
Chapter 14
Spatial Structure in Disease Transmission
Models

14.1 Spatial Structure I: Patch Models

With the advent of substantial intercontinental air travel, it is possible for diseases
to move from one location to a completely separate location very rapidly. This
was an essential aspect of modeling SARS during the epidemic of 2002–2003,
and has become a very important part of the study of the spread of epidemics.
Mathematically, it has led to the study of metapopulation models or models with
patchy environments and movement between patches [4–7, 33, 38].

These models, which are the focus of this section, are called metapopulation
models. They usually consist of a system (often a large system) of ordinary
differential equations with some coupling between patches. A patch can be a city,
community, or some other geographical region. In real life, a metapopulation model
for the spread of a communicable disease should consider all the locations for which
there are interactions. An example would be two distant cities with some air travel
between them but no contact otherwise. It is possible that not all patches are linked
directly. For example, we might think of a system consisting of a city and two
suburbs, with contact between occupants of each suburb and the city but not between
occupants of the two suburbs. Thus a model must keep track of both the patches and
the links between them, and should be described in terms of a graph.

In the interest of simplicity, we will confine our attention to models consisting
of only two patches, but it is important to be aware of the complications of scale. A
more thorough description may be found in [3].

14.1.1 Spatial Heterogeneity

Consider a basic SIR compartmental model. We divide the population into
two connected sub-populations. Let Si, Ii , Ri denote, respectively, the number of
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susceptible, infective, and recovered individuals in Patch i for i = 1, 2. The total
population of Patch i is Ni = Si + Ii +Ri . The birth and natural death rate constant
μ is assumed to be the same in each patch, so that the total population of each patch
remains constant. The average infective period 1/γ is assumed to be the same in
each patch. This spatial model can be written for i = 1, 2 as in [24]

S′
i = μNi − μSi − λiSi

I ′
i = λiSi − (μ + γ )Ii (14.1)

R′
i = γ Ii − μRi,

with the force of infection in Patch i given by a mass action type of incidence

λi = βi1I1 + βi2I2.

Thus, infective individuals in one patch can infect susceptible individuals in another
patch, but there is no explicit movement of individuals in this model.

For the SIR model (14.1) the disease-free equilibrium is Si = Ni, Ii = Ri = 0.

Using the next generation matrix [39] R0 can be calculated from (14.1) as R0 =
ρ(FV −1), where the (i, j) of FV −1 is βijNi/(d + γ ).

For the case that each patch has the same population (i.e., Ni = N ) and βij are
such that the endemic equilibrium values of Si , Ii , and λi are independent of i, then
the endemic equilibrium is given explicitly for R0 > 1 by

Si∞ = S∞ = N

R0
, Ii∞ = I∞ = μN

μ + γ

(
1 − 1

R0

)
, Ri∞ = R∞ = γ I∞

d
,

(14.2)
with λi∞ = λ∞ = μ(R0 − 1).

As an example of a symmetric situation that satisfies the above requirements,
assume that βij = β if i = j and βij = pβ with p < 1 if i �= j . Then the contact
rate is the same within each patch and has a smaller value between patches. We may
calculate that

R0 = βN(p + 1)

(μ + γ )
,

which depends on the coupling strength p.
We should note that the assumption in the above example that the two patches

have the same total population size is quite unrealistic in practice; it is given only as
a simple example.

If we linearize about the endemic equilibrium and solve the linear approximation,
we find that the solutions are damped oscillations about the equilibrium which are
phase-locked except for very small values of p. Simulations suggest that, as has been
found in other metapopulation models, with larger p values (i.e., stronger between
patch coupling) the system effectively behaves much like a single patch.
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14.1.2 Patch Models with Travel

Sattenspiel and Dietz [33] introduced a metapopulation epidemic model in which
individuals are labeled with their city of residence as well as the city in which they
are present at a given time.

To formulate a demographic model with travel for two patches, let Nij (t) be the
number of residents of Patch i who are present in Patch j at a time t . Residents of
Patch i leave this patch at a per-capita rate gi ≥ 0 per unit time. For a model with
more than two patches we would also need to count the fraction of these travelers
going to each patch. Residents of Patch i who are in Patch j return home to Patch
i with a per-capita rate of rij ≥ 0 with r11 = r22 = 0. It is natural to assume that
gi > 0 if and only if rij > 0. These travel rates determine a directed graph with
patches as vertices and edges connecting vertices if the travel rates between them
are positive. It is assumed that the travel rates are such that this directed graph is
strongly connected.

