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Abstract: Here, we compare two different transparent conducting oxides (TCOs), namely indium
tin oxide (ITO) and indium zinc tin oxide (IZTO), fabricated as transparent conducting films using
processes that require different temperatures. ITO and IZTO films were prepared at 230 ◦C and
at room temperature, respectively, on glass and polyethylene terephthalate (PET) substrates using
reactive magnetron sputtering. Electrochromic WO3 films deposited on ITO-based and IZTO-based
ECDs using vacuum cathodic arc plasma (CAP) were investigated. IZTO-based ECDs have higher
optical transmittance modulation, ∆T = 63% [from Tbleaching (90.01%) to Tcoloration (28.51%)], than ITO-
based ECDs, ∆T = 59%. ECDs consisted of a working electrochromic electrode (WO3/IZTO/PET)
and a counter-electrode (Pt mesh) in a 0.2 M LiClO4/perchlorate (LiClO4/PC) liquid electrolyte
solution with an active area of 3 cm × 4 cm a calculated bleaching time tc of 21.01 s and a coloration
time tb of 4.7 s with varying potential from −1.3 V (coloration potential, Vc) to 0.3 V (bleaching
potential, Vb).

Keywords: transparent conducting oxides (TCOs); indium zinc tin oxide (IZTO); electrochromic
devices (ECDs)

1. Introduction

The optical properties (transmittance, reflectance, and absorption) of electrochromic
devices (ECDs) can be changed using a dc pulsed voltage [1]. Electrochromism is associated
with double injection/extraction of positive ions (lithium or proton) and electrons into/out
of electrochromic materials [2]. A wide variety of electrochromic materials have been devel-
oped, including metal oxides [3–5], small organic molecules [6], and conductive polymer
thin films [7–9]. In recent years, electrochromic devices (ECDs) have attracted tremendous
attention due to their potential applications, such as in smart windows [10,11], optical
displays [12] and rear-view mirrors [13]. Smart windows based on electrochromic (EC)
materials allow easy control of indoor sunlight and solar heat and can be used to effectively
reduce the heating or cooling loads of building interiors [2,14]. Flexible electrochromic
devices (FECDs) have become an important demand, and hold new possibilities for the
application of ECDs, for example, for thermal control of satellites [15], potentially flexible
hidden message displays and wearable smart clothes applications [16,17].

In addition, FECDs are very thin and lightweight, which makes their use more flexible
than rigid ECDs. The conventional application of FECDs is seriously restricted by fabri-
cation techniques and electrochromic materials such as flexible transparent conductive
films and electrochromic (EC) materials with the desired photoelectrical properties and
durability [15,17,18], which is a key point developed in FECDs. Traditional deposition tech-
niques used to fabricate FECDs include magnetron sputtering, plasma-enhanced chemical
vapor deposition, electrodeposition and lithography. The advantages of FECDs include the
potential to reduce production costs using roll-to-roll deposition [19]. In general, FECDs are
composed of anodic and cathodic coloring materials in a five-layer structure [20]. A pair of
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transparent conducting layers sandwich an ionic conduction layer (electrolyte) in contact with an
electrochromic (EC) layer and an ion storage (complementary) layer—TCO/EC/IC/CE/TCO,
where TCO, IC and CE are the transparent conducting oxide, the ion conducting layer
(electrolyte) and the counter electrode, respectively [20,21]. Tungsten oxide (WO3) is known
as one of the most popular cathodic coloration materials and nickel oxide (NiO) is a typical
anodic coloration material that has been intensively investigated. A popular TCO is indium
tin oxide (ITO)—the most widely used material as a transparent conducting film for elec-
trochromic devices. However, ITO films exhibit excellent characteristics only in crystalline
forms, and have to be deposited at high temperatures at least above 200 ◦C to be crystal-
lized [22]. Further, its brittleness and high-temperature processing requirements limit its
use in flexible devices [23,24]. Low-temperature deposition of amorphous TCOs (α-TCOs)
typically occurs via overlaps of empty isotropic ns orbitals of their heavy metal cations in
the electronic configuration (n − 1)d10ns0 (n ≥ 4) [25], with excellent characteristics that
are comparable with that of crystalline TCOs, and thus this is a promising a new trend in
optoelectronic devices. α-TCOs have been found to possess good electrical conductivity,
high transmittance, high mobility [26–28], high thermal/chemical stability, low deposi-
tion temperatures and lower roughness. In recent years, IZTOs film have received much
attention as new candidates for transparent conducting films. In this study, we compare
ITO and IZTO films as transparent electrodes in ECDs using different deposition pro-
cessing temperatures. FECD performance was studied as a function of the grain size of
the WO3 particles deposited on the two different TCO electrodes. We applied ITO and
IZTO films to FECDs consisting of a working electrode (WO3 electrode film deposited on
ITO/glass and IZTO/PET) and a counter electrode (Pt mesh) in a 0.2 M LiClO4/perchlorate
(LiClO4/PC) solution.

