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Resistance to phagocyte killing is an important virulence factor in mycobacteria.
Dictyostelium has been used to study the interaction between phagocytes and bacteria,
given its similarity to the mammalian macrophage. Here, we investigated the genes
responsible for virulence to Dictyostelium by screening 1728 transposon mutants of the
Mycobacterium marinum NTUH-M6094 strain. A total of 30 mutants that permissive for
Dictyostelium growth were identified. These mutants revealed interruptions in 20 distinct
loci. Of the 20 loci, six genes (losA, mmar_2318, mmar_2319, wecE, mmar_2323 and
mmar_2353) were located in the lipooligosaccharide (LOS) synthesis cluster. LOS are
antigenic glycolipids and the core LOS structure from LOS-I to LOS-IV have been
reported to exist in M. marinum. Two-dimensional thin-layer chromatography (2D-TLC)
glycolipid profiles revealed that deletion of mmar_2318 or mmar_2319 resulted in the
accumulation of LOS-III and deficiency of LOS-IV. Deletion and complementation of
mmar_2318 or mmar_2319 confirmed that these genes both contributed to virulence
toward Dictyostelium but not entry and replication inside Dictyostelium. Co-incubation
with a murine macrophage cell line J774a.1 or PMA-induced human monocytic cell line
THP-1 demonstrated that mmar_2318 or mmar_2319 deletion mutant could grow in
macrophages, and their initial entry rate was not affected in J774a.1 but significantly
increased in THP-1. In conclusion, although mmar_2319 has been reported to involve
LOS biosynthesis in a previous study, we identified a new gene, mmar_2318 that is also
involved in the biosynthesis of LOS. Deletion of mmar_2318 or mmar_2319 both exhibits
reduction of virulence toward Dictyostelium and increased entry into THP-1 cells.

Keywords: M. marinum, lipooligosaccharide, virulence, macrophage, Dictyostelium

INTRODUCTION

Mycobacterium marinum can cause a systemic tuberculosis-like infection in fish and other
ectotherms, a process that involves persistent growth within macrophages (Mehta et al., 2006;
Tarigo et al., 2006; Adams et al., 2011; Dong et al., 2012; Hodgkinson et al., 2012; Yang et al.,
2012). In humans, this pathogen typically causes only a localized granulomatous infection on
cooler surfaces with rare dissemination (Davis and Ramakrishnan, 2009). Macrophages are a
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first line of defense against bacteria and play a key role in
the host’s innate immune response to bacterial infection.
In addition, bacteria that have developed resistance to
phagocytosis or intracellular killing should be more virulent
and more likely to succeed at establishing infection.
Mycobacteria that successfully infect macrophages survive
and replicate in the phagosome by arresting phagosome
maturation and acidification (Vergne et al., 2004; Wong et al.,
2011) and damaging the phagosomal membrane to cause
macrophage necrosis (Skeiky and Sadoff, 2006; Behar et al.,
2010).

The mycobacterial possess a unique lipid-rich cell wall
that is important in directing host-pathogen interactions and
confers resistance to many therapeutic agents (Jarlier and
Nikaido, 1990; Daffe and Draper, 1998). During the infection
process, free cell wall lipids/glycolipids are contributing to
modulation of the host immune system and condition the
outcome of the infection (Karakousis et al., 2004; Neyrolles
and Guilhot, 2011). Lipooligosaccharides (LOS) are cell surface
glycolipids, and have been reported to exist in more than 10
mycobacterial species, including the M. canettii, M. marinum,
M. kansasii, and M. gastri (Hunter et al., 1983, 1984; McNeil
et al., 1989; Daffe, 1991; Gilleron et al., 1993; Burguiere
et al., 2005). All LOS are antigenic compounds containing a
α, α’-trehalose unit, the length and composition of LOS are
highly variable between different species by different species-
specific glycan sequence manner. In M. marinum, produces
under laboratory conditions, four major LOS structures of
increasing size, named LOS-I to LOS-IV, has been previously
identified (Burguiere et al., 2005). Loss of LOS results in a
rough bacterial colony morphology (Ren et al., 2007; Sarkar
et al., 2011), hyper-virulence in zebrafish (van der Woude
et al., 2012), reduced biofilm formation, sliding motility, and
affect entry rate into macrophages (Ren et al., 2007; Alibaud
et al., 2014), inhibition of tumor necrosis factor alpha (TNF-α)
secretion in macrophages (Rombouts et al., 2009); and decreased
release of proline-glutamic acid_polymorphic guanine-cytosine-
rich sequence (PE_PGRS) proteins from the cell surface (van der
Woude et al., 2012).