Assume that births occur in the home patch at a per-capita rate μ > 0, and that
natural deaths occur in each patch with this same rate. Then the population numbers
satisfy the equations

N ′
ii =

2∑
k=1

rikNik − giNii + μ
( 2∑

k=1

Nik − Nii

)

N ′
ij = giNii − rijNij − μNij , i, j = 1, 2, i �= j.

(14.3)

These equations describe the evolution of the number of residents in Patch i who
are currently in Patch i and those who are currently in Patch j �= i. In the first
equation of (14.3) the term μNik represents births in Patch i to residents of Patch i

currently in Patch k. The number of residents of Patch i, namely Nr
i = Ni1 +Ni2 is

constant, as is the total population of the two-patch system. With initial conditions
Nij (0) > 0, the system (14.3) has an asymptotically stable equilibrium N̂ij .

We now formulate an epidemic model in each of the patches, with Sij (t) and
Iij (t) denoting the number of susceptible and infective individuals resident in Patch
i who are present in Patch j at time t . The equations for the evolution of the number
of susceptibles and infectives residents in Patch i (with i = 1, 2) are

S′
ii =

2∑
k=1

rikSik − giSii −
2∑

k=1

κiβiki

SiiIki

N
p
i

+ μ

(
2∑

k=1

Nik − Sii

)

I ′
ii =

2∑
k=1

rikIik − giIii +
2∑

k=1

κiβiki

SiiIki

N
p
i

− (γ + μ)Iii ,

(14.4)
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and for j �= i

S′
ij = giSii − rij Sij −

2∑
k=1

κjβikj

Sij Ikj

N
p
j

− μSij

I ′
ij = giIii − rij Iij +

2∑
k=1

κjβikj

Sij Ikj

N
p
j

− (γ + μ)Iij , i, j = 1, 2

(14.5)

with N
p
i = N1i + N2i denoting the number present in Patch i. Here βikj > 0 is

the proportion of adequate contacts in Patch j between a susceptible from Patch
i and an infective from Patch k that results in disease transmission, βikj > 0 is
the average number of such contacts in Patch j per unit time, and γ > 0 is the
recovery rate of infectives (assumed the same in each patch). Note that the disease
is assumed to be sufficiently mild so that it does not cause death and does not inhibit
travel, and it is assumed that individuals do not change disease status during travel.
Equations (14.4) and (14.5) together with non-negative initial conditions constitute
the SIR metapopulation model.

The disease-free equilibrium is given by Sij = N̂ij , Iij = 0 for i, j = 1, 2. If the
system is at an equilibrium and one patch is at the disease-free equilibrium, then all
patches are at the disease-free equilibrium; whereas if one patch is at an endemic
disease level, then all patches are at an endemic level. These results hold based on
the assumption that the directed graph determined by the travel rates is strongly
connected. If this is not the case, then the results apply to patches within a strongly
connected component.

We may calculate the basic reproduction number R0 for the model (14.4), (14.5)
using the next generation matrix approach [14, 39]. As the result is somewhat
complicated, we do not give it explicitly here, but we note that R0 depends on
the travel rates as well as the epidemic parameters. If R0 < 1, then the disease-free
equilibrium is locally asymptotically stable; whereas if R0 > 1, then it is unstable.

If the disease transmission coefficients are equal for all populations present in a
patch, i.e., βijk = βk for i, j = 1, 2 it is possible to obtain the bounds

min
i=1,2

Roi ≤ R0 ≤ max
i=1,2

Roi, (14.6)

where Roi = κiβi/(d + γ ) is the basic reproduction number of Patch i in isolation.
Thus if Roi < 1 for all i, the disease dies out; whereas if Roi > 1 for all i, then the
disease-free equilibrium is unstable.

A change in travel rates g1, g2 can induce a bifurcation from R0 < 1 to R0 >

1 or vice versa, see [5, Fig. 3a]. Thus travel can stabilize (small travel rates) or
destabilize (larger travel rates) the disease-free equilibrium. Numerical simulations
support the claim that for R0 > 1, the endemic equilibrium is unique and that R0
acts as a sharp threshold between extinction and invasion of the disease.
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Sattenspiel and Dietz [33] have suggested an application of their metapopulation
SIR model to the spread of measles in the 1984 epidemic in Dominica. Travel
rates of infants, school-age children, and adults are assumed to be different, thus
making the model system highly complex and requiring knowledge of much data
for simulation. Sattenspiel and coworkers, see [32] and the references therein, have
since used this modeling approach for studying other infectious diseases in the
historical archives.