2. Experimental Methods
2.1. Methods

The typical structure of Pt mesh/electrolyte layer/EC layer/TCO substrates for col-
oration state indicates the movement of an injection of positive ions (lithium) and electrons
into electrochromic materials as shown in Figure 1. The PET and glass substrates used were
thoroughly cleaned beforehand through an ultrasonic bath sequence in acetone, ethanol,
and deionized water for 15 min each and were then subsequently dried using high-purity
N2 gas and loaded into the sputter chamber and the distance between the target and
substrate was set at approximately 90 mm. The deposition chamber is then evacuated
to a high-vacuum base pressure set to less than 9.33 × 10−4 Pa. The working pressure,
set at 0.13 Pa, was kept with an argon (Ar) gas flow of 30 sccm. IZTO films were fabricated
without substrate heating, while ITO films were fabricated with the substrate heated to
230 ◦C in the deposition process, and the target was pre-sputtered for 3 min. The individual
ITO (90 at.% In2O3 + 10 at.% SnO2) and IZTO (70 at.% In2O3 + 10 at.% SnO2 + 20 at.%
ZnO) films were then deposited on the substrates using DC magnetron sputtering of 100 W
to achieve a final thickness of approximately 800 nm. The deposition process of TCO
films is listed in Table 1. On the finished TCO/glass substrate samples, a WO3 electrode
film (220 nm) layer was deposited using cathodic arc plasma (CAP) deposition with a
high-purity tungsten (W)-metal target (76 mm in diameter and 12 mm in thickness) at
room temperature. The base chamber pressure was set at than 1.33 × 10−3 Pa using a turbo
pump. In this study, we used an oxygen mass flow of 375 sccm and an argon mass flow of
75 sccm for the reactive gases. The WO3 films were fabricated on individual TCOs/glass
as electrochromic layers, which are listed in Table 2.



Materials 2021, 14, 4959 3 of 13Materials 2021, 14, x FOR PEER REVIEW 3 of 13 
 

 

 

Figure 1. The typical structure of the electrochromic device for coloration states. 

Table 1. Details of the parameters of IZTO and ITO films. 

Processing 
Working 

Pres. (Pa) 

Base Pres. 

(Pa) 
Ar (sccm) 

DC Power 

(W) 

Thickness 

(nm) 

Deposition 

Temp. (°C) 

IZTO 0.13 9.33 × 10−4 30 100 800 RT 

ITO 0.13 9.33 × 10−4 30 100 800 230 

Table 2. Deposition parameters of the WO3 films. 

Target 

Working 

Pres.  

(Pa) 

Base Pres. 

(Pa) 

Ar/O2 

(sccm) 
Power (W) 

Thickness 

(nm) 

Deposition 

Temp.  

