned using MapAlignerPoseClustering and linked across samples 
using FeatureLinkerUnlabelledQT53.

The quantified data from positive and negative modes were separately processed further in the statistical 
software environment R54. Features with a median intensity across the blank injections higher than 1% of the 
maximum intensity of the samples were interpreted as contaminants and removed. In a second removal step, only 
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features with a significant Pearson correlation (p-value < 0.05) in the dilution series to the injection volumes were 
kept. To correct for potential run order effects, LOESS curves were fitted for each metabolite using the function 
loessFit from the R package limma and a span of 0.2 was used for normalization. In order to retain only highly 
stable features, features with a coefficient of variance lower than 20% in the QC samples were kept. The data 
matrix (positive and negative mod combined) is available as hd_controls_data.csv in the supplemental material.

Statistics.  The statistical analyses comprise the regression of metabolome and age (Random Forest), feature 
selection (Boruta) and visualization of the high-dimensional data (dbRDA and heatmap). The data and code to 
reproduce all graphics in this manuscript are provided as supplemental material. Data were normalized prior 
to statistical analyses, see47 for details. Selection of variables that contribute significantly to the effect of aging 
was accomplished with applying the Boruta algorithm on a Random Forest prediction model22,55. Boruta elimi-
nates irrelevant variables by performing permutation tests and comparing the variable importance of features 
with a background dataset of random features22. A Bonferroni post-hoc multiple comparisons adjustment was 
applied in Boruta on the Random Forest model (using the R package ranger and default settings). The follow-
ing arguments were passed to the function Boruta: x = feature_matrix, y = age, mcAdj = TRUE, maxRuns = 1000, 
doTrace = 0, holdHistory = TRUE, getImp = getImpRfZ. Although Boruta already calculates out-of-bag (OOB) 
errors internally and validates selected variables according to paired t-tests22, to validate the final model only 
containing selected variables, we additionally built a regression tree using the function rtree. R2 was calculated 
comparing the actual with the predicted model56. The above approach was implemented for the full metabo-
lite data in positive and negative modes separately and for the matrix containing selected variables in positive 
and negative modes. On each of the selected variables, a linear regression was performed with regard to age 
to determine whether abundances of selected variables were increasing or decreasing with age significantly. A 
p-value < 0.05 was chosen as a significant measure of the linear regression model (Table 1).

To visualize relationships, a heatmap was implemented using the function heatmap.2 in R. Columns were 
clustered using a Bray–Curtis dissimilarity measure (implemented in the vegdist function of the R package 
vegan57). For the rows, a Euclidean dissimilarity measure was chosen. Both columns and rows were agglomerated 
using the Ward.D method. The two topmost nodes within the “old age” group and the third and second of the 
second topmost nodes within the “middle age” group were swapped using the function reorder of the R package 
dendextend for improved visual representation.

Distance-based ReDundancy Analysis (dbRDA) was performed using the R package vegan to determine the 
effect and direction of aging on the metabolite profiling data21. Using the function envfit, the factor age was then 
fitted post-hoc on the dbRDA model. This approach was carried out for the metabolite matrices in positive and 
negative ionization modes and for the matrix with only the selected features separately (see below on variable 
selection). The goodness of fit statistics were assessed on the models using the squared correlation coefficient r2. 
Empirical p-values for the factor age were calculated post-hoc with envfit using permutation.

Identification and in silico chemical classification.  Annotation of selected metabolite features was 
first accomplished by searching for matching spectra in our in-house library, which resulted in four hits (fea-
tures pos568, pos726, neg301, neg461). This corresponds to level 1 annotation according to the 2007 Metabo-
lomics Standards Initiative (MSI) guidelines58. 32 compounds were matched with public libraries (MSI level 
2 annotation). In order to improve the identification of unknowns, annotation was additionally carried out 
with msPurity23 using the MetFrag and SIRIUS Galaxy modules, including the spectra in our in-house library. 
With this procedure, we followed the level 3 identification in terms of the MSI recommendation for metabolite 
identification reporting58. KEGG and PubChem were chosen as databases in the MetFrag module and BioCyc 
in the SIRIUS module24. Annotation was carried out for positive and negative modes separately. The following 
parameters were chosen for the SIRIUS module of msPurity: Database: BioCyc, Mass deviation of the fragment 
peaks in ppm: 10, Maximum number of candidates in the output: 50, Ion mode: positive or negative accord-
ingly, Analysis used: Orbitrap, Schema: Auto, Minimum number of MS/MS peaks: 1. The following parameters 
were chosen for the MetFrag module of msPurity: Compound Database: PubChem and KEGG separately, Rela-
tive Mass Deviation for database search (ppm): 10, Fragment Peak Match Relative Mass Deviation (ppm): 5, 
Fragment Peak Match Absolute Mass Deviation (Da): 0.01, Polarity: positive or negative accordingly, Schema: 
Auto, MetFrag Score Types: FragmenterScore OfflineMetFusionScore SuspectListScore, MetFrag Score Weights: 
1.0,1.0,1.0. Using this approach, we were able to annotate additional 19 compounds (MSI level 3 annotation).

