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Abstract: A quantitative method is proposed to determine Stone–Wales defects for 1D and 2D carbon
nanostructures. The technique is based on the diene synthesis reaction (Diels–Alder reaction). The
proposed method was used to determine Stone–Wales defects in the few-layer graphene (FLG)
nanostructures synthesized by the self-propagating high-temperature synthesis (SHS) process in
reduced graphene oxide (rGO) synthesized based on the method of Hammers and in the single-walled
carbon nanotubes (SWCNT) TUBAL trademark, Russia. Our research has shown that the structure of
FLG is free of Stone–Wales defects, while the surface concentration of Stone–Wales defects in TUBAL
carbon nanotubes is 1.1 × 10−5 mol/m2 and 3.6 × 10−5 mol/m2 for rGO.

Keywords: few-layer graphene; structural defects; self-propagating high-temperature synthesis;
Stone–Wales defects; graphene nanostructures; carbon nanotubes; reduced graphene oxide

1. Introduction

The awarding of the Nobel Prize to A. Geim and K. Novoselov for their work on
exfoliation and prediction of the properties of 2D nanocarbon-graphene for many research
groups was the impetus for the start of research on the fine organization of the nanocarbon
family with sp2 hybridization of carbon atoms (the family of graphene structures, including,
of course, graphene itself-2D nanocarbons, single-walled and multi-walled nanotubes-1D
nanocarbons). First of all, the surge of this interest is because atomic-scale defects (impuri-
ties, vacancies, topological defects) significantly affect nanocarbon particles’ physical and
electrical parameters [1]. As a rule, most researchers focus on the detection of Stone–Wales
(SW) defects, which make the greatest contribution to the deviation of the electrophysical
properties of defective 1D and 2D nanocarbons from those of nanocarbons with an undam-
aged structure [2]. The SW defect is formed when one of the C–C bonds in the monolayer
plane is rotated by an angle of 90◦ (Stone–Wales transformation), which leads to the ap-
pearance of two heptagons and two pentagons. The increased interest in the study of SW
defects is also because, due to the low formation energy shown (5 eV), the formation of SW
defects are energetically more favorable and, therefore, the probability of their formation
is higher than the probability of formation of other topological defects (reference [3] and
references in it). It should be noted that SW defects are not a deterministic value, that is,
it depends both on the nature of the starting material (for example, the imperfection of
graphite) and on the specifics of the production method (for example, various versions of
the Hummers method) when obtaining 2D graphene structures. At the same time, since
SW defects are atomic-scale defects, their determination and characterization comprise
an extraordinary task and require the use of complex experimental techniques complex
and expensive instrumentation [4–7]. This is due to the fact that the known methods for
determining SW defects are qualitative or allow only comparative results to be obtained.
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To the best of our knowledge, there is no description of the methods in the literature
that would allow one to obtain quantitative data on the content of SW 1D/2D in nanocar-
bons. Nevertheless, the possibility of getting such data will be very useful in classifying the
families of 1D and 2D nanocarbons, taking into account quantitative data on the content of
SW defects, and choosing promising areas for their application.

This work aimed to develop a publicly available and efficient method for the quantita-
tive determination of SW defects content in 1D and 2D nanocarbons.

2. Investigated Materials

For the study, we used FLG synthesized from starch under the conditions of the SHS
process (FLG-SHS) [8], single-walled carbon nanotubes (SWCNT, TUBAL trademark, JSC
“OCSiAl”, Novosibirsk, Russia) (https://tuball.com/additives (accessed on 1 March 2022))
and GO synthesized by a modified Hammers method [9], which was treated with hydrazine
to obtain reduced graphene oxide (rGO).

3. Methods Used for Analysis and Experimental Technique

The images were obtained by scanning electron microscopy on a TESCAN Mira-3M,
SEM Supra55VP-3259 microscopes (Brno, Czech) and transmission electron microscopy on
a 50 kV FEI Tecnai G2 30 S-TWIN microscope (Hillsboro, OR, USA).

In the TEM study, the powder samples were placed in ethanol, sonicated for 5 min,
and mounted on a carbon grid.

The quality of synthesized samples was estimated using Raman spectra recorded on a
Confotec nr500 (532 nm, SOL Instruments, Minsk, Belarus).

Specific surface areas of synthesized samples were determined using multilayer ad-
sorption on an ASAP 2020 analyzer (Norcross, GA, USA). Nitrogen was used as the
adsorbate. The sample preparation was performed according to the standard procedure
of heating the samples in a vacuum at 300 ◦C for 3 h before the measurements. The
measurement error did not exceed 3%.

Chromatographic studies were carried out using a Clarus 500 gas chromatograph.
Research parameters: column temperature −145 ◦C; detector temperature −250 ◦C; evapo-
rator temperature −250 ◦C; gas rate −30 mL/min.