(°C) 

Deposition 

Rate 

(nm/min) 

Metal W 2.7 1.3 × 10−3 0.2 1350 220 RT 14.67 

2.2. Characterization 

The crystal structural properties of the TCO films were analyzed by Grazing Inci-

dence X-ray diffraction (GI-XRD). The electrical properties of TCO films were character-

ized using a Hall effect measurement system at room temperature. We used a UV–vis 

spectrometer (USB 4000, Ocean Optics, Inc. 830 Douglas Ave. Dunedin, FL, USA) to meas-

ure the optical properties of TCO films in the wavelength range of 200–2000 nm. Using 

Scanning Electron Microscopy (SEM), we observed the surface morphologies of WO3 na-

noparticles on the different TCO thin films (WO3/TCO/PET and WO3/TCO/glass). Electro-

chemical characterization was carried out using chronoamperometry (CA) and electro-

chemical impedance spectroscopy (EIS) (Autolab, model PGSTAT 30) of WO3/TCO/PET 

or WO3/TCO/glass, which were systematically discussed. In the electrolyte system, we 

used a liquid electrolyte composed of lithium perchlorate (LiClO4, Mw = 106.39, Sigma-

Aldrich, Darmstadt, Germany) and propylene carbonate (PC, C4H6O3, Sigma-Aldrich), 

and the resulting weight ratio was 0.053 (LiClO4/PC = 10.6 g/200 mL). An active area of 2 

× 3 cm2 was used in our case for ECDs. The Alpha-Step D-500 stylus profiler is measured 

with each layer of thickness. In situ optical transmittance was carried out with a U–vis 

spectrometer. Electrochemical impedance spectroscopy (EIS) of all ECDs was measured 

with the frequency range set from 1 mHz to 1 MHz. 

3. Results and Discussion 

Figure 2 displays the GI-XRD patterns of ITO/glass and IZTO/PET using DC magne-

tron sputtering power at 100 W. The GI-XRD patterns of ITO film deposited on glass at 

230 °C which exhibited polycrystalline indexed at (211), (222), (400), (440), and (622). The 

high-intensity peak at 2θ of 35° indicates the crystalline nature of film with (222) as the 

Figure 1. The typical structure of the electrochromic device for coloration states.

Table 1. Details of the parameters of IZTO and ITO films.

Processing Working
Pres. (Pa)

Base Pres.
(Pa)

Ar
(sccm)

DC Power
(W)

Thickness
(nm)

Deposition
Temp. (◦C)

IZTO 0.13 9.33 × 10−4 30 100 800 RT

ITO 0.13 9.33 × 10−4 30 100 800 230

Table 2. Deposition parameters of the WO3 films.

Target
Working

Pres.
(Pa)

Base Pres.
(Pa)

Ar/O2
(sccm)

Power
(W)

Thickness
(nm)

Deposition
Temp.
(◦C)

Deposition
Rate

(nm/min)

Metal W 2.7 1.3 × 10−3 0.2 1350 220 RT 14.67

2.2. Characterization

The crystal structural properties of the TCO films were analyzed by Grazing Incidence
X-ray diffraction (GI-XRD). The electrical properties of TCO films were characterized using
a Hall effect measurement system at room temperature. We used a UV–vis spectrometer
(USB 4000, Ocean Optics, Inc. 830 Douglas Ave. Dunedin, FL, USA) to measure the optical
properties of TCO films in the wavelength range of 200–2000 nm. Using Scanning Electron
Microscopy (SEM), we observed the surface morphologies of WO3 nanoparticles on the
different TCO thin films (WO3/TCO/PET and WO3/TCO/glass). Electrochemical charac-
terization was carried out using chronoamperometry (CA) and electrochemical impedance
spectroscopy (EIS) (Autolab, model PGSTAT 30) of WO3/TCO/PET or WO3/TCO/glass,
which were systematically discussed. In the electrolyte system, we used a liquid elec-
trolyte composed of lithium perchlorate (LiClO4, Mw = 106.39, Sigma-Aldrich, Darmstadt,
Germany) and propylene carbonate (PC, C4H6O3, Sigma-Aldrich), and the resulting weight
ratio was 0.053 (LiClO4/PC = 10.6 g/200 mL). An active area of 2 × 3 cm2 was used in
our case for ECDs. The Alpha-Step D-500 stylus profiler is measured with each layer
of thickness. In situ optical transmittance was carried out with a U–vis spectrometer.
Electrochemical impedance spectroscopy (EIS) of all ECDs was measured with the fre-
quency range set from 1 mHz to 1 MHz.