The SARS epidemic of 2002–2003 spread rapidly through airline transportation
from Asia to North America, and if there is an influenza pandemic in the near future
it is likely that it will spread in a similar way. Metapopulation models, perhaps with
small numbers of traveling infectives, may be a useful approach to modeling such
a spread. Because the airline network is complex and because passenger travel data
are difficult to acquire, there are substantial technical problems in the formulation
of accurate models. However, it is possible that the qualitative insights that can be
obtained from simple metapopulation models may be useful.

14.1.3 Patch Models with Residence Times

In this chapter we have been examining patch models with travel rates between
patches included explicitly. Another possible perspective, which may be more
appropriate in some situations, would be to describe patches with residents who
spend a fraction of their time in different patches. For example, the spread of
an infectious disease from one village to another through people who visit other
patches may be a realistic description. Another interpretation could be to assume
that individuals spend some of their time in environments more likely to allow
disease transmission.

We consider an SIR epidemic model in two patches, one of which has a
significantly larger contact rate, with short-term travel between the two patches.
The total population resident in each patch is constant. We follow a Lagrangian
perspective, that is, we keep track of each individual’s place of residence at all times
[9, 12, 16]. This is in contrast to an Eulerian perspective, which describes migration
between patches.

Thus we consider two patches, with total resident population sizes N1 and
N2, respectively, each population being divided into susceptibles, infectives, and
removed members. Si and Ii denote the number of susceptibles and infectives,
respectively, who are residents in Patch i, regardless of the patch in which they
are present.

Residents of Patch i spend a fraction pij of their time in Patch j , with

2∑
i=1

pi1 + pi2 = 1, i = 1, 2.

βi is the risk of infection in Patch i, and we assume β1 > β2.
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Each of the p11S1 susceptibles from Patch 1 who are present in Patch 1 can be
infected by infectives from Patch 1, and infectives from Patch 2 who are present
in Patch 1. Similarly, each of the p12S1 susceptibles present in Patch 2 can be
infected by infectives from Patch 1, and by infectives from Patch 2 who are present
in Patch 2. The number of infectives from both patches who are present in Patch 1
is

p11I1(t) + p21I2(t)

and the total number of individuals present in Patch 1 is

p11N1 + p21N2.

Thus the density of infected individuals in Patch 1 at time t who can infect only
individuals currently in Patch 1 at time t , that is, the effective infective proportion in
Patch 1 is given by

p11I1(t) + p21I2(t)

p11N1 + p21N2
.

Thus the rate of new infections of members of Patch 1 in Patch 1 is

β1p11S1
p11I1(t) + p21I2(t)

p11N1 + p21N2
.

The rate of new infections of members of Patch 1 in Patch 2 is

β2p12S1
p12I1(t) + p22I2(t)

p12N1 + p22N2
.

Then the differential equations for S1 and I1 for an SIR infection are given by

S′
1 = −β1p11S1

[
p11I1(t) + p21I2(t)

p11N1 + p21N2

]
− β2p12S1

[
p12I1(t) + p22I2(t)

p12N1 + p22N2

]

I ′
1 = β1p11S1

[
p11I1(t) + p21I2(t)

p11N1 + p21N2

]
+ β2p12S1

[
p12I1(t) + p22I2(t)

p12N1 + p22N2

]
− γ I1.

(14.7)

There is a corresponding calculation for the rate of new infections of members
of Patch 2 in each patch, and the differential equations for S2 and I2 are given by

S′
2 = −β1p21S2

[
p11I1(t) + p21I2(t)

p11N1 + p21N2

]
− β2p22S2

[
p12I1(t) + p22I2(t)

p12N1 + p22N2

]

I ′
2 = β1p21S2

[
p11I1(t) + p21I2(t)

p11N1 + p21N2

]
+ β2p22S2

[
p12I1(t) + p22I2(t)

p12N1 + p22N2

]
− γ I2.