A well-established model system using Dictyostelium
discoideum was introduced for studying the interactions between
phagocytes and bacteria (Solomon et al., 2003; Harriff and
Bermudez, 2009; Alibaud et al., 2011). Dictyostelium, a free-
living amoeba, serves as a macrophage-like system for studying
bacteria-host interactions (Solomon et al., 2003). Dictyostelium
has also been used to analyze the virulence of different bacterial
species, including extracellular or intracellular bacteria, such
as Pseudomonas (Cosson et al., 2002; Pukatzki et al., 2002),
Yersinia (Vlahou et al., 2009), Vibrio (Pukatzki et al., 2006, 2007),
Legionella (Hilbi et al., 2007; Jules and Buchrieser, 2007; Li et al.,
2009), Klebsiella (Pan et al., 2011), and Mycobacteria (Pozos and
Ramakrishnan, 2004; Hagedorn et al., 2009). Upon infection
of Dictyostelium, M. marinum can survive and replicate within
intracellular vacuoles, exhibiting a pattern of growth similar to
that observed in cultured mammalian macrophages (Hagedorn
and Soldati, 2007). Notably, a previous study demonstrated by
using a Dictyostelium screening model (≤1000 cells) can identify

the virulence determinants in M. marinum (Alibaud et al.,
2011).

As we report here, we constructed a M. marinum mutant
library by transposon mutagenesis and used a Dictyostelium
screening model to identify genetic loci involved inM. marinum
virulence. We identified a new gene, mmar_2318, which
participates in LOS synthesis and virulence towardDictyostelium.

MATERIALS AND METHODS

Bacterial Strains, Cells, and Growth
Conditions
Mycobacterium smegmatis mc2155 and M. marinum NTUH-
M6094 (clinically isolated strain from National Taiwan
University Hospital) strains were grown at 37◦C and 32◦C,
respectively, in 7H9 medium supplemented with 10% oleic
acid/albumin/dextrose/catalase (OADC) enrichment and 0.05%
Tween-80. M. marinum is a biosafety level-2 microorganism.
The experiments handling the bacteria should follow all
appropriate guidelines and regulations. Escherichia coli and
Klebsiella aerogenes were grown in Luria broth. Antibiotics
were added at the following concentrations when required:
kanamycin at 10 mg/L for M. marinum and 50 mg/L for E. coli;
hygromycin at 50 mg/L for M. marinum and 100 mg/L for
E. coli; and ampicillin at 100 mg/L for E. coli. D. discoideum
AX-2 cells were grown at 20◦C in HL5 medium (Pan et al.,
2011).

Dictyostelium Growth in a
Mycobacteria-Phagocytosis Plaque
Assay
The Dictyostelium phagocytosis plaque assay was performed
as previously described (Bardarov et al., 1997; Alibaud et al.,
2011) with some modifications (Figure 1A). A 1-mL volume
of mid-log phase (OD600 = 0.8–1.2) M. marinum culture was
centrifuged and then resuspended with 800 μL of overnight-
cultured K. aerogenes (as a substrate for Dictyostelium when
the amoebae were not inhibited by the bacteria) diluted 105-
fold in normal saline. The bacterial suspension was plated in
six-well (350 μL/well) or 24-well (50 μL) plates containing SM
agar (Pan et al., 2011) and then air-dried in a biosafety cabinet
for 2 h. D. discoideum (400 cells /plate) was then spotted on
top of the bacterial lawn. Phagocytosis plaques generated during
D. discoideum growth became visible after 6–8 days of incubation
at 20◦C.

Generation of M. marinum Transposon
Mutant Library
The TM4-derived conditionally replicating phage phAE94 (a
kind gift fromDr.WilliamR. Jacobs, Jr., HowardHughesMedical
Institute, USA; Bardarov et al., 1997) carrying the kanamycin-
resistance transposon Tn5367 (Shin et al., 2006) was propagated
in M. smegmatis mc2155 (Bardarov et al., 1997) and used to
infect M. marinum as described previously (Rybniker et al.,
2003).
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FIGURE 1 | Identification of Mycobacterium marinum genes for virulence using Dictyostelium. (A) Screening method of M. marinum NTUH-M6094 mutant
library by Dictyostelium phagocytosis plaque assay. In six-well tissue culture plates containing SM agar, mid-log phase (OD600 = 0.8–1.2) cultured M. marinum and
fresh overnight-cultured Klebsiella aerogenes (diluted 105-fold) were mixed in normal saline and then air-dried. Four hundred Dictyostelium cells were then added on
the top of the bacterial lawn. The plates were incubated at 20◦C for 6–8 days until phagocytosis plaques became visible. (B) Dictyostelium phagocytosis plaques on
the M. marinum M6094 wild type two transposon mutants and M. smegmatis. In presence of wild-type M. marinum M6094, Dictyostelium failed to form
phagocytosis plaques. In contrast, a clear phagocytosis plaque was observed on bacterial lawn with M. smegmatis (avirulence mycobacteria). Two mutants 2-C10
and 4-B11 permit the formation of a clear phagocytosis plaque on the bacterial lawn.