3. Results and Discussion

Figure 2 displays the GI-XRD patterns of ITO/glass and IZTO/PET using DC mag-
netron sputtering power at 100 W. The GI-XRD patterns of ITO film deposited on glass
at 230 ◦C which exhibited polycrystalline indexed at (211), (222), (400), (440), and (622).
The high-intensity peak at 2θ of 35◦ indicates the crystalline nature of film with (222) as
the preferred plane orientation. The GI-XRD patterns of ITZO film deposited on PET
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substrates at room temperature and exhibited a lone, broad peak at 2θ of 33◦, indicating an
amorphous structure.
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Figure 2. The XRD patterns of the different TCO films.

Figure 3 exhibits the optical transmittance of ITO/glass and IZTO/PET in the wave-
length range of 300–2000 nm measured with UV–vis spectrometry. The samples of
ITO/glass and IZTO/PET were measured with average transmittance, sheet resistance
(Ω/�), electrical resistivity(ρ), mobility (µ), carrier concentration (n) and figure of merit
(ΦTC). The average transmittance of ITO/glass and IZTO/PET was calculated to be approx-
imately 86.8% and 88.4% in the wavelength range of 400–800 nm. The mobility of IZTO
was higher than ITO due to poor electron–phonon scattering because of the amorphous
structures. The carrier concentration of IZTO film was lower than the ITO film due to
carrier compensation. According to Haacke’s relation, in order to qualify the performance
of TCO [24], figure-of-merit ΦTC can be explored by Equation (1):

ΦTC = T(λ)10/Rs, (1)

where the T(λ) is the optical transmittance, Rs is the sheet resistance, and ΦTC is displayed in
Table 3; the higher value of ΦTC is 40× 10−3 for the ITO thin films fabricated with substrate
heating of 230 ◦C than 31.1 × 10−3 for the IZTO films fabricated at room temperature.

Figure 4 shows the SEM images of WO3 films deposited on ITO/glass and IZTO/PET.
From SEM images, we find that the WO3 particle of the IZTO-based ECD is smaller than
the ITO-based ECD. Patrick et al. [29] suggested that the rough surface raises the local
supersaturation in the solution, thus leading to another mechanism of enhanced nucleation
rate. The IZTO film was featureless and smooth without defects such as pinholes, cracks,
and protrusion [30] that could control the WO3 particle size in furthering the process.
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Figure 3. The optical transmittance spectra of the different TCO films.

Table 3. The comparison of Hall measurement results, transmittance, and ΦTC values of the different
TCO films.

Processing
Trans-

mittance
(%)

Sheet
Resistance

(Ω/�)

Electrical
Resistivity

(Ω·cm)

Mobility
(cm2·V−1)

Carrier
Concentra-

tion
(cm−3)

Figure of
Merit (Ω−1)

IZTO 86.8 7.8 6.2 × 10−4 6.622 8.40 × 1020 31.1 × 10−3

ITO 88.4 7.2 5.7 × 10−4 2.95 2.08 × 1021 40 × 10−3
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We sought to elucidate the electrochemical properties of the WO3/ITO/glass and
WO3/IZTO/PET by constructing three electrode cells, which comprised a working elec-
trode (WO3 film on TCO substrate), a counter-electrode (Pt mesh) and a reference electrode
(Ag/AgCl) in a 0.2 M LiClO4/PC solution [31,32].

Figure 5 displays the CA curves at a voltage of 0.3 V (bleaching state) to −1.3 V
(coloring coloration state) with a pulsed time interval of 30 s for the coloration and bleaching
states of the optical transmittance spectra of WO3/ITO/glass and WO3/IZTO/PET in the
range from 300 to 1000 nm. Optical transmittance modulation (∆T = Tbleaching − Tcoloration)
of IZTO-based ECD and ITO-based ECD varied at 63% and 59%. The transmittance
optical modulation, ∆T = 63% between coloration and bleaching states, with IZTO-based
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ECDs higher than ITO-based ECDs at a fixed wavelength of 633 nm due to relevant
surface electrochromic materials (WO3/ITO/glass and WO3/IZTO/PET) for particle size
discussed in detail below.
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FECDs involved the double injection/extraction of positive ions (lithium or proton)
and electrons into/out of the host WO3 lattice in the transition from W5+ to W6+. This fol-
lows the electrochemical reaction:

WO3 (bleaching state) + x (Li+ + e−)→ LixWO3 (coloration state), (2)

during applying the negative voltage, the reduction of W ions W6+ to W5+ led to the
coloration state, and the reverse voltage the oxidation of W5+ to W6+ to the bleaching state.