(14.8)
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Using the next generation approach to compute the basic reproduction number
[39] we define

F =
⎛
⎝p11β1S1

p11I1+p21I2
p11N1+p21N2

+ p12β2S1
p12I1+p22I2

p12N1+p22N2

p21β1S2
p11I1+p21I2

p11N1+p21N2
+ p22β2S2

p12I1+p22I2
p12N1+p22N2

⎞
⎠ and V =

(
γ I1

γ I2

)
,

then

F =
(

B11 B12

B21 B22

)
and V =

(
γ 0
0 γ

)
,

where

B11 = N1

(
p2

11β1

p11N1 + p21N2
+ p2

12β2

p12N1 + p22N2

)
,

B12 = N1

(
p11p21β1

p11N1 + p21N2
+ p12p22β2

p12N1 + p22N2

)
,

B12 = N2

(
p11p21β1

p11N1 + p21N2
+ p12p22β2

p12N1 + p22N2

)
,

B22 = N2

(
p2

21β1

p11N1 + p21N2
+ p2

22β2

p12N1 + p22N2

)
.

The B matrix explicitly captures the secondary infections produced by Patch 1
and Patch 2 individuals in each environment. For example, B12 collects the Patch
1 residents infected by Patch 2 inhabitants in both environments. Finally, the
reproduction number is the largest eigenvalue of the matrix FV −1, this is

R0(P) =
B11 + B22 −

√
B2

11 + 4B12B21 − 2B11B22 + B2
22

2γ
.

Figure 14.1 shows the effect of mobility on R0(P) as residence times vary. In the
next chapter we show the applications of this approach in the context of Ebola,
tuberculosis, and Zika.

In the special case of no movement between patches

p11 = p22 = 1, p12 = p21 = 0,

we obtain

R0 = max

(
β1

γ
,
β2

γ

)
.
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Fig. 14.1 Effect of mobility
in the global R0. Parameters
β1 = 0.09, β2 = 0.02, and
γ = 0.05

Integration of the equations for (Si + Ii) (i = 1, 2) gives

γ

∫ ∞

0
Ii(t)dt = Ni − Si(∞), i = 1, 2

and these relations combined with the result of integrating the equations for S′
i/Si

(i = 1, 2) give the final size relations, whose form is quite complicated.
Choosing different values for pij gives a way to estimate the effect on the

epidemic size of imposing travel restrictions between patches.

14.2 Spatial Structure II: Continuously Distributed Models

In the preceding section, we have discussed the spread of a communicable disease
from one patch to another. In this section we will discuss the spatial spread of
a disease in a single patch because of the (continuous) motion of individuals.
The mathematical analysis is based on partial differential equations of reaction–
diffusion type. It is technically complicated and requires substantial mathematical
background. As references for some of the mathematical details, we suggest [10,
Chapter 5], [15, Chapters 9–11], [23, Chapters 15–18], [27, Chapters 11 and 13],
[28, Chapters 1 and 2].

An introduction to models for the spatial spread of epidemics may be found
in other references such as [2, 11, 14, 19, 37]. One characteristic feature of such
models is the appearance of traveling waves, which have been observed frequently
in the spread of epidemics through Europe from medieval times to the more recent
studies of fox rabies [1, 22, 25, 29]. The asymptotic speed of spread of disease is the
minimum wave speed [8, 13, 26, 31, 35, 41]. Models describing spatial spread and
including age of infection are analyzed in [17, 18, 20, 28].
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14.2.1 The Diffusion Equation

Let us begin by considering the motion of particles. Here, by a particle we might
mean an individual cell, a member of a population, or any object of a set in whose
spatial distribution as a function of time we are interested.

Our approach is to take a small region of space and to form a balance equation
which says that the rate of change of the number of particles in the region is equal
to the rate at which particles flow out of the region minus the rate at which particles
flow into the region plus the rate of creation of particles in the region.

We shall confine ourselves mainly to the case in which the dependence is with
respect to a single space coordinate. Let us think of a tube of constant cross section
area A and let x denote the distance along the tube from some arbitrary starting point
x = 0. We assume that the tube is a bounded region described by the inequalities
0 ≤ x ≤ L.

Let u(x, t) be the concentration of particles (number per unit volume) at location
x at time t , meaning that in the portion of the tube between x and x+h, with volume
Ah the number of particles is approximately Ahu(x, t). By “approximately” we
mean that if h is small, the error in this approximation Ahu(x, t) is smaller than a
constant multiple of h2.

We let J (x, t) be the flux of particles at location x at time t , by which we mean
the time rate of the number of particles crossing a unit area in the positive direction.
For every x0 the net rate of flow into the region between x0 and x0+h is AJ(x0, t)−
AJ(x0 + h, t). We let Q(x0, t, u) be the net growth rate per unit length at location
x0 at time t , representing births and deaths.