4. Stone–Wales Defects

Stone–Wales defect is a crystallographic defect in carbon nanotubes, graphene, and
other crystals with a hexagonal crystal lattice appearing when one of the C–C bonds is
rotated through an angle of 90◦, as a result of which four hexagons of carbon atoms are
converted into two heptagons and two pentagons [10]. Because of this rearrangement,
active dienophilic vacancies are formed in the structure of nanotubes and graphene. In
the practice of organic chemistry, active dienophilic vacancies are used to obtain cyclic
compounds by the reaction of the so-called “diene synthesis”—the reaction of [4 + 2]-
cycloaddition (Diels–Alder reaction) [11]. The Diels–Alder reaction is a coordinated [4 + 2]
cycloaddition occurring between a 1,3-diene and an unsaturated compound, a dienophile.
Usually, a diene contains an electron-donor substituent, and a dienophile an electron-
withdrawing group. It is known that the walls and ends of a carbon nanotube contain
defective elements (five-membered cycles) that can act as dienophiles [12]. The presence of
such defects in single-walled carbon nanotubes (SWCNTs) was shown using the reaction
with α-methylstyrene. The last one was selected as a conjugated diene due to the fact
that, unlike classical dienes—cyclopentadiene and styrene—it does not form homopolymer.
Diene synthesis reaction scheme is presented by the example of the reaction of alpha
α-methylstyrene with the surface of single-walled nanotubes in Figure 1.

https://tuball.com/additives
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ture taken every 4 h were introduced into the chromatograph and the ratio of α-methylsty-
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Figure 1. Scheme of joining α-methylstyrene to nanotubes.

According to the diene synthesis scheme, the formation of cyclic compounds is a
thermodynamically favourable reaction; therefore, the reaction proceeds irreversibly and,
accordingly, quantitatively. This nature of the reaction makes it possible to use it for the
quantitative determination of possible Stone–Wales defects in carbons nanostructures, the
surface of which is formed by carbon atoms with sp2 hybridization.

The progress of the reaction was monitored by the method of gas–liquid chromatog-
raphy (GLC). To carry out the experiment, a mixture of α-methylstyrene (main reagent)
with o-xylene (standard) was added to a suspension of SWCNTs in toluene with vig-
orous stirring. The resulting suspension was placed on a magnetic stirrer. Samples of
the mixture taken every 4 h were introduced into the chromatograph and the ratio of
α-methylstyrene/o-xylene in the mixture was determined. From the ratio of the areas of
the o-xylene/α-methylstyrene peaks for each sample, it was concluded that the reaction
was progressing. The criterion for the progress of the reaction was a sequential decrease
in the content of α-methylstyrene in the suspension. The calculated degree of addition of
α-methylstyrene to the SWCNT surface obtained by us was 28.2 wt %.

To eliminate the systematic error of the experiment, we specially set up a blank
experiment, which showed the absence of sorption of o-xylene on the surface of the selected
series of nanocarbons.

5. Results and Discussion

Figure 2 shows electronic images of SWCNTs obtained by SEM and TEM methods.
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Figure 2. SEM (a) and TEM (b,c) images of CNT. 

As shown in Figure 2, SWCNTs are tangled aggregates in the form of tangles consist-
ing of individual CNTs. Such a material structure is typical for all CNTs synthesized in 
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As shown in Figure 3a, the FLG-SHS have planar dimensions up to several tens of 
microns. As shown in Figure 3b, the synthesized particles have a few-layer structure 
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the number of layers in the samples does not exceed five. 

Figure 4 shows the Raman spectra of SWCNTs, FLG-SHS, and rGO. 

Figure 2. SEM (a) and TEM (b,c) images of CNT.

As shown in Figure 2, SWCNTs are tangled aggregates in the form of tangles consisting
of individual CNTs. Such a material structure is typical for all CNTs synthesized in the
form of a powder by the CCVD method. The average length of SWCNTs exceeds 200 nm,
but the diameter of individual SWCNTs does not exceed 10 nm. However, as can be seen
in Figure 2c, in addition to single-walled CNTs, the sample contains a certain amount of
few-walled CNTs.

Figure 3 shows electron images of FLG-SHS obtained by SEM and TEM methods.
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Figure 3. SEM (a) and TEM (b) images of FLG-SHS.

As shown in Figure 3a, the FLG-SHS have planar dimensions up to several tens of
microns. As shown in Figure 3b, the synthesized particles have a few-layer structure
formed by the superposition of differently oriented graphene layers. It is also seen that the
number of layers in the samples does not exceed five.

Figure 4 shows the Raman spectra of SWCNTs, FLG-SHS, and rGO.
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Figure 4. Raman spectra of SWCNT (a), graphene nanosheets, synthesized from starch under the
conditions of the SHS process (b), rGO (c).

The Raman spectrum of SWCNTs contains D peak (1345 cm−1), G peak (1590 cm−1),
and G‘peak (2680 cm−1), typical of CNTs. Similar spectra were observed in [13]. The
intensity ratio of the D peak (Id) and the G peak (Ig) is 0.028, which is usually attributed by
researchers to the extremely low defectiveness of CNTs [14]. It should be noted that it is by
the intensity of the D peak that researchers estimate the defectiveness of the sp2 structure
of such materials as CNTs and graphene nanostructures. Using data on the position of the
RBM peak, the average CNT diameter was estimated using the formula below [15].

d = 220/(υ − 14) (1)

where d–CNT diameter, nm; υ—RBM peak position, cm−1.
It was found that the average diameter of CNTs should not exceed two nm. This

calculation confirms that the fraction of few-walled CNTs in the sample is negligible and
cannot seriously affect subsequent results.

