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Abstract: Glass is a material that can be reused, except for a small part that, due to its residual
characteristics, cannot be reused and becomes a nonbiodegradable waste to accumulate in landfills.
The chemical composition and pozzolanic properties of waste glass are encouraging for the use of
these wastes in the cement and concrete industries and for providing technically and environmentally
viable solutions. In this study, we propose the production of deactivated concretes with a high
content of glass powder in the binder. The substitution percentage of glass powder for cement
used in this work was between 70% and 80%. Consistency, air content, bulk density, workability,
compression strength, and permeability tests were performed. Regarding compressive strength, the
results obtained at 90 days for percentages of cement substitution by glass powder of 70 and 80%,
respectively, were 14.2 and 8.6. The chemical analysis of leachates showed concentrations of Fe, Cu, V,
Ni, and Mo, in mg L−1, of 1.57, 1.38, 0.85, 0.95, and 0.44, respectively. The results obtained, compared
with the relevant legislation, have proved that the inclusion of glass powder in a high percentage
of substitution and with a granulometry of 20 µm in the manufacture of deactivated concretes is
feasible for exterior pavements.

Keywords: sustainability; sustainable concrete; glass powder; deactivate concrete; leachates; exte-
rior pavements

1. Introduction

Currently, the industrial sector generates large quantities of waste, part of which
is recycled and the other part of which is deposited in landfills, causing environmental
impacts [1]. These wastes have been the subject of numerous studies in recent years to
determine possible uses based on their composition. In this way, the aim is, on the one
hand, to reduce the effects on the environment by using these wastes and converting them
into raw materials for other processes, thus reducing the exploitation of natural resources,
and on the other hand, to generate new products in a cheaper way [2].

The sustainability of the civil engineering sector is crucial to drive society toward a
circular economy, and to make this possible, the application of the waste hierarchy principle
(prevention, preparation for reuse, recycling, recovery, and, as a last option, disposal) [3]
is a priority. This sector, which advances day by day, is in a constant search for the best
alternatives to provide solutions to the different market requirements [4]. The aim is for
structures to be as resistant as possible and to ensure a certain useful life and optimum
performance of the materials used without losing sight of the environmental aspect [5].

Concrete is by far the most widely used material in civil engineering. It is estimated
that around 10 billion tons of this material are produced worldwide each year, which
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involves the use of nonrenewable natural resources, a significant demand for energy,
as well as the emission of greenhouse gases [6]. For example, the production of one
ton of Portland cement releases approximately one ton of carbon dioxide (CO2) into the
atmosphere. Globally, the cement industry contributes 7% of the CO2 generated [7].

The traditional use of concrete is to build load-bearing structures due to its mechan-
ical properties, durability, and workability. In recent times, the general commitment to
sustainability has prompted a search for new concretes that can improve their properties in
terms of environmental protection and aesthetic performance.

Numerous studies have shown the good performance of mortars and concretes made
from different waste materials, especially waste glass [8–10].

The final glass wastes from packaging, demolition of buildings, the automotive indus-
try, sanitary containers, and the ceramic industry that are not reusable by the glass industry
can be recovered as raw material for the manufacture, after a process of fine grinding and
mixing with nonpolluting reagents, of hydraulic binders [11].

Despite all benefits indicated, in the use of glass powder as a binder in the manufacture
of concrete, it should be considered that these materials might contain potentially harmful
substances such as heavy metals and trace elements, which can contaminate surface water
that are often sources of drinking water supply [12–14]. In this sense, studies carried
out show that the concentrations of heavy metals contained in the leachates emitted by
different types of concrete do not endanger the quality of the aquifers [14–16].

Studies on the pozzolanic activity of waste glass carried out by Shao et al. [17] showed
that glass powder ground to a particle size lower than 38 mm had some pozzolanic activity.
Concrete made with 30% glass powder as a binder showed lower compressive strength
before 28 days, but higher strength at 90 days [18]. This change in setting behavior of
mortars and concretes made with glass powder composite binder, compared to mortars
and concretes made with conventional binders (Portland cement), is attributed to the
pozzolanic reaction of the glass powder [19]. It is shown that the pozzolanic activity of
glass powder increases with decreasing particle size of the glass powder and increasing
curing temperature [20,21]. The dissolution of the alkalis provided by the glass particles
causes the cement hydration processes to be accelerated based on the amount of glass
powder used in the manufacture of cement [22,23]. However, the amount of alkalis released
is insufficient to compensate for hydration and early strength reduction caused by cement
dilution [24].