We have a balance relation on the interval x0 ≤ x ≤ x0 + h, expressing the
fact that the rate of change of population size at time t in this interval is equal to
the growth rate of population in this interval plus the net flux, and this leads to the
conservation law

ut (x, t) = Q(x, t, u) − ∂J

∂x
(x, t). (14.9)

In order to obtain a model which describes the population density u(x, t) we
must make some assumption which relates the rate of change of flux density ∂J

∂x
and

the population density u(x, t). If the motion is random, then Fick’s law says that
the flux due to random motion is approximately proportional to the rate of change
of particle concentration, that is, that J is proportional to ux . If population density
decreases as x increases (ux < 0) we would expect J > 0, so that J and ux have
opposite sign and thus that

J = −Dux

with D a constant called the diffusivity or diffusion coefficient. More generally,
D could be a function of the location x but we shall confine our attention to
constant diffusivity. Equation (14.9) then becomes a second-order partial differential
equation
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ut (x, t) = Q(x, t, u) + Duxx(x, t). (14.10)

Equation (14.10) is a reaction–diffusion equation. If Q = 0, it is called the heat or
diffusion equation. It is possible to solve the heat equation explicitly; the solution
for

−∞ < x < ∞, 0 ≤ t < ∞,

with u(x, 0) = f (x) is

u(x, t) = 1√
4πDt

∫ ∞

−∞
e− (x−ξ)2

4Dt f (ξ) dξ.

In population ecology, we can translate Fick’s law of diffusion into the statement
that the individuals move from a region of high concentration to a region of low
concentration in search for limited resources. We must, however, use this law with
caution when modeling spatial spread of infectious diseases since the individual
movement behaviors may be altered during the course of outbreaks of diseases.

For Eq. (14.10) to have a unique solution, we need to impose additional
conditions. It is possible to establish the following result.

The diffusion equation (14.10) with a specified initial condition u(x, 0) = f (x)

for 0 ≤ x ≤ L and boundary conditions for x = 0 and x = L has a unique solution
for 0 ≤ x ≤ L, 0 ≤ t < ∞. The boundary conditions may specify the value of u

or the value of ux for x = 0 and x = L.
Such a problem is called an initial boundary value problem.
We could also consider problems in an infinite tube defined by −∞ < x < ∞

for which no boundary conditions are required, or a semi-infinite tube 0 ≤ x < ∞
for which a boundary condition is required only at x = 0. In each case there is
a unique bounded solution for any specified initial condition u(x, 0) = f (x) for
−∞ ≤ x < ∞ or u(x, 0) = f (x) for 0 ≤ x < ∞.

A boundary condition specifying that the solution must vanish at a boundary
(called an absorbing boundary) may be taken to say that an individual leaving the
region must die immediately. This is an idealization, but we may think of a large
region with u = 0 far enough away. A boundary condition specifying that ux must
vanish at the boundary may be taken to say that the population is confined to the
region and there is no flow across the boundary.

There are several types of initial condition which may arise. One possibility
is that particles are absent initially, u(x, 0) = 0 and enter through the boundary.
A second possibility is that particles are inserted at a single point x0, u(x, 0) =
u0δ(x −x0). Here, δ(x) denotes the delta “function,” which is zero except for x = 0
and

∫ ∞

−∞
δ(x) dx = 1 (14.11)

and if f is continuous, then
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∫ ∞

−∞
f (x)δ(x − a) dx = f (a). (14.12)

A third kind of initial condition would be to specify a constant initial concentration,
u(x, 0) = u0 for 0 ≤ x ≤ L.

14.2.2 Nonlinear Reaction–Diffusion Equations

In this section we consider reaction–diffusion equations containing a nonlinear
growth rate g(u) with g(0) = g(K) = 0, g′(u) > 0 for 0 ≤ u < K and g′(K) < 0.
Thus, we shall consider the equation

ut (x, t) = Duxx(x, t) + g(u). (14.13)

This equation could describe a population with diffusion in space, and births and
deaths given by the function g(u).

We begin by looking for solutions u(t) which are independent of x. Then uxx = 0
and Eq. (14.13) reduces to the ordinary differential equation

u′ = g(u). (14.14)

Note that K is the carrying capacity, every bounded solution of (14.14) approaches
the equilibrium K as t → ∞.

