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Abstract

Multivariate analysis is a powerful tool to process spectrum imaging datasets of elec-

tron energy loss spectroscopy. Most spatial variance of the datasets can be explained

by a limited numbers of components. We explore such dimension reduction to facilitate

quantitative analyses of spectrum imaging data, supervising the spectral components

instead of spectra at individual pixels. In this study, we use non-negative matrix factor-

ization to decompose datasets from Fe2O3 thin films with different Sn doping profiles on

SnO2 and Si substrates. Case studies are presented to analyse spectral features includ-

ing background models, signal integrals, peak positions and widths. Matlab codes are

written to guide microscopists to perform these data analyses.

Key words: electron energy loss spectroscopy, spectrum imaging, multivariate analysis, non-negative matrix fac-
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Introduction

Since the early days of electron energy loss spectroscopy
(EELS), multivariate analysis (MVA) has been introduced to
process EELS data [1]. As advancing EELS acquisition rou-
tines generate increasingly bigger datasets [2,3], MVA has
been widely acknowledged as a powerful tool to process
EELS datasets, including spatially resolved spectrum imaging
in two dimensions [4–11] and three dimensions [12–14], and
sets of angular-resolved [15] or site-specific [16] spectra.
With the development in MVA algorithms, principal compo-
nent analysis (PCA) [17], independent component analysis
[18], non-negative matrix factorization (NMF) [19] and geo-
metric extraction methods [20] (such as vertex component
analysis and Bayesien linear unmixing [21]) have been

applied to treat EELS data. These methods have shown suc-
cess in noise reduction and have been applied to identify fine
structures either around the absorption edge onset or in the
valence EELS regime.

MVA algorithms decompose a spectrum imaging data-
set into the linear combination of a few spectral compo-
nents, as expressed by Eq. (1),

∑( ) = ( ) ( )f E c f E 1p
i

p i i,

where fp and fi are the EELS spectra as functions of the
energy loss E for individual pixels p and individual spectral
components i, respectively, and cp,i are the coefficients for
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the linear combination. Equation (1) is usually an approxi-
mation, neglecting the residual term after the linear com-
bination. At each pixel p, fp is expressed as a linear
combination of i spectral components fi with the coeffi-
cients cp,i, which is also known as the score matrix. As the
number of components i is usually much smaller than the
number of pixels p, fi is a sparse representation of fp, redu-
cing its dimension by p-i. Such dimension reduction has
enabled a concise representation of spectrum imaging data-
sets by a number of spectral components with their corre-
sponding coefficients at each pixel for each component.

Thus far, MVA has been widely applied to decompose
spectrum imaging datasets [4–14]. However, interpretation
on the MVA spectral components remains descriptive and
qualitative. It is more efficient to capitalize on the dimen-
sion reduction and evaluate the spectral components
instead of the spectrum at individual pixels. The comput-
ing power will not be saved by such an approach, as the
MVA algorithms themselves take more time to perform.
On the other hand, the man power to supervise and pre-
sent the spectrum imaging can greatly benefit from a
dimension reduction.

In this article, we demonstrate the component-based
supervision to evaluate EELS spectrum imaging data, and
bridge the gap between MVA analysis and conventional
(pixel-based) EELS quantification routines. Evaluation of
quantitative information from EELS spectra requires proper
modelling. Model-based quantification, such as EELSModel
developed by Verbeeck et al. [22], composes an EELS spec-
trum by element-specific edges and background from the
preceding edges, which requires detailed information on the
constituents in the sample. It is more common to analyse
one absorption edge at a time using assigned energy win-
dows in the vicinity of the edge for background subtraction
and signal integration [23]. The selection of energy windows
is a necessary supervision for EELS analysis. Enforcing such
supervision on individual pixels is a laborious work, prone
to bias, and hence rarely done in practice. Making use of
the dimension reduction from MVA analysis, supervision on
the component level becomes practical, as the linear combin-
ation coefficients cp,i from MVA algorithms are unsuper-
vised and unbiased. We examine two case studies to
evaluate the signal of an absorption edge and the chemical
shift of a white line feature, respectively, all based on the
component-based supervision.