To clarify the outstanding optical transmittance difference of IZTO-based ECD and
ITO-based ECD, the behaviors of Li+ ions and electrons in the transport process were
considered. Figure 6 shows the bleaching state for electron and Li+ ions extraction transport
in electrochromic WO3 films when applying the positive voltage. Li+ ions and electrons
can extract a distance of d out LixWO3 (where d represents the maximum electron and
Li+ ions from the interior of LixWO3, R1 and R2 represent the radius of LixWO3 particle
for ITO-based and IZTO-based ECDs, respectively.) It presumes R2 (the radius of LixWO3
particle for IZTO-based ECDs) is smaller than d (the distance of Li+ ions and electrons
can extract), which can explain electron and Li+ ions can be extracted from the interior
of LixWO3 for IZTO-based ECDs. However, R1 (the radius of LixWO3 particle for ITO-
based ECDs) is larger than d (the distance of Li+ ions and electrons can extract), and this
means electron and Li+ ions cannot be extracted to the electrolyte from the LixWO3 particle
completely, indicating the LixWO3 particles have some residual W5+ ions in the process
of fading oxidation that W5+ cannot completely convert to W6+, leading to poor optical
transmittance modulation [31,32].
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IZTO based ECDs 4.7 21.01 

Figure 6. Schematic diagram of electron and Li+ ions transport in the ECDs. The schematics of Li
ions path through surface morphology with different grain type (a1) ITO based ECDs (a2) IZTO
based ECDs. (b1,b2) Li+ ions and electrons can extract a distance of d out LixWO3, and R1 and R2

rep-resent the radius of LixWO3 particle for ITO-based and IZTO-based ECDs.

Figure 7 shows CA curves with varying potential from −1.3 V to 0.3 V for 30 s and the
corresponding in situ transmittance response of IZTO-based ECD and ITO-based ECD at a
fixed wavelength of 633 nm. Furthermore, the switching response times of the coloration
and bleaching states are defined as reaching 90% of the full transmittance modulation
investigated in detail in Table 4 [33]. In this study, IZTO-based ECD and ITO-based ECDs
were calculated as a tc of 21.01 s and 20.13 s, and as tb of 4.7 s and 22.32 s, respectively.
In general, the bleached response time presented faster coloration kinetics than coloration
due to the lower conductivities of the bleached-state forms than those of the colored-state
forms [33]. The bleaching time is determined by the dispersion coefficient of ions and
the length of dispersing channels [34,35]. The fast bleaching time of IZTO-based ECDs is
associated with the WO3 particle size due to the shorter dispersing channels.

Table 4. The switching response times of the coloration and bleaching states for IZTO-based and
ITO-based ECDs.

Samples Bleaching Time, tb
(s)

Coloration Time, tc
(s)

ITO based ECDs 22.32 20.13

IZTO based ECDs 4.7 21.01
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Figure 8 shows a schematic of the electrochemical reaction for the Pt mesh/electrolyte
layer/EC layer/TCO substrate at the coloration state, which can be expressed as the sum
of the following [36]

R = Rs (electrolyte) + Rct (LixWO3) + R (WO3) + R (TCO/WO3) + R (TCO) (3)

The ions for the intercalation process are supplied using an Electro-Chemical Impedance
spectroscopy (EIS) tool to analyze the ion charge transfer properties of IZTO-based and
ITO-based ECDs. Further, we compare the charge transport kinetics of the two TCO
electrodes based on ECDs via a Nyquist curve analysis.