For solution patterns in space, we can consider time-independent solutions, i.e.,
ut = 0. In this case, Eq. (14.13) reduces to the following second-order ordinary
differential equation:

Du′′ + g(u) = 0. (14.15)

Let v = u′, then v′ = −g(u)/D, Eq. (14.15) is equivalent to the following first-
order system:

(
u

v

)′
=

(
v

−g(u)/D

)
. (14.16)

From g(0) = g(K) = 0 and g′(u) > 0 for 0 ≤ u < K , we know that system (14.16)
has equilibria (u∞, v∞) = (0, 0) and (K, 0). The Jacobian matrix is

[
0 1

− g′(u∞)
D

0

]
. (14.17)
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Since g′(0) > 0, both eigenvalues at the equilibrium (0, 0) are positive and this
equilibrium is asymptotically stable. Since g′(K) < 0, there is one positive and one
negative eigenvalue and the equilibrium (K, 0) is a saddle point.

Nonlinear reaction–diffusion equations may have traveling wave solutions. A
traveling wave solution has the form u(x, t) = U(x − ct) for some constant c.
In this case, ux(x, t) = U ′(x − ct), uxx(x, t) = U ′′(x − ct), and ut (x, t) =
(−c)U ′(x − ct). Thus, from Eq. (14.13), the following equation holds:

−cU ′(x − ct) = g[U(x − ct)] + DU ′′(x − ct).

Let z = x − ct , then the function U(z) must satisfy the second-order ordinary
differential equation in z

DU ′′ + cU ′ + g(U) = 0. (14.18)

The first-order system equivalent to (14.18) is

U ′ = V, V ′ = −g(U)

D
− c

V

D
, (14.19)

whose equilibria are (U∞, V∞) = (0, 0) and (K, 0). The Jacobian matrix at (U∞, 0)

is
[

0 1

− g′(U∞ )

D
− c

D

]
.

From g′(K) < 0 we know that (K, 0) is a saddle point. The equilibrium (0, 0) is
an asymptotically stable node if c2 > 4Dg′(0) and a stable point if c2 < 4Dg′(0).
By studying the phase portrait of the system it is possible to show that, if (0, 0)

is a node, then there is an orbit connecting the saddle point as z → −∞ and the
equilibrium at (0, 0) as z → ∞. This orbit corresponds to a wave solution u(x, t)

traveling to the right, as shown in Fig. 14.2.

14.2.3 Disease Spread Models with Diffusion

If we take the simple endemic SIR model (3.1) considered in chapter 3 (with Λ

being a constant and d = 0) and add diffusion, we obtain the reaction–diffusion
model:

St = Λ − μS − βSI + DSxx

It = βSI − (α + d + μ)I + DIxx.
(14.20)
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Fig. 14.2 A connecting orbit of Eq. (14.13)

A search for traveling wave solutions would lead to a four-dimensional system of
ordinary differential equations. This approach can be carried out but is technically
complicated, and we will not pursue it. Instead, we will consider a case study
in which it is biologically reasonable to assume that susceptible members of the
population do not diffuse, such as the spread of rabies in continental Europe during
the period 1945–1985. This will permit a search for traveling wave solutions that
requires the analysis of only a two-dimensional system.

The epidemic began on the edge of the German/Polish border, and its front
moved westward at an average speed of about 30–60 km per year. The spread of
the epidemic was essentially determined by the ecology of the fox population as
foxes are the main carrier of the rabies under consideration.

A model was formulated in [22] to describe the front of the wave, its speed, and
the total number of foxes infected after the front passes, and the connection of the
wave speed to the so-called propagation speed of the disease.

We formulate a model describing susceptible (S) and infective (I ) foxes. Assume
that susceptible foxes are territorial and do not diffuse, but the rabies virus induces a
loss of sense of territory. Consider the case when the population size has been scale
to 1, i.e., 0 < S(x, t) ≤ 1 and 0 ≤ I (x, t) < 1. Assume also a uniform initial
density for the susceptibles with S0 = 1. The simplest epidemic model under these
assumptions is

St (x, t) = −βS(x, t)I (x, t)

It (x, t) = DIxx(x, t) + βS(x, t)I (x, t) − αI (x, t),
(14.21)

where β is the transmission coefficient, α is the disease death rate of infective foxes,
and D is the diffusion coefficient.
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Consider the traveling wave solution with speed c:

u(z) = S(x − ct), v(z) = I (x − ct),

where z = x − ct , and u and v are the waveforms (or wave profiles).
Substituting the above special form into the system (14.21), we obtain the system

of ordinary differential equations:

Dv′′ + cv′ + βuv − αv = 0, cu′ − βuv = 0, (14.22)

where primes denote differentiation with respect to z. Assume the boundary
conditions:

u(−∞) = a, u(∞) = 1, v(−∞) = v(∞) = 0, (14.23)

where a is a constant to be determined. Substituting the second equation in (14.22)
into the first equation and using the boundary conditions we obtain the system

u′ = β

c
uv,

v′ = c

D

[
1 − u − v + α

β
ln u

]
.