Hongjian et al. [9] studied the properties of cements manufactured with a high percent-
age of glass powder replacement (above 60%) and concluded that all mixtures containing
cement manufactured with a replacement percentage above 30% showed pozzolanic reac-
tions after one year. This translates into a longer setting time and a self-healing capacity
against the appearance of small cracks or differential settling that conventional cements do
not have [24]. Más et al. [25] indicated the suitability of the use of concretes manufactured
with a percentage of glass powder higher than 50% for pavements.

The range of pavements includes deactivated concrete, exposed aggregate, and
washed concrete. This is a type of paving that is easy to install on site. The aggregates
are visible on the surface in a concrete screed. This type of pavement, in addition to its
mechanical function, can have an infinite number of finishes. This makes possible to
obtain greater slip resistance and to improve the aesthetic component of concrete, until
now considered by many as something gray and smooth [26]. Deactivated concrete slabs
manufactured with a high percentage of glass dust in the binder, represent an ecofriendly
alternative and in line with the circular economy, which is currently imposed as a principle
in civil engineering.

In this article, we propose the use of glass powder as a high percentage cement
substitute in the manufacture of deactivated concrete to be used as pavement in outdoor
areas, studying its mechanical characteristics and leaching to verify that it does not cause a
negative environmental impact on soils.
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2. Materials and Methods
2.1. Materials
2.1.1. Aggregates

Aggregates, essentially siliceous and nonreactive, are used. They are sand with a grain
size <4 mm, gravel 4–12 mm, and gravel 12–20 mm. Figure 1 shows the particle size curve
of these aggregates.
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Figure 1. Aggregate granulometry.

2.1.2. Cement

The cement used was a commercial Portland cement CEM I 52.5 R (Cementos Portland
Valderrivas, Morata de Tajuña, Madrid, Spain). This cement has a density of 3.12 g/cm3, a
specific surface area of 4440 cm2/g, and a greenish gray color. The particle size of cement
CEM I 52.5 R in volume fraction for particle diameter lower than 8 µm was 41.5% and for
particle diameter lower than 96 µm was 99.7%.

Chemical composition of CEM I 52.5 R cement was as follows: CaO (65%), SiO2 (19%),
Al2O3 (5.5%), FeO3 (2.65%), SO3 (2%), MgO (2%), Na2O (0.15%), K2O (0.7%).

Glass powder
The material used is the last fraction of glass that cannot be reused by the glass

industry. This residue is ground with a bar mill until a grain size of 21 µm is obtained. The
size was based on the results of the analysis in the COULTER LS 100 Q laser particle sizer
(Beckman Coulter, Inc., Brea, CA, USA). Table 1 shows the diameters of the glass powder
used in making concrete.

Table 1. Granulometric characteristics of glass powder.

Glass Powder Used

d10 d50 d90
20 ± 0.01 µm 21 ± 1 µm 76 ± 3 µm

Based on the results of the analysis in the particle sizer, the accumulated particle size
curve was obtained, which shows the different particle size distribution as can be observed
in Figure 2.

The chemical composition of glass powder was 72.00% SiO2, 11.85% Na2O, 11.19%
CaO, 2.38% Al2O3, 1.60% Fe2O3, 1.60% MgO, 0.60% K2O, 0.10% MnO, 0.08% TiO2, and
0.05% P2O5, with 0.90% volatile LF (loss of the fire).
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2.2. Sample Preparation

Two series of specimens, each of which had 15 units [27], were manufactured where
the only parameter that varies is the replacement rate in percentage of glass powder by
cement CEM I 52.5 R. Table 1 shows the formulation used in the manufacture of the
specimens, where G70 and G80 correspond, respectively, to substitution rates of 70% and
80% of glass powder for cement. d50 glass powder of 21 µm was used (dimension of sample
particles for which 50% of them have a diameter lower than a certain value). Table 2 shows
a summary of experimental conditions for the samples prepared.