Figure 9 shows that there are three processes involved in the intercalation of ions into
electrochromic WO3 films. First, the left point of the semi-circle, in the high-frequency
region, indicates the migration of ions at the electrode–electrolyte interface. Secondly,
the middle of the semicircle, in the middle-frequency region, corresponds to the charge-
transfer process. Third, the right part of the semi-circle, in the low-frequency region,
indicates the migration of ions at the electrode–electrolyte interface. Electrolyte solution
resistance Rs was found in the high-frequency region in intercept of the semi-circle real
impedance axis on the Nyquist curve [37]. The Rs value of IZTO-based ECD was approxi-
mately 4.9 Ω, which is similar to the ITO-based ECD (4.5 Ω). The semicircle in the middle
frequency region can be ascribed to the charge-transfer interphase resistance Rct of the
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Li+ ions dependent on the diameter of the semicircle across the interphase electrolyte
and WO3 films. The results show that the ITO-based ECD reveals a larger semi-circle
with approximately 9.5 Ω resistance that was smaller than the IZTO-based ECD of 13.5 Ω,
and is demonstrating a smaller charge carrier interphase resistance. The inclined line
indicates the diffusion of the Li+ ions into the WO3, associated with Warburg impedance,
Zw corresponding to the inclined straight line in the low-frequency region in the Nyquist
plot [37–40]. The fast coloration time of ITO-based ECD is associated with sheer resis-
tance and charge-transfer interphase resistance due to the smaller Li+ ions and electron
diffusion barrier.
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Figure 9. Nyquist plots of IZTO-based and ITO-based ECDs.

The coloration efficiency (CE) is a very important electrochromic property of ECDs
and it is associated with the optical density (∆OD) and the intercalated charges (Qin) [39].
It can be obtained by Equation (4).

CE = ∆OD/Qin (4)

∆OD = log10 (Tbleached/Tcolored) (5)

where the ∆OD is the optical density variation between the transmittance values in the
bleached and colored states at 633 nm. The amount of charge intercalated (Qin) when a
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negative potential is applied is integrated by CA measurement. A high CE value (cm2 C−1)
is achieved when a large change in optical density is driven by a low amount of inserted
charge. Figure 10a,c show the coloration and bleaching states of the optical transmittance
spectra of WO3/IZTO/PET and WO3/ITO/glass in the range from 300 to 900 nm using
varying voltage from 0.2 V (bleaching state) to −1.0 V (coloration state) with a pulsed
time interval of 60 s. Figure b,d show the dependence of ∆OD on intercalated charges
density at a wavelength of 633 nm. The calculated CE result for the IZTO-based ECD is
40.61 cm2 C−1, higher than ITO-based ECD (29.03 cm2 C−1) because of the smaller WO3
particle size to provide larger optical transmittance modulation.
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Figure 10. (a,c) The transmittance spectra of IZTO-based and ITO-based ECDs in the range from 300
to 900 nm using varying voltage from 0.2 V to −1.0 V. (b,d) ∆OD versus charge density at 633 nm of
IZTO−based and ITO−based ECDs.

The cyclic durability of IZTO-based ECDs was also studied by a CA, measured
applying 0.2 V to −1.0 V with a pulsed time interval of 30 s. The transmittance spectra
in Figure 11 show the 450 coloration–bleaching cycles, which vary as a function of time
within 9000 s for the IZTO-based ECD. As shown in Figure 11, the IZTO-based ECD has a
stable electrochromic performance from the first cycle to 450 cycles.
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Figure 11. Life cycle measurements for the IZTO-based ECDs by CA measurements under
0.2 V~−1.0 V for 30 s.

4. Conclusions

In conclusion, electrochromic WO3 films were deposited by CAP on ITO/glass pre-
pared by heating the substrate and the IZTO/PET fabricated at room temperature. First,
WO3/IZTO/PET shows a smaller grain size on the amorphous IZTO compared with crys-
tal ITO for WO3/ITO/glass and was found to present wider optical modulation in the
visible light region (~63% at 633 nm) and higher coloration efficiency (40.61 cm2 C−1) than
ITO-based ECDs. Second, amorphous IZTO is a suitable alternative to other TCOs prepared
using higher-temperature processes. CE for IZTO-based ECD is 40.61 cm2 C−1, higher
than ITO-based ECD (29.03 cm2 C−1) because of the smaller WO3 particle sizes to provide
larger optical transmittance modulation. IZTO-based ECDs have stable electrochromic
performance from the first cycle to 450 cycles.
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