Identification of Transposon Mutants by
Semi-Random Polymerase Chain
Reaction
The insertion site of Tn5367 was determined by semi-random
PCR and DNA sequencing as previously described (Chun et al.,
1997; Choi et al., 2001; Shin et al., 2006); the primers are listed in
Table 1.

Construction of Deletion Mutant
The gene-deleted fragments (�2318 and �2319) were generated
by using the primer pairs listed in Table 1 and then cloned
into a pGEMR©-T easy (Promega) plasmid. The Hygr-lacZ-sacB
cassette of the pGOAL19 plasmid (Addgene Plasmid #20190;
Parish and Stoker, 2000) was digested with PacI and cloned into
the PacI site of the resulted plasmid. The vector for gene deletion
was transformed into the M. marinum NTUH-M6094 strain
according to the established procedures (Larsen et al., 2007), and
theM.marinum deletion mutant was selected after two rounds of
homologous recombination, as previously described (Parish and
Stoker, 2000).

Construction of Complementation Strain
Mycobacterium marinum mmar_2318 (909 bp) and its predicted
promoter region (260 bp upstream) were PCR-amplified
from genomic DNA using the primer pair 2318-promoter-
F/2318-R; mmar_2319 (1638 bp) and the M. bovis BCG hsp60

promoter region (250 bp) were PCR-amplified from genomic
DNA and pMN402 (a kind gift from Dr. Michael Niederweis
at the University of Alabama at Birmingham, USA; Scholz
et al., 2000) using the primer pairs 2319-F-hsp60/2319-R and
hsp60-F/hsp60-R-2319, respectively. The primer pair hsp60-F
and 2319-R was then used to PCR amplify the mmar_2319
gene with the hsp60 promoter region (1872 bp). Those two
PCR products were cloned into a blunted HindIII-site of
pMN437 (a kind gift from Dr. Michael Niederweis at the
University of Alabama at Birmingham, USA; Steinhauer et al.,
2010) to create pMm2318::pMN437 and pMm2319::pMN437.
The complementation strain (�2318::2318 and �2319::2319)
was created by transforming the pMm2318::pMN437 or
pMm2319::pMN437 plasmid into the �2318 or �2319 strain.

Mycobacterium marinum Lipid
Extraction and Analysis
Mycobacterium marinum polar and apolar lipids were extracted
from fresh-cultured M. marinum grown on 7H9 agar plates
according to established procedures (Ren et al., 2007). The
lipid extract was examined by two-dimensional thin layer
chromatography (2D-TLC) (Burguiere et al., 2005). Lipids
were visualized by spraying the plates with ceric ammonium
molybdate (CAM; 24 g (NH4)6Mo7O24·4H2O, 0.5 g ammonium
cerium nitrate, 500 mL H2O, 28 mL H2SO4) followed by gentle
charring of the plates.
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TABLE 1 | Primers and plasmids used in this work.

Primer name sequence Purpose Reference

TnF TGCAGCAACGCCAGGTCCACACT Semi-random PCR

TnR CAGAAAGTCGTCAGGTCAGC Semi-random PCR

HOPS1 GGCGTAGGAACCTCCATCATC Semi-random PCR Bardarov et al., 1997

HOPS2 CTTGCTCTTCCGCTTCTTCTCC Semi-random PCR Bardarov et al., 1997

semi-rand_2-1 GGCCACGCGTCGACTAGTACNNNNNNNNNNGCAGC Semi-random PCR Choi et al., 2001

semi-rand_4 GGCCACGCGTCGACTAGTAC Semi-random PCR Choi et al., 2001

2318-Ff-F ATGAGCATCGCGATGCCCGC Δ2318

2318-Rf-R-PacI TTAATTAATCACCGCCTACCTCTTGGCTC Δ2318

2318-Rf-F CCTGAATGAGCATTGCCTGTGATGGATGGC Δ2318

2318-Ff-R GCCATCCATCACAGGCAATGCTCATTCAGG Δ2318

2318-promoter-F GTGCGCTACAAGTTCTAAACC Δ2318::2318

2318-R CTAATCATCCAGAACTGCTA Δ2318::2318

2319-Rf-R-PacI TTAATTAAACGAAGTCATCCTGCCGTC Δ2319

2319-Rf-F CTGCGGCGCCCGGATTTCACCGCTCATTCA Δ2319

2319-Ff-R TGAATGAGCGGTGAAATCCGGGCGCCGCAG Δ2319

2319-Ff-F AGGCGTTAGCTACGTGTCGTC Δ2319

hsp60-F GGTGACCACAACGACGCGCCC Δ2319::2319

hsp60-R-2319 GAGAGGAGTCTGTCACATGTATATCTCCTTCTTAAT
TAACTCACCGGT

Δ2319::2319

2319-F-hsp60 AGAAGGAGATATACATGTGACAGACTCCTCTCCTCCC Δ2319::2319

2319-R GTGACAGACTCCTCTCCTC Δ2319::2319

Plasmid Features Reference

pMN437 pMN016 derivative, psmyc- gfpm
2+; pAL5000 origin; Hygr, Steinhauer et al., 2010

pMN402 Hygr; replicating mycobacterial plasmid with gfp under the
control of the BCG hsp60 promoter