(14.24)

Let (u∞, v∞) denote an equilibrium of system (14.24). Then v∞ = 0. For u∞, it is
either 0 or a solution of the equation

u − 1 = α

β
ln u. (14.25)

For 0 < u∞ < 1, a solution of (14.25), denoted by a, exists if and only if

a <
α

β
< 1. (14.26)

Thus, the two equilibrium points are E1 = (a, 0) and E2 = (1, 0). Observe
that β/α is actually the basic reproduction number R0 of the corresponding ODE
model (14.24).

The Jacobian matrix at E = (u∞, 0) is

J (E) =
⎛
⎜⎝ 0

β

c
u∞

c

D

(α

β

1

u∞
− 1

)
− c

D

⎞
⎟⎠ .
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Using the condition in (14.26) and β/α > 1, we know that J (E1) has negative trace
and negative determinant, and hence, E1 = (a, 0) is a saddle point. Let

c∗ = 2
√

βD(1 − α/β),

then E2 = (1, 0) is a stable node if c > c∗ and a stable focus if c < c∗. Hence, a
traveling wave solution satisfies c > c∗, in which case there is a connecting orbit
from E1 to E2.

In the model considered here we have neglected many important factors,
including births and natural deaths and the long latent period fox rabies. More
accurate models can predict not only the observed wave pattern but also give a
close approximation to the shape of the epidemic wave. Some additional sources of
information about rabies modeling are [21, 25, 29, 30, 42].

With diffusion in both S and I , other difficult questions arise. One question is
diffusive instability, meaning that an equilibrium is asymptotically stable for the
system of ordinary differential equations obtained by a search for solutions that are
constant in time but unstable for the system with diffusion. In general, diffusion
tends to have a stabilizing effect and diffusive instability requires very specific
conditions on the coefficients.

We have looked only at diffusion in one-dimensional space. In the extension
to higher space dimensions, the term uxx can be replaced by the Laplacian of the
function u. In many problems for two-dimensional space there is radial symmetry,
which can be incorporated by describing the Laplacian in polar coordinates and
assuming u to be independent of the angular coordinate. If the radial variable is
denoted by r , the term Duxx would be replaced by urr + ur/r .

Diffusion problems may be mathematically very complicated, and they require a
considerable amount of mathematical background. One important possibility is the
formation of spatial patterns, first suggested by A. M. Turing in 1952 [36]. These
require more knowledge of partial differential equations than wish to assume. Some
examples of pattern formation in diffusive epidemic models may be found in [34, 40]
and further information may be found in [27].

14.3 Project: A Model with Three Patches

The epidemic patch model, (14.4) and (14.5), is for the case of two patches. We can
consider an extension of the model to include three patches. In this case, individuals
leaving Patch i can travel to either one of the two other patches. Let mji ≥ represent
the fractions of individuals moving into Patch j from Patch i. Then mii = 0, rii = 0,∑3

j=1 mji = 1, and gimji denotes the travel rate entering Patch j from Patch i.
Consider the case in which the transmission coefficient βikj depends only on the
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Patch j where the transmission occurs, i.e., βikj = βj . Then the system on resident
Patch i (with i = 1, 2, 3) reads

S′
ii =

3∑
k=1

rikSik − giSii −
3∑

k=1

κiβi

SiiIki

N
p
i

+ μ
( 3∑

k=1

Nik − Sii

)

I ′
ii =

3∑
k=1

rikIik − giIii +
3∑

k=1

κiβi

SiiIki

N
p
i

− (γ + μ)Iii ,

(14.27)

and for j �= i

S′
ij = gimjiSii − rij Sij −

3∑
k=1

κjβj

Sij Ikj

N
p
j

− μSij

I ′
ij = gimjiIii − rij Iij +

3∑
k=1

κjβj

Sij Ikj

N
p
j

− (γ + μ)Iij ,

(14.28)

with N
p
i = N1i + N2i + N3i , the number present in Patch i.