Sample FLG-SHS exhibits D peak (1345 cm−1), G peak (1600 cm−1), and 2D peak
(2500 cm−1) typical for graphene. Similar spectra were obtained in [16]. However, unlike
CNTs, this material has a highly intense D peak, and the Id/Ig ratio is 1.2, which, as in the
case of CNTs, is usually associated with a high defectiveness of the material. The Raman
spectrum of rGO is similar to that of FLG. However, the Id/Ig ratio is 0.76, which suggests
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that this sample has less structural imperfection than FLG. Similar rGO spectra were also
obtained in [17].

To check the data on the defectiveness of the structure of CNT, FLG, and rGO samples
obtained by Raman spectroscopy, we experimented on the possibility of including these
materials in the diene synthesis reaction. It consisted of an attempt to functionalize them
with α-methylstyrene. A mixture of α-methylstyrene and o-xylene taken in equal amounts
was added to a suspension of carbon nanostructures in toluene to carry out the diene
synthesis reaction.

Control over the passage of the reaction was carried out by gas–liquid chromatog-
raphy (GLC). A mixture of α-methylstyrene (basic reagent) with o-xylene (standard) was
added to a suspension of SWCNT/rGO/FLG in toluene with vigorous stirring. The
resulting suspension was placed on a magnetic stirrer. Samples of the mixture, taken every
3 h, were injected into the chromatography column, and the ratios of α-methylstyrene/o-
xylene in the mixture were determined. According to the ratio of peak areas of o-xylene/α-
methylstyrene for each sample, it was concluded that the reaction was proceeding. The
criterion for the reaction was a consistent decrease in the content of α-methylstyrene in the
suspension.

To eliminate the systematic error of the experiment, we specially set up a blank
experiment (there was no α-methylstyrene in the solution), which showed the absence of
sorption of o-xylene on the surface of the selected series of nanocarbons.

As shown by our carefully performed experiments, it can be argued that the diene
synthesis reaction for FLG does not work. At a minimum, the impossibility of the di-
ene synthesis reaction indicates the absence of defects of the Stone–Wales type or their
existence at concentrations below the sensitivity of the registration method (gas–liquid
chromatography).

Accordingly, the defectiveness of the structure of the FLG particles obtained by us,
demonstrated by the nature of the Raman spectrum curve, can be associated exclusively
with concentrated vacancy defects. It was of undoubted interest to carry out similar
experiments to determine the Stone–Wales defects for SWCNT “TUBAL”.

The presence of defects in SWCNT “TUBAL” is well known, and therefore, in addition
to purely practical interest, such work was necessary to verify the effectiveness of the
proposed method independently. These experiments were carried out under conditions
similar to the functionalization of FLG.

In contrast to FLG-SHS, the diene synthesis reaction was efficient for SWCNT and rGO.
The concentration of Stone–Wales defects calculated by us for SWCNT and rGO turned out
to be equal to Csw = 3.3 × 10−3 mol/g and Csw = 20.9 × 10−3 mol/g, respectively. Taking
into account the specific surface area of nanomaterials (300 m2/g for SWCNT and 580 m2/g
for rGO), the surface concentration of Stone–Wales defects is Csw = 1.1 × 10−5 mol/m2 and
Csw = 3.6 × 10−5 mol/m2, respectively.

The obtained value corresponds to the number of moles of α-methylstyrene irre-
versibly reacted with the surface of carbon nanostructures by the reaction of diene synthesis,
which quantitatively corresponds to the concentration of dienophilic vacancies—Stone–
Wales defects.

Summary information with data for various carbon nanomaterials studied by us is
given in Table 1. The specific surface of carbon nanomaterials needed to calculate the
surface SW defects concentration was calculated from BET data.

Table 1. Parameters of studied carbon nanomaterials.

Sample
Stone–Wales Defects

Concentration
CSW (mol/m2)

Id/Ig
Specific Surface

m2/g

SWCNT 1.1 × 10−5 0.028 300
rGO 3.6 × 10−5 0.76 580
FLG 0 1.2 660
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The obtained value of SW defects concentration corresponds to the number of moles
of α-methylstyrene irreversibly reacted with the surface of carbon nanostructures by the
reaction of diene synthesis, which quantitatively corresponds to the concentration of
dienophilic vacancies—SW defects.

As regards the difference in defects of rGO and FLG, we attribute both to different
mechanisms of their production (up-bottom/bottom-up) and different sources of their
production. As a result, we obtained for the first time data on the quantitative value of SW
defects in 1D and 2D carbon nanostructures, available for the first time.

6. Conclusions

A quantitative method based on the diene synthesis reaction was proposed to de-
termine Stone–Wales defects in carbon nanostructures with sp2 hybridization of carbon
atoms (graphene nanostructures, nanotubes). It is shown that from biopolymers under
the conditions of the SHS process, it is possible to obtain FLG nanosheets that are free of
Stone–Wales defects.
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