Table 2. Summary of experimental conditions for the samples prepared.

Sample ID

Concrete Composition G70 G80 Control

Cement substitution rate for glass powder (%) 70 80 0
Cement CEM I 52,5 R (kg/m3) 99 66 330

Glass powder (kg/m3) 231 264 0
Equivalent binder (kg/m3) 330

w/c ratio (%) 0.52
Arid < 4 mm 740

Gravel 4–12 mm 310
Gravel 12–20 mm 850

To study the compressive strengths of the manufactured concretes, they were intro-
duced into 10× 30 cylindrical test tubes. Once compacted and after 24 h, they were removed
from the mold and placed in a humid curing chamber at a temperature of 20 ◦C. The curing
time ranged between 28 and 90 days. After these curing times, they were broken following
the UNE 83-304-84 standard [28] and their compressive strengths were measured.

2.3. Characterization Tests

1. Consistency test

It was carried out according to the UNE-EN12350-2 [29] consistency standard by
means of the settlement test. This slump test is sensitive when the average slump is
between 10 and 200 mm.

2. Air content

The air content of ready-mixed concrete was determined according to UNE-EN 12350-
7 [30] by pressure methods.

3. Apparent density
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The procedure followed for the calculation of densities and porosities is based on
UNE-EN 1015-6 [31].

4. Workability

Workability was measured using the procedure described in UNE-EN 12350-5 [32].

5. Permeability test

Permeability tests were performed according to UNE-EN 12390-8 [33]. The purpose
of this test was to evaluate the presence of chemical elements in leachate from filtration
water and to study their possible environmental effects. Measurements were carried out on
concrete preserved in endogenous medium at 20 ◦C for 100 h. The control was a cylinder
of 4.07 ± 0.01 cm in length and 3.92 ± 0.01 cm in diameter. The water injection pressure
was kept constant at 10 bar throughout the test.

In order to analyze the leached elements, a vacuum filtration was conducted. The
filtrations were collected in successive fractions of ±20 cm3 through a 0.7 µm glass filter.
They were later analyzed using atomic absorption spectrometry (FAAS) and inductively
coupled plasma mass spectrometry (ICP-MS).

2.4. Slab Manufacturing

With the formulations shown in Table 1 (G70 and G80), 10 decorative concrete slabs were
produced in 50 cm × 50 cm removable wooden molds. Five slabs were manufactured with
the G70 formulation and the other five with the G80 formulation. The manufacturing was
carried out by vibrocompacting using a vibrating tray with uniform pressure on the mold.

In order to make the aggregate visible on the surface of the plates, two methods were
used. The first one consisted of deactivating the surface setting process by applying a
deactivating product during the hours after the concrete has been placed. This chemical
product was then removed by water jetting to expose the aggregate surface grains. The
final appearance depends on the type and the amount of deactivator used, and the time
of application before rinsing. In this case, a surface deactivator used for concrete floors
with exposed aggregates similar to the one indicated by the Pieri VBA 2002 trademark
(Figure 2). The application time for our tests was 2 days.

The second one was a mechanical method consisting of passing a broom over the
concrete surface during the hours following its placement, in order to drag a thin layer of
mortar or grout, thus revealing the aggregate grains on the surface. This method allowed
the work to be finished immediately after sweeping. The final appearance varied according
to the intensity of the sweeping (Figures 3 and 4). The broom could be used as soon as the
concrete surface was sufficiently dry. This surface sweeping was possible during the first
hours after the laying of the concrete thanks to the slow setting time due to the presence of
the glass powder in the binder.
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3. Results and Discussion
3.1. Results of the Characterization of Concrete

The percentage of glass powder substitution by cement was based on the study
carried out by García del Toro et al. [34], who reported that concretes manufactured with
a percentage of cement substitution by glass powder higher than 50% were suitable to
be used as pavements. The percentages of 70% and 80% were chosen in order to reuse a
greater amount of waste and contribute in a greater extent to the circular economy and
environmental protection.

Results obtained for consistency, air content, apparent density, and workability tests
are shown in Table 3.

Table 3. Results obtained in the characterization of fresh concrete and concrete substituted by
glass powder.