Scholz et al., 2000

pGOAL19 Hygr; PAg85-lacZ Phsp60-sacB PacI cassette vector, amp Parish and Stoker, 2000

Infection of Dictyostelium by M. marinum
Infection ofDictyostelium was performed as described previously
(Arafah et al., 2013).

Infection of J774a.1 or THP-1 Cell Line
by M. marinum
Infection of murine J774a.1 macrophage-like cells as well
as human THP-1 monocytic cell line and enumeration of
intracellular M. marinum CFU was performed as described
previously (Ren et al., 2007). Briefly, a single-cell suspension
of fresh cultured M. marinum (OD600 = 0.8–1.0) was yield
by passage through a 5-μm syringe filter. The day before
experiment, cell were seeding into 24 well [J774a.1, 105 cells/well;
THP-1, 106 cells/well, and pre-treatment of THP-1 cell with
50 ng/ml phorbol 12-myristate 13-acetate (PMA) for 48 h]. The
cells were infected with bacteria at a multiplicity of infection
(MOI) of 1 for growth assays or MOI of 10 for entry rate
assays. A previous study indicated that the difference of entry
rate between wild type and mutant will be more prominent
under MOI of 10 (Alexander et al., 2004). The infection was
allowed to proceed for 3 h at 32◦C in 5% CO2. The extracellular
bacteria were removed by washing once with culture medium
and incubation in fresh culture medium containing gentamicin
(200 mg/L, Gibco

R©
) for 2 h at 32◦C. The cells were washed once

and incubated with fresh culture medium containing 20 mg/L

gentamicin at 32◦C in 5% CO2. On different time point, the
infected macrophage monolayers were washed once with culture
medium and lysed with 1 mL of 0.1% Triton X-100 (Sigma) for
5 min to release the intracellular mycobacteria. The intracellular
bacteria were enumerated by plating serial dilutions on 7H11 agar
plates.

Statistical Analysis
Data are presented as means± standard error of the mean (SEM)
form three independent experiments. Statistical significance
was assessed by a two-tailed Student’s t-test using Prism 5
(GraphPad Prism

R©
) software. P-values of <0.05 were considered

significant.

RESULTS

Screening Mutants Permissive for
Dictyostelium Growth
We constructed a transposon mutant library of the M. marinum
strain NTUH-M6094. A total of 1728 mutants were collected.
A Dictyostelium phagocytosis plaque assay (Figure 1A) was
used to investigate virulence genes in the M6094 mutant
library (Alibaud et al., 2011). As shown in Figure 1B, wild-
type M6094 did not allow Dictyostelium (400 cells) to form a
phagocytotic plaque on a bacterial lawn. In contrast, a plaque
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was observed on a lawn containing M. smegmatis mc2155
(avirulent mycobacteria). Screening of the entire M6094 mutant
library resulted in the identification of 30 transposon mutants
that were permissive for Dictyostelium growth; examples of
the sensitive isolates (two transposon mutants, 2-C10 and 4-
B11) are presented in Figure 1B. This phenotype implied
that the genes disrupted by the transposon are potentially
involved in virulence. The genes interrupted by transposons
were determined by semi-random PCR (Chun et al., 1997;
Shin et al., 2006) and DNA sequencing (Table 2). The results
indicated that 20 genes were disrupted by the transposon, and
the locations of the transposon insertion in the 30 mutants were
unique.

Defective LOS Biosynthesis in the
Deletion Mutant
Among the 30 attenuated mutants, the transposons of three
mutants (4-B11, 4-C3, 16-G9) were inserted into different sites of
losA, four mutants (2-A3, 4-E9, 14-D5, 15-D8) into mmar_2318,
three mutants (2-E6, 11-G3, 16-F5) into mmar_2319, two
mutants (2-C10, 2-G4) into wecE, one mutant into mmar_2323
(10-A11) and one mutant into mmar_2353 (13-B8) (Figure 2).
As presented in Table 2 and Figure 2, these six genes (losA,
mmar_2318, mmar_2319, wecE, mmar_2323, and mmar_2353)
are located within a putative LOS biosynthetic gene cluster
(mmar_2307∼mmar_2405) (Ren et al., 2007; van der Woude
et al., 2012). Previous studies reported that losA, mmar_2319,
wecE and mmar_2353 are involved in LOS biosynthesis
(Domenech et al., 2005; Brodin et al., 2010). Here, two genes,
mmar_2318 and mmar_2319, which were identified in several
attenuated mutants in this study were chosen for further
studies. Deletion mutants (�2318 and �2319) and episomal