Data Acquisition

We used thin film hematite (α-Fe2O3) photoelectrodes as
materials systems for the case studies, where Sn dopants are
introduced to enhance their photoelectrochemical activity
for solar-driven hydrogen production [24]. The distribution

of Sn dopants is discussed for three cases, uniformly doped
Sn (denoted as Sn: Fe2O3), partially doped Sn (denoted as
Sn/: Fe2O3), and without Sn dopants (Fe2O3). Two quan-
tities are of interest from the EELS spectrum imaging data-
sets, the signal from the Sn-M4,5 edges to evaluate the
elemental distribution, and the chemical shift of the Fe-L3

white line that shows the oxidation state of Fe.
Electron-transparent specimens were prepared by Ar+

ion milling and investigated in a FEI Titan Themis micro-
scope operated at 300 kV. Aberration correction of the
probe forming lenses enables a scanning probe of 24 mrad
convergence semi-angle and ~1 Å probe size. Scanning
transmission electron microscopy (STEM) images were col-
lected by the annular bright field (ABF) and the high angle
annular dark field (HAADF) detectors that cover the range
of 8–16mrad and 73–352mrad, respectively. STEM-EELS
spectrum imaging was acquired using a Gatan Quantum
ERS energy filter in the image-coupled mode with a
35mrad entrance aperture. Dual EELS collection mode
enabled the zero loss peak (ZLP) alignment at individual
pixels. Spectra were acquired from relatively thin areas
with thicknesses of 0.3–0.5 times the inelastic mean free
path. Therefore, the spectra primarily consist of single-
scattered inelastic events so that deconvolution with the
help of the low loss spectra was not conducted. To minim-
ize specimen damage, charging, and the subsequent drift,
moderate dose (0.1 nA probe current and 0.1 s pixel acqui-
sition time) was used to collect spectrum imaging data at a
1 nm × 1 nm pixel size.

Data Analysis

As shown in Fig. 1a, the thin film photoelectrode grown by
atomic layer deposition is much thinner than the fluorine
doped SnO2 substrate. This makes quantification of Sn
dopants in the hematite thin films by energy dispersive
X-ray spectroscopy very challenging, as nonlocal X-ray
excitation (e.g. due to stray electrons and fluorescence arte-
facts) from SnO2 contributes to the signal. On the other
hand, EELS only collect forward scattered electrons (up to
35 mrad in this study), so that the signal only contains
local inelastic scattering events [23]. The most convenient
edges to study are Sn-M4,5 edge, which has a delayed edge
onset from ~480 eV and overlaps with the O-K edge from
~530 eV, and the Fe-L2,3 white lines with onset from ~710 eV,
as shown in Fig. 1b.

First, we show an example on the conventional evalu-
ation (analysed pixel by pixel) of a spectrum imaging across
the SnO2|Sn/:Fe2O3 interface shown in Fig. 1a. For simpli-
city, the same supervision was applied for each pixel here,
including the edge integration window (500–525 eV to avoid
overlapping with O-K), the background model (power law),
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and the background fitting window (450–480 eV). Adjusting
these parameters for individual pixels is not only exhaust-
ive, but prone to bias. Due to the moderate dose, the
spectrum at each pixel is noisy, as shown in Fig. 2a.
Consequently, the power law modelling of the background
returns noisy parameters, as shown in Fig. 2b, and hence
the signal integral is also noisy. There is no finer detail in

the signal integral than the higher amount found in SnO2

with respect to Sn/:Fe2O3.
Noise reduction through PCA is a well-established rou-

tine in the EELS community, which has been implemented
in the Digital Micrograph software as the MSA plug-in
[25]. Application of PCA routine to the dataset returns a
scree plot, as shown in Fig. 2c, which aligns the spectral

Fig.1. (a) HAADF-STEM micrograph of an ultrathin Sn:Fe2O3 photoanode on the fluorine doped

SnO2 substrate. (b) The sum core loss spectrum of an EELS spectrum imaging.