The chemical classification was performed in silico42. In short, the resulting classifier was trained using a 
machine learning approach on a set of ~ 57,000 MS2 spectra with known structures from the MassBank of North 
America (MONA) enriched with terms from the ChemOnt ontology59. Area under the precision-recall curves 
(AUC-PR) and true positive for a fixed false negative rates of 5% (TPR-FNR) were calculated for each class 
separately to assess the correctness of the classifier (Table S1). We used our in-house library containing 451,301 
spectra occurring in CSF to extract primary chemical classes using ClassyFire59. This resulted in a set of 190 
predefined chemical classes that we have previously found in CSF (Table S1, S2).

Then, we classified spectra on the entire set of MS2 DDA spectra in positive and negative mode and on the 
selected 69 features separately. We used the following settings: absolute mass error: 0.01 Da, ppm error: 10, 
retention time error: 10 s; for merging similar spectra: retention time range: 20 s, m/z range: 0.01 Da, minimum 
retention time: 10 s, maximum retention time: 1020 s, minimum m/z: 50, Maximum m/z: 1500, intensity cut-off: 
10. Then, the spectra were run through our classifier using the following settings: minimum intensity of maximal 
MS2 peak: 10, minimum proportion of MS2 peaks: 0.005, m/z deviation for absolute grouping: 0.01, mz deviation 
in ppm for grouping: 10, maximum retention time difference: 20 s, m/z deviation for absolute mapping: 0.01.
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Applying the classifier to the MS2 spectra resulted in sets with scores for one primary (parent) class and 
alternative parents (ancestors) based on the reference set of 190 chemical classes. Sunburst plots showing the 
hierarchy and richness of compound classes were constructed using the methodology presented in42. The dif-
ferences between the entire set of MS2 spectra and the set of 69 selected features were determined using Fisher’s 
exact test (choosing a conservative p-value of 0.005 and choosing only enriched compound classes with a dif-
ference greater than zero). The conservative p-value resulted in 45 enriched compound classes which are shown 
in Fig. 3c. The open-source software inkscape (https://​inksc​ape.​org) was used to add figure labels.

Functional semantic classification.  Semantic classification was performed to explore functional rela-
tionships of metabolites and compound classes in the human body. The web-APIs of HMDB, PubChem, ChEBI, 
KEGG and BioCyc were queried on the identifiers of the annotated compounds and classes. The ontology infor-
mation of the associated semantic metadata was extracted from the resulting XML objects. As ontology informa-
tion was extracted from different data sources, ontology terms with different order and rank were sorted, cor-
rected for notation and case, and combined prior to subsequent functional annotation. The following ontologies 
were removed from the dataset: Target-based classification of drugs, Anatomical Therapeutic Chemical, Major 
components of natural products, every ontology beginning with Disposition/Pathways/SMP and Disposition/
Pathways/map, Disposition/Source, Process, Physiological effect, Disposition/Route of exposure, Disposition/
Cellular Location, Disposition, Taxonomy, and superclasses without entities: Metabolic pathways, Role, Role/
Industrial application, Role/Industrial application/Pharmaceutical industry, Biological location/Biofluid and 
excreta, and Biological location/Subcellular.

To show the functional semantic entities associated with the annotated metabolites, ontologies were converted 
to a dendrogram object in R followed by constructing a treemap with the combined ontologies using the treemap 
R package60. Similarly, the packages ape, data.tree, and plyr were used to construct a circular tree. Inkscape was 
used to rearrange text in the plots and to add figure labels.

Compliance with ethical standards and patient consent statement.  The study was approved by 
the Regional Ethical Review Board in Uppsala, Sweden (Dnr 2012/274 and 2013/278). All participants provided 
written informed consent before any samples were collected.

Data availability
All plots, the required data objects, and the code to fully reproduce the results have been made available in the 
public repository Zenodo (doi:10.5281/zenodo.5082928). The metabolomics raw data is available in the public 
MetaboLights data repository61 with the identifier MTBLS749.
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