complementation strains (�2318::2318 and �2319::2319) were
generated accordingly (Figure 3A). The surface polar lipid
profiles of wild-type, deletion mutants (�2318 and �2319),
and complementation strains (�2318::2318 and �2319::2319)
were examined by 2D-TLC (Figure 3B). We referred to several
previous studies to predict the pattern of lipid migration on
TLC plate (Alexander et al., 2004; Burguiere et al., 2005;
van der Woude et al., 2012; Alibaud et al., 2014). The 2D-
TLC spots of losA::Tn and wecE::Tn (Supplementary Figure
S1) mutants which have been reported to have defective LOS
biosynthesis were also served as controls. The result indicates
that �2318 and �2319 mutants exhibited accumulation of
LOS-III and deficiency of LOS-IV. The 2D-TLC profile of the
complementation strains (�2318::2318 and �2319::2319) were
restored to that of wild type. Although LOS-IV deficiency of
a mmar_2319 transposon mutant has been demonstrated in
previous studies (van der Woude et al., 2012; Alibaud et al.,
2014), the role of this gene in LOS synthesis was confirmed
by deletion and complementation in this study. These data
suggested that these two genes were responsible for LOS
synthesis.

Phenotypic Confirmation Using Deletion
and Complementation Strains
First, deletion ofmmar_2318 ormmar_2319 did not significantly
affect the growth rate at 32◦C and 20◦C [Supplementary
Figure S2 and (Solomon et al., 2003)], indicating that the
attenuation of these two mutants were not due to in vitro
growth defect. The mmar_2318 and mmar_2319 deletion and
complementation strains exhibited the expected attenuation and
virulence phenotypes in the Dictyostelium phagocytotic plaque
assay (Figure 4A), confirming the results observed with the

TABLE 2 | Transposon mutants permissive for Dictyostelium growth.

Mutant No. Genes inserted by
transposon

Putative function Homologs in M. tuberculosis
H37Rv

8-H11 mmar_0328 Secreted antigen 85-C FpbC

12-E12 mmar_0838 Hypothetical protein

14-C12 mmar_0932 PPE family protein PPE24

14-F4 mmar_1514 PPE family protein, PPE51_1 PPE51

12-B3, 12-E1 Upstream of mmar_1594
and mmar_1595

mmar_1594: PE_PGRS family protein
mmar_1595:O-methyltransferase

PE_PGRS55
Rv3767c

15-B4 mmar_1639 PPE family protein PPE8

12-C12 mmar_1887 Conserved transmembrane transport protein

4-B11, 4-C3, 16-G9 mmar_2313 losA, glycosyltransferase Rv1500

14-D5, 2-A3, 4-E9, 15-D8 mmar_2318 Conserved hypothetical protein Rv1502

16-F5, 11-G3, 2-E6 mmar_2319 Conserved hypothetical transmembrane protein

2-C10, 2-G4 mmar_2320 wecE, pyridoxal phosphate-dependent enzyme

10-A11 mmar_2323 Conserved hypothetical transmembrane protein

13-B8 mmar_2353 UDP-glycosyltransferase Rv1524

12-E11 Upstream of mmar_2684 PPE family protein PPE32

18-G4 mmar_3183 Hypothetical alanine rich protein

18-D7 Upstream of mmar_3375 Conserved hypothetical protein

17-A5, 18-H5, 12-A1 mmar_4263 Conserved hypothetical protein

13-G8 mmar_4621 PPE family protein PPE8

5-H1 mmar_4630 Membrane-bound C-5 sterol desaturase Erg3
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FIGURE 2 | The transposon insertion sites of mutants within lipooligosaccharide (LOS) synthesis locus. The six genes with gray color (losA, mmar_2318,
mmar_2319, wecE, mmar_2323 and mmar_2353) within LOS synthesis locus had transposon insertions in different sites. The solid line indicates the transposon
insertion.