Fig. 2. (a) An EELS spectrum from the spectrum imaging dataset before and after the PCA

denoise routine, (b) the area for spectrum imaging, the integrated counts of the Sn-M4,5 edge,

and the power law exponents for background modelling (pixel size is 1 nm), (c) PCA scree plot

of the spectrum imaging to identify the threshold level of noise and (d) maps of the integrated

counts and the power law exponents as in Fig. 2b after the PCA denoise routine.
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components with respect to their explained variance. It is
clear that two components stand out explaining the most
variance from the dataset, whereas the third component is
slightly higher than the following components showing a
continuous decay of explained variance from the dataset.
In this case, we treat the components starting from the
fourth as noise components and set their cp,i coefficients to
0 to reconstruct the dataset from the first three compo-
nents, resulting in a denoised spectrum imaging. Figure 2a
shows a denoised spectrum at the same pixel to compare
with the original one. As shown in Fig. 2d, the power law
background fitting on the denoised spectrum imaging
returns less noisy parameters and the signal integral is con-
sequently clearer. It is evident from the denoised signal
integral that the top half of the Sn/: Fe2O3 film has more
Sn than the bottom half. The different Sn doping level in
the Sn/: Fe2O3 film (top half doped, bottom half nominally
undoped) was engineered in the atomic layer deposition
process and can only be verified in this example after the
PCA denoise routine.

By a sparse representation of an EELS spectrum, MVA
analysis not only enables signal identification and noise
removal, but also offers the opportunity to supervise on
the individual components instead of individual pixels.
This can be expressed by the following equation,

∑ ∑ ∑ ∑ ∑( ) = ( ) = ( ) ( )I E c I E c I E 2
E

p
E i

p i i
i

p i
E

i, ,

where ( ) = ( ) − ( )I E f E f Ep p p
BG is the signal of the absorp-

tion edge obtained after background subtraction of the EELS
spectrum ( )f Ep at each pixel, and ( ) = ( ) − ( )I E f E f Ei i i

BG is
the signal of the absorption edge for each spectral compo-
nent. As shown by Eq. (2), summation of the signal counts
at individual pixels ( )I Ep over an energy range is a linear
operation that can be done by linear combinations of such
summation of the spectral components ( )I Ei . As a result, to
evaluate the signal counts, supervision on background mod-
elling can benefit from the dimension reduction from all pix-
els ( )f Ep

BG to all spectral components ( )f Ei
BG .

Physically, both the EELS signal and background are
expected to be positive or 0. Moreover, it is intuitive to
decompose the spectrum datasets into non-negative coeffi-
cients. The NMF approach decomposes the spectrum
imaging into non-negative coefficients and non-negative spec-
tral components, and thereby facilitating the interpretation
of individual components. With the development of MVA
algorithms, the options for decomposing EELS datasets are
ever increasing [19,20]. The decomposed spectral compo-
nents may all serve as input for further processing. In the fol-
lowing examples, we use the NMF algorithm as described in
the scikit learn toolkit [26], which is also used in the open

source Hyperspy software [27]. We then focus on the post
processing of the MVA spectral components to extract quan-
titative values for EELS analysis. The following evaluation
routines are written in a Matlab package that offers a guided
way to process EELS spectrum imaging datasets [28].

We continue with the aforementioned example to show
the evaluation of Sn-M4,5 edge counts from component-
based analysis and background modelling. In addition to
the dataset on the SnO2|Sn/:Fe2O3 interface, another data-
set on the SnO2|Fe2O3 interface is included that contains
spectra from pure Fe2O3 to compare with. The combined
datasets are decomposed by NMF into spectral compo-
nents (Fig. 3a) and their corresponding coefficient maps
(Fig. 3b). The spectral components are normalized with
respect to their corresponding coefficient maps that are set
to have an average value of 1. The NMF component 1 has
higher coefficients on the sample and follows a power law
profile, which reflects the background. Component 2 has
higher coefficients where Sn is abundant and reveals the
profile of Sn-M4,5 edge with a delayed onset. Component 3
has a noisy origin and does not show spectral characteris-
tics from any edges of interest.