Question 1 The total population sizes satisfy the following equations:

N ′
ii =

3∑
k=1

rikNik − giNii + μ
( 3∑

k=1

Nik − Nii

)
, i = 1, 2, 3,

N ′
ij = gimjiNii − rijNij − μNij , i �= j.

(14.29)

(a) Show that the total resident population in Patch i,
∑3

k=1 Nik , remains constant
at all time. Let Ni0 = ∑3

k=1 Nik for i = 1, 2, 3.
(b) Show that the system (14.29) has the asymptotically stable equilibrium

N̂ii =
(

1

1 + gi

∑3
k=1

mki

μ+rik

)
Ni0, (14.30)

and for j �= i

N̂ij = gimji

μ + rij
N̂ii . (14.31)

Question 2 Let N̂iq be as given in (14.30) and (14.31), and let N̂
p
q = ∑3

i=1 N̂iq . It
is easy to show that R0i = κiβi/(μ + γ ) is the isolated basic reproduction number
of Patch i (i.e., when there is no travel between patches). Consider the order of
infective variables
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(
I11, I12, I13, I21, I22, I23, I31, I32, I33

)
.

(a) Show that the basic reproduction number R0 for the model (14.27)–(14.28)
is given by the dominant eigenvalue of the matrix FV −1, where F is a block
matrix with nine blocks, and each block Fij is a 3 × 3 matrix with the form
Fij = diag(fijq) with

fijq = κqβq

N̂iq

N̂
p
q

, q = 1, 2, 3

and

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 −r12 −r13 0 0 0 0 0 0
−g1m21 b12 0 0 0 0 0 0 0
−g1m31 0 b13 0 0 0 0 0 0

0 0 0 b21 −g2m12 0 0 0 0
0 0 0 −r21 a2 −r23 0 0 0
0 0 0 0 −g2m32 b23 0 0 0
0 0 0 0 0 0 b31 0 −g3m13

0 0 0 0 0 0 0 b32 −g3m23

0 0 0 0 0 0 −r31 −r32 a3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where ai = gi + γ + μ and bik = rik + γ + μ.
(b) Consider the special case when βi = β for i = 1, 2, 3. Fix all parameters

except β. Then R0 = R0(β) is a function of β. Consider the set of parameters:
γ = 1/25, μ = 1/(75 × 365), g1 = 0.01, g2 = 0.02, g3 = 0.03, mij = 0.5
for i �= j , rij = 0.05 for i �= j , κi = κ = 1 and N0i = N0 = 1500 for
i = 1, 2, 3.

(i) Plot R0 as a function of β. What is the threshold value βc such that
R0(β) < 1 for all β < βc?

(ii) Figure 14.3 shows the number of susceptible and infective individuals of
three resident populations for the case of β = 0.025 with different values
of κi and gi . Experiment with other set of parameters to observe how the
prevalence within these patches will change.

(c) Consider the same set of parameter values as given in (a) except that the
parameters κ1 and N01 for Patch 1 can vary. Numerically plot the solutions
for different values of these parameters and describe your observations.

(d) We can also explore the effect of travel rates gi on the prevalence. Let β = 0.025
and fix all parameters as in part (b) except g1 and κ1. Determine a couple of sets
of parameter values of g1 and κ1 that can determine whether or not the infection
on Patch 1 can go extinct.
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Fig. 14.3 Time plots of the
susceptibles (solid) and
infectives (dashed)
individuals for the resident
populations 1 (thicker curve),
2 (intermediate), and 3
(thinner curve). The
parameter values used are
β = 0.025, κ1 = 3, κ2 = 2,
κ3 = 1, g1 = 0.01,
g2 = 0.02, g3 = 0.03 in (A)
and g1 = 0.07, g2 = 0.03,
g3 = 0.04 in (B). All other
parameters have the same
values as in part (A)

(A)

(B)

14.4 Project: A Patch Model with Residence Time

Consider a model consisting of (14.7) and (14.8) with parameters

N1 = N2 = 1,000,000, β1 = 0.3056, β2 = 0.1, γ = 1/6.5.

Question 1 Begin with an assumption that mixing is symmetric, p12 = p21.
Calculate the final epidemic size with several choices of p11 = p22.

Question 2 Calculate the effect on epidemic size of assuming no travel to the patch
with a higher contact rate by assuming p22 = 1, p21 = 0 for several choices of p12.

Question 3 Calculate the effect on epidemic size of banning all travel, p12 =
p21 = 0.
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