FIGURE 3 | The 2D-TLC profile of the polar lipid of M. marinum wild-type, deletion mutants and complementation strains. (A) The gene alignment of
mmar_2318 and mmar_2319 deletion mutants and complementation strains. The �2318 and �2319 deletion mutants were created by unmarked deletion of
mmar_2318 and mmar_2319, respectively. pMm2318::pMN437 and pMm2319::pMN437 plasmids were used to create the epichromosomal complementation
strains �2318::2318 and �2319::2319, respectively. (B) The 2D-TLC profile of the polar lipid of M. marinum. Using 2D-TLC, extracted M. marinum polar lipids were
separated by chloroform/methanol/water (60:30:6, v/v/v) in the first direction and by chloroform/acetic acid/methanol/water (40:25:3:6, v/v/v/v) in the second
direction. The plates were charred with ceric ammonium molybdate. Accumulation of LOS-III and deficiency of LOS-IV were observed in the �2318 and �2319
mutants. The 2D-TLC lipid composition profiles of the �2318::2318 and �2319::2319 complementation strains were restored to that of the wild-type strain.
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FIGURE 4 | Phenotypic confirmation and quantitative analysis of deletion mutants and complementation strains. (A) The Dictyostelium phagocytosis
plaques on bacterial lawn with the wild-type, deletion, and complementation strains. A total of 400, 200, or 100 Dictyostelium cells could form a clear phagocytosis
plaque on a bacterial lawn with �2318 and �2319 mutants but not with the wild-type, �2318::2318 and �2319::2319 strains. M. smegmatis mc2155 and tesA::Tn
mutant (known as an avirulent M. marinum mutant) were served as controls. Comparable results were observed in wild type vs. wild type/pMN437, demonstrating
that the transfer of pMN437 into M. marinum did not affect phagocytic plaque formation. (B) Quantitative analysis of virulence of wild-type, deletion, and
complementation strains. Different amounts of Dictyostelium (0–25000 cells) were used to quantify the virulence of the M. marinum wild-type strain, the deletion
mutants (�2318 and �2319), and the complementation strains (�2318::2318 and �2319::2319). Fifty cells and twenty-five Dictyostelium cells could form a clear
phagocytic plaque on bacterial lawn with the �2318 and �2319 mutants, respectively, but not with the wild-type, �2318::2318 and �2319::2319 strains. The
virulence phenotype was restored (>400 cells) in the complementation strain.

transposon mutants. Meanwhile, a tesA transposon mutant
with attenuation phenotype which has been reported previously
(Alibaud et al., 2011) was generated and served as a control

(Figure 4A). Furthermore, we also used different cell numbers
of Dictyostelium to quantify the virulence of the wild-type,
deletion mutant, and complementation strains. In presence of
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FIGURE 5 | Entry and growth of M. marinum inside Dictyostelium. (A) The entry of M. marinum wild-type, �2318 and �2319 into Dictyostelium. The bacteria
numbers inside Dictyostelium cells on 2 h post infection at MOI = 10 were determined. Entry was represented as the percentage of entry CFU versus initial CFU of
three independent experiments. The two deletion mutants (�2318 and �2319) had no significantly different entry rate in comparison with wild type. Data from three
independent experiments are presented as the mean ± SEM of the % of initial CFU. (B) Growth kinetics of the M. marinum wild-type, �2318 and �2319 strain
inside Dictyostelium. The bacteria numbers inside Dictyostelium on different hours (2, 12, 16, 21, 26, 37, 43, 48) post infection at MOI = 10 were determined. Data
from three independent experiments are presented as the mean ± SEM of the fold of initial entering bacteria number.

FIGURE 6 | Entry and growth of M. marinum inside macrophages. The entry of M. marinum wild-type, �2318, �2319, �2318::2318, and �2319::2319
strains into macrophages. The bacteria numbers inside macrophage cells on day 0 (3 h post infection) at MOI = 10 were determined. Entry was represented as the
percentage of entry CFU vs. initial CFU of three independent experiments. No significant differences were noted among the wild-type strain, the deletion mutants
(�2318 and �2319), and the complementation strains (�2318::2318 and �2319::2319) into J774a.1 (A) but the recovered bacteria number of two deletion
mutants were significantly higher than wild-type strain into THP-1 (D). Data from three independent experiments are presented as the mean ± SEM of the % of initial
CFU. ∗∗p < 0.001. Growth kinetics of the M. marinum wild-type, �2318, �2319, �2318::2318, and �2319::2319 strain inside macrophages. The bacteria
numbers inside J774a.1 (B,C) or THP-1 (E) cells on days 0 (3 h), 2, 4, 6, and 8 days at MOI = 1 were determined. Data from three independent experiments are
presented as the mean ± SEM of the fold of initial entering bacteria number.
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wild-type M. marinum, phagocytic plaque formation exhibited
a dose-dependent response to the Dictyostelium cell number,
with plaque formation detected in the presence of >400 amoeba
(Figure 4B). Deletion of mmar_2318 or mmar_2319 attenuated
the virulence to Dictyostelium (with plaques observed with 50
amoeba cells and as few as 25 amoeba cells, respectively),
whereas two complementation strains restored the virulence to
Dictyostelium (>400 cells) to a level similar to that observed in
wild type.