Going beyond the qualitative description, background
modelling on individual components is required for quanti-
tative analysis. Fitting the background of component 1 is
straightforward, as it follows a power law (in the form of

−aE r) with exponent r = 3.14 over the modelled energy
range. The signal integration for this component is 0. It is
obvious that components 2 and 3 do not follow a power
law function within any range of energy loss. Although, lin-
ear combination of power law functions has been used to
model EELS backgrounds [29], such combinations do not
return a power law function. In order to quantify the signal
integral of the Sn-M4,5 edge, the background of compo-
nents 2 and 3 is modelled by functions that can be com-
bined linearly, for example, linear functions. As shown in
Fig. 3a, the background of component 2 was modelled as a
constant before the edge onset, whereas the background of
component 3 was also chosen as a constant before the sig-
nal integral window to minimize the effect of the preceding
feature. The signal integrals of components 2 and 3 are cal-
culated, and those of individual pixels are reconstructed
using Eq. (2). The resulting evaluation of signal integral is
very close to the evaluation from individual pixels, as
shown by the line profile in Fig. 3c. The bottom half of the
Sn/:Fe2O3 film (right spectrum imaging) has the same level
of Sn counts as the pure Fe2O3 film (left spectrum imaging)
and the vacuum area. Therefore, the amount of Sn between
SnO2 and the top half of Sn/:Fe2O3 is below the detection
limit, in accordance with the designed film doping profile.
In the top part of the Sn/:Fe2O3 film (right spectrum imaging),
a Sn signal is detected. In this example, component-based
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supervision reproduces the quantification from the conven-
tional (pixel-based) routine, while the supervision on the back-
ground model for three components replaces the supervision
on 650 pixels.

Despite having only three spectral components, supervi-
sion on the background subtraction is far from straightfor-
ward, as there is no definite function to model. In the
example above, the background is modelled by the linear
combination of a power law function and two constants,
as shown in Fig. 3a. The power law exponent r = 3.14 of
component 1 is close to the maximum exponent among
individual pixels, as shown in Fig. 2d. Adding constants to
such a background effectively reduces the power law expo-
nent. In order to quantify the difference between power
law functions, we make use of the fact that the multiplica-
tion of two power law functions returns a power law func-
tion. Instead of decomposing the spectrum imaging dataset
into spectral components, the spectrum imaging can be fac-
torized into spectral factors,

∏ ∑( ) = ( ) ( ) = ( ) ( )f E f E f E c f E, or ln ln 3p
i

i
c

p
i

p i i,p i,

In order to realize factorization by means of linear MVA
algorithms, a logarithmic operation needs to be taken, as for-
mulated in Eq. (3). In comparison with Eq. (1), ( )f Ep and

( )f Ei are replaced by their logarithmics. The practical imple-
mentation includes taking the logarithmic of EELS spectrum

( )f Eln p as input for MVA algorithms, and taking the expo-
nents of the output ( )f Eln i as spectral factors.

As an example, the EELS spectrum imaging shown in
Fig. 3 was taken the logarithmic operation and underwent
NMF decomposition to factorize into spectral factors
(Fig. 4a) and their corresponding coefficient maps (Fig. 4b).
As shown in Fig. 4a, background modelling on the spectral
factors ( )f Eln i becomes more straightforward using a linear
fit against ln (E) before the edge onset. In order to recon-
struct the power law background of individual pixels, the
form of the power law function is put into Eq. (3), which is
then rearranged into Eq. (4),

∑

∑

( ) = ( )

= = ∑
( )

− −a E c a E a

c a r c r

ln ln , where ln

ln , and
4

p
r

i
p i i

r
p

i
p i i p i p i i

,

, ,

p i

where ai and ri are the prefactor and the exponent of the
power law function for each spectral factor, respectively,
and ap and rp are the power law parameters at each pixel.
In this example, the component-based supervision allows
for a selection of different windows for the power law fit-
ting of the background. As shown in Fig. 4a, spectral fac-
tors ( )f Eln i for i = 1, 2 are linear with respect to ln(E) in
the window between 450 and 480 eV, before the Sn-M4,5

edge onset. Factor 3, on the other hand, is not linear in
that range, as a dip is observed around 465 eV, and the fit-
ting window is chosen between 475 and 495 eV. From the

Fig. 3. (a) Background fitting as a power law function e28.14 × E -3.14 for

component 1, and as constants 47.09 and 305.07 for components 2 and

3, respectively, (b) areas of the spectrum imaging and their respective

coefficient maps (scale bars are 10 nm, pixel size is 1 nm), and (c) the

signal integration of a line profile derived from Eq. (2) (open circles) as

compared with the values from fitting on individual pixels (lines).

Dashed lines are eye guides for the baseline (0 integrated counts).
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coefficient map in Fig. 4b, it is shown that factor 3 mainly
contributes to the area beyond the thin film (the glue line
and vacuum) of the left spectrum imaging, which does not
relate to the Sn-M4,5 edge. The power law exponents for
each pixel are then reconstructed from the three factors and

their coefficient maps according to Eq. (4), as shown in
Fig. 4c. A comparison there with a pixel by pixel power law
fitting using a fixed window shows a good agreement
between the two approaches. Fitting the background from
the spectral factors offers a more straightforward supervision
by offering the same function of power law (or a linear func-
tion in the logarithmic form, see Fig. 4a) and the flexibility
on the fitting window.

Besides modelling the power law background, the loga-
rithmic formulation Eq. (3) can be useful to study other
mathematic functions that can be factorized. For example,
the Gaussian shape function can be modelled using the fol-
lowing expression,

⎛

⎝
⎜
⎜⎜

⎞

⎠
⎟
⎟⎟

⎛

⎝
⎜
⎜⎜

⎞

⎠
⎟
⎟⎟∑

∑σ σ μ
μ σ
σ

=

= =
∑
∑

( )

μ

σ
μ

σ
−

( − )
−

( − )

− −
−

−

a e c a e

c
c

c

ln ln , where

, and 5

p

E

i
p i i

E

p
i

p i i p
i p i i i

i p i i

2
, 2

2
,

2 ,
2

,
2

p

p

i

i

2

2

2

2

where ai, μi and σi are the height, the centre, and the
width of the Gaussian shape function for each spectral
factor, respectively, and ap, μp and σp are the Gaussian
shape parameters at each pixel, which can be recon-
structed using Eq. (5). We use the Fe-L3 peak as a case
study for Gaussian fitting to determine the chemical shift.
As shown in Fig. 5b, two datasets are combined together,
representing a scan across a Si|Fe2O3 interface for the left
dataset and a scan across a Si|Sn:Fe2O3 interface for the
right. The background of the Fe-L3 peak was modelled by
supervising individual spectral factors and reconstructing
using Eq. (4), as introduced in the preceding example.
Then, the Fe-L3 peak signal is subjected to the NMF
decomposition in the logarithmic formulation Eq. (3) into
the spectral factors (Fig. 5a) and their corresponding coef-
ficient maps (Fig. 5b).

A quadratic fitting on each spectral factor is performed
to model ai, μi and σi of the Gaussian peak. In comparison
with the centre of factor 1, factor 2 represents a shift to the
right (μ2 > μ1), whereas factor 3 represents a shift to the
left (μ3 < μ1). It is shown in Fig. 5d that factor 1 comes
from undoped and doped Fe2O3 of both spectrum imaging,
factor 2 mainly from areas without Fe2O3, and factor 3
from the homogeneously doped Sn:Fe2O3 film (right spec-
trum imaging) as well as the interface and surface of
undoped Fe2O3 film (left spectrum imaging). A chemical
shift of the Fe-L3 edge correlates to the bonding environ-
ment and especially the oxidation state of Fe atoms. As
hematite (undoped Fe2O3) only consists of Fe3+, a chemical
shift to lower energy loss indicates a lower oxidation state
of Fe, for example, reduction to Fe2+[30].