The loss of LOS results in rough bacterial colony morphology
(Ren et al., 2007; Sarkar et al., 2011; van der Woude et al., 2012).
The �2318 and �2319 mutants showed a rough phenotype
and bigger colonies size than wild type (Supplementary Figure
S3). Colonies morphology and size of complementation strains
(�2318::2318 and �2319::2319) were restored as those of wild
type (Supplementary Figure S3).

Deletion of mmar_2318 or mmar_2319
did not Affect the Entry and Replication
Inside Dictyostelium
Deletion and complementation confirmed mmar_2318 and
mmar_2319 were contributed to virulence toward Dictyostelium.
We further examined the ability of the �2318 and �2319
strains to enter and replicate inside cells of Dictyostelium.
The results showed that the number of CFU recovered from
Dictyostelium was not significantly different between wild type
and mutants (�2318 and �2319) (Figure 5A). The growth
rate of �2318 or �2319 mutants inside Dictyostelium was
subsequently monitored, as shown in Figure 5B, the growth
rate of wild type and mutants were not significantly different,
either. These results indicated that deletion of mmar_2318 or
mmar_2319 did not affect the entry and replication inside
Dictyostelium.

Increased Entry to THP-1 Macrophage
Cells in the Deletion Mutants
Besides observations in Dictyostelium, the ability of the �2318
and �2319 strains to enter and replicate inside cells of
macrophage cell line, J774a.1 (murine) and THP-1 (human),
were examined. After incubation of bacteria and macrophage
cell lines for 3 h at 32◦C, the cultures were then treated with
gentamicin to remove extracellular bacteria, and intracellular
bacteria were quantified by lysing the infected cultures and
plating onto 7H11 agar plates. The results indicated that the
entry abilities of �2318 and �2319 mutants were not affected
in J774a.1 (Figure 6A), but the number of CFU recovered from
THP-1 cell line infected with the �2318 or �2319 mutants was
significantly higher than that infected with the wild-type strain
(Figure 6D). We also examined the subsequent growth of �2318
and �2319 mutants inside these two macrophage cell lines. The
results demonstrated that the deletion mutants both exhibited
growth rates similar to wild type and could replicate inside
macrophages during the course of infection (Figures 6B,C,E).
These data suggest that deletion of mmar_2318 or mmar_2319
did not affect the ability of the bacteria to replicate within
macrophages.

DISCUSSION

The complete genome of the M. marinum M strain is
approximately 6.6 Mb in size and is composed of 5568
open reading frames (ORFs) (accession number: CP000854.1).
Our mutant library includes a collection of 1728 transposon
insertions. The insertion sites of 30 Dictyostelium-permissive
mutants (in the present work), as well as those of another
17 randomly selected mutants (Table 3), were unique, and
the transposons of these 47 mutants were collectively located
in 36 different loci (Tables 2 and 3). These results indicate
that the library has good diversity. However, real coverage
is difficult to estimate given that insertions close to an
operon can cause phenotypic changes due to polar effects
on gene expression. Additionally, essential genes (estimated
as 5–20% of bacterial genomes) (Gerdes et al., 2003; Salama
et al., 2004; Liberati et al., 2006), although less likely to be
specific virulence genes, would not be identified by transposon
mutagenesis. Therefore, we expect that our mutant library
is not saturated with respect to candidate loci, and our
screen and library are expected to have missed multiple
loci.

Alibaud et al. (2011) first used Dictyostelium as a screening
model to identify virulent genes within M. marinum in
2011. These researchers screened only 275 transposon
mutants of the M. marinum M strain (Alibaud et al.,
2011). Our work adopted the same screening strategy,
but we screened a larger number of mutants (1728

TABLE 3 | Seventeen randomly selected transposon mutants for diversity
check.

Mutant No. Genes inserted
by transposon

Putative function

1 mmar_1131 Hypothetical protein

2 mmar_1485 Membrane-associated
phospholipase C 2 PlcB_2

3 mmar_3589 Prophage integrase

4 mmar_2513 Hypothetical protein

6-F5 mmar_4264 Conserved hypothetical protein

6-F7 mmar_3382 Conserved hypothetical membrane
protein

6-F10, 10-B11 Not similar with sequences of M. marinum M (may be the same
gene but different insertion sites)

6-G2 Not similar with sequences of M. marinum M

6-G3 Not similar with sequences of M. marinum M

9-D1 mmar_5435 Conserved hypothetical alanine and
glycine rich protein

9-D12 mmar_2687 Mg2+ transport p-type ATPase C
MgtC

9-E2 mmar_3612 Metal cation transporter p-type
ATPase

9-E5 mmar_0932 PPE family protein

9-E6 Not similar with sequences of M. marinum M

10-B9 mmar_0599 Conserved hypothetical secreted
protein

10-C2 mmar_3414 Hypothetical alanine and proline
rich protein

Frontiers in Microbiology | www.frontiersin.org 9 January 2016 | Volume 6 | Article 1458

http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


Chen et al. mmar_2318 and mmar_2319 in M. marinum

isolates, corresponding to our entire mutant library) and
used a distinct strain of M. marinum. In this study, we
used a clinical isolate, the M. marinum NTUH-M6094
strain, to construct the mutant library. When assessing the
library diversity, we also found that 5/36 (13.8%) of the
transposon interrupted loci were not obvious homologs
of sequences from the sequenced M. marinum M strain
(Table 3). This result suggests that genetic heterogeneity
exists in M. marinum isolates from different regions and/or
sources.