Fig. 4. (a) Background fitting parameters for the three spectral factors

(factor 1 scaled down by ln(2000) = 7.6): (a1, r1) = (26.30, 2.91), (a2, r2) =
(−2.83, −0.48), (a3, r3) = (−0.50, −0.08), (b) areas of the spectrum

imaging and their respective coefficient maps (scale bars are 10 nm,

pixel size is 1 nm), (c) the power law exponent of a line profile recon-

structed from Eq. (4) (open circles) as compared with the values from

fitting on individual pixels (lines).
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A reconstruction of the Gaussian peak parameters using
Eq. (5) then returns a left shift of the peak at the pixels
where factor 3 has large coefficients, as shown by a line

profile in Fig. 5c. The quantified Gaussian parameters are
compared with those fitted for individual pixels in Fig. 5c
and 5d, where a discrepancy is evident. This is because
modelling the spectral factors (Fig. 5a) as Gaussian func-
tions has a big discrepancy. For example, factor 1 has a
noticeable deviation from a Gaussian shape, showing a
broader profile. As a result, the width derived from spec-
tral factors is lower than the width modelled at individual
pixels, as shown in Fig. 5d. Moreover, factor 2 has several
peak features, whereas the modelled peak only takes their
enveloped shape into account. Despite the conventional
modelling of the white line features by Gaussian peaks, a
spectrum imaging may be impossible to be factorized into
Gaussian peaks. Indeed, many more types of functions
have been applied to model a white line feature to model
the chemical shift [30].

In order to propose a universal way to model the peak
position, we return to the linear formulation Eq. (1).
Instead of doing peak fitting, we approximate the centre
and the width of the peak profiles by their statistical mean
and variance, as shown by the following expressions,

μ =
∑ ( )
∑ ( )

=
∑ ∑ ( )
∑ ∑ ( )

=
∑ ∑ ( )
∑ ∑ ( )

( )

EI E

I E

E c I E

c I E

c EI E

c I E

6
p

E p

E p
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i p i E i
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where μp and σp are the statistical mean and variance at
each pixel, and the other variables are defined in Eq. (2).
Similar to Eq. (2), individual terms in the numerators and
denominators of Eqs. (6) and (7) can be expressed as linear
combination of quantities from the spectral components,
including their first and second moments. Unlike the previ-
ous example (Fig. 5) where each spectral factor is fit to a
Gaussian shape, the spectral components discussed here do
not need to have a Gaussian shape to derive their moments
for the reconstruction of the peak shape parameters at
each pixel using Eqs. (6) and (7).

As an example, the Fe-L3 peak signal from the preceding
example underwent NMF decomposition in the linear for-
mulation Eq. (1) to compute the spectral components
(Fig. 6a) and their corresponding coefficient maps (Fig. 6b).
The background of each spectral component is modelled by
power law and linear fitting introduced in the example of
Fig. 3. Figure 6a displays the spectral components after
background subtraction, where negative values may show

Fig. 5. (a) Gaussian fitting parameters for the 3 factors (a1, μ1, σ1) = (6.187,

710.274, 1.403), (a2, μ2, σ2) = (0.783, 711.519, 3.447), (a3, μ3, σ3) = (0.262,

707.236, 4.935), (b) areas of the spectrum imaging and their respective

coefficient maps (scale bars are 10nm, pixel size is 1 nm); (c) the centre

and (d) the width of a line profile derived from Eq. (5) (open circles) are

compared with the values from Gaussian fitting of individual pixels (lines).
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up (e.g. component 2). The supervision on each spectral
component is necessary to find an energy window so that
the resulting centre of intensity coincides with their respective

peak positions, as shown in Fig. 6a. By using this approach,
there is a much improved numerical agreement on the peak
position with the Gaussian analysis at individual pixels, as
shown in Fig. 6c. Moreover, as shown in Fig. 6d, the peak
width reconstructed from the variance of individual compo-
nents has the same trend as the Gaussian width determined
from individual pixels. Component-based supervision on the
window selection can be a reliable way to reconstruct the
position (chemical shift) and the width of a peak feature and
replace the supervision and curve fitting for individual
pixels.

Conclusion

In summary, we have employed MVA analyses to reduce
the dimension of EELS spectrum imaging datasets and
thereby facilitating the supervision for further evaluation.
This has been employed to model the integral counts as
well as the centre and width of peak features. Using the
logarithmic formulation introduced to factorize the data-
set, parameters of power law background can be recon-
structed, and deviation from a Gaussian peak is visualized.
These utilities are implemented in a Matlab package. More
utilities to model and analyse EELS spectrum imaging
datasets can benefit from component-based supervision
facilitated by MVA analysis.
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