In this study, we used a Dictyostelium phagocytotic plaque
model system to screen a M. marinum transposon mutant
library, identifying 20 genes with roles in virulence. Among
these 20 genes, some loci [e.g., losA, wecE, transmembrane
transporter protein and proline-proline-glutamic acid (PPE)
family related genes] were previously reported to be associated
with virulence, macrophage resistance, biofilm formation, or
LOS synthesis in Mycobacterium spp. (Okkels et al., 2003;
Burguiere et al., 2005; Domenech et al., 2005; McEvoy et al.,
2009; Brodin et al., 2010; Alibaud et al., 2011; Dong et al.,
2012; Wang et al., 2013). The results of our screen were
therefore consistent with data from other studies. We also
found several genes that were not previously identified as
virulence genes in the literature, including 12 loci with homologs
in M. tuberculosis (Table 2). Our results implicate these loci
in M. tuberculosis pathogenesis. However, the actual role of
these genes in M. marinum and M. tuberculosis will require
confirmation; characterization of these loci will be reported
elsewhere.

In our study, six genes (losA, mmar_2318, mmar_2319,
wecE, mmar_2323, and mmar_2353) located within the
predicted LOS synthesis locus were identified. The effects on
the polar lipid 2D-TLC profile after transposon knockout
of losA, mmar_2319, wecE, and mmar_2353 were previously
reported (van der Woude et al., 2012; Alibaud et al.,
2014) and confirmed by this study (Figure 3B and
Supplementary Figure S1). In this study, we focused on
the role of mmar_2318 and mmar_2319 on LOS synthesis
and virulence in Dictyostelium and macrophages. Although
deletion of mmar_2318 or mmar_2319 both revealed deficiency
of LOS-IV, prominent phagocytosis plaques and bigger
colonies were observed in �2319 mutant compared with
�2318 mutant. This may be due to different degrees
of LOS-III accumulation or unknown effects other than
impairment of LOS after deletion of mmar_2318 or
mmar_2319.

Our result confirmed �2318 and �2319 mutants also
reduced virulence toward Dictyostelium. To dissect the virulence
toward amoebae contributed by mmar_2318 and mmar_2319,
we also examined the ability of the �2318 and �2319
mutants to enter and replicate inside cells of Dictyostelium.
As shown in Figure 5, no matter entry or replication inside
Dictyostelium, there were no significant difference between wild-
type and two deletion mutants. These results indicated that
the reduced virulence toward Dictyostelium after deletion of
mmar_2318 or mmar_2319 was not resulted from affecting

the initial entry and survival inside cells. These two genes
might be through other mechanisms to inhibit Dictyostelium
growth.

In 2012, van der Woude et al. (2012) found that a
M. marinum wecE transposon mutant was hyper-virulent to
zebrafish, but our study demonstrated that a wecE::Tn mutant
was permissive for Dictyostelium growth. This difference is
potentially attributed to the facts that zebrafish andDictyostelium
are different species and zebrafish is a more complex model.
These results suggested that the attenuation of mutants identified
by using Dictyostelium screening should be confirmed in a
more complex host. A recent study published by Alibaud
et al. (2014) examined the phagocytosis of a mmar_2319
transposon mutant by murine macrophage J774a.1 cells. This
study is consistent with our observation that the phagocytosis
rate of the mmar_2319 deletion mutant was similar to that
of the wild-type strain in J774a.1. But in this study, we
observed the entry ability of deletion mutants (�2318 or �2319)
was significantly higher than that of wild type into another
macrophage cell line, THP-1. This may be due to different
host origins that these two cell lines were isolated from. The
increased entry into THP-1 cell after deletion of mmar_2318
and mmar_2319 might explain the hyper-virulence to zebrafish
of wecE mutant which also revealed accumulation of LOS-III
and deficiency of LOS-IV. However, the virulence of �2318 and
�2319 mutants to zebrafish or mammalian hosts requires more
investigations.

CONCLUSION

We identified a new gene, mmar_2318, involved the LOS
biosynthesis. M. marinum mmar_2318 and mmar_2319 were
both responsible for virulence toward Dictyostelium; deletion of
mmar_2318 and mmar_2319 increased entry ability into THP-
1 cell but not affected the replication inside Dictyostelium and
macrophages.
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