G70 G80 Control

Consistency (mm) 0 0 11
Air content (%) 7.1 7.1 2.8

Apparent density (kg/m3) 2098 2051 2390
Workability (easy/difficult) Difficult Easy enough Easy

From Table 3, it can be observed that the air content and consistency are the same
for concretes made with glass powder regardless of the percentage of substitution, and in
both cases, they are lower than for the control specimen, in which all the binder is cement.
As for the bulk density, it can be stated that it decreases when the proportion of cement
substitution by glass powder in the binder increases. This is explained by the fact that the
density of cement is higher than that of glass powder, 3.12 g/cm3 compared to 2.54 g/cm3

for glass powder. As for workability, it can be observed that as the percentage of glass
powder in the mix increases, the concrete becomes more workable, a fact that is also related
to the lower density of glass powder compared to cement.

According to consistency tests (Abrams cone slump), these concretes can be qualified
as suitable for pavements. It can also be observed that the water content of these concretes is
somewhat lower than that of conventional concretes in order to obtain a drier concrete. The
air content is higher due to the presence of ground glass. The presence of air is convenient
for this product since it facilitates its workability. On the other hand, it causes a decrease in
compressive strength in the short term.
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3.2. Mechanical Properties of Concrete

The results of the compressive strength tests of the concrete with 70% and 80% substi-
tution of cement by glass powder are shown in Table 4.

Table 4. Average results of compressive strength, Cs, measured in concrete specimens in relation of
the time after setting.

Days
Compressive Strength (MPa) Control

G70 G80 0

7 5.6 1.5 29.9
28 10.0 3.7 34.5
90 14.2 8.6 39.6

As previously observed [34], for concrete prepared with cement replaced by glass
powder, the compressive strength of the concrete decreased as the amount of glass powder
in the binder increased, which can be attributed to the fact that glass powder has a low
pozzolanic activity at the early ages, although, in this case, the granulometry is larger
and the concretes are drier and with higher air content. This causes the appearance of
different C-S-H type hydrates and slower setting [31] and lower compressive strengths in
the short term.

3.3. Results of Permeability Tests

In a previous work [16], a preliminary study was carried out on permeability char-
acteristics in this kind of concretes. In the present work, this test was further performed,
obtaining similar results. In the first hours of the test, there was a rapid increase in the flow
rate. This was due to the incomplete saturation of the control before the start of the test
and to the absorption of water by the binder, a process that gradually decreased. After 2 h
30 m, the filtrate flow rate decreased before stabilizing and then increased slightly. This
decrease in the filtrate flow rate corresponded to the internal reorganization of the free
solid particles inside the core, some of which were blocked in the narrowing of the pores.
This reorganization and the pushing of the finest particles caused a slight increase in the
flow rate and, consequently, in the permeability of the core. This indicated that the C-S-H
type gels responsible for the setting of the mortar began to form.

Regarding leaching characteristics, the elements analyzed in the leachate samples
were as follows: Si, Na, K, Al, Ca, Li, B, Mg, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge,
As, Rb, Sr, Y, Zr, Nb, Mo, Pd, Ag, Cd, Sn, Sb, Cs, Ba, La, Ce, Pr, Nd, Sm, Yb, Lu, Hf, Ta, Tl,
Pb, Th, and U.

The results below are the average of the results obtained by the two detection methods
used: atomic absorption spectrometry (FAAS) and inductively coupled plasma mass
spectrometry (ICP-MS).

Most of the elements showed no relevant concentrations in the first hours of the test,
reaching not detectable concentrations at the end of the test. For the rest of elements, in
order to study their concentration in the leachates and their variation over time, they were
divided into two groups. We took potentially contaminating elements (Figure 5b), which
can be dangerous for soils and aquifers, and the rest of the elements found (Figure 5a)
into account. The graphical representation of experimental data in these figures has been
carried out in a logarithmic scale for a better visualization of data.
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of Mo, Cr, Cu, V, Ni, B, Fe, and Al.

The potentially hazardous elements—molybdenum, chromium, copper, vanadium,
nickel, iron, boron, and aluminum—were all found in the glass composition. The elements
iron, copper, vanadium, nickel, and molybdenum showed concentrations of 1.57, 1.38, 0.85,
0.95, and 0.44 ppm, respectively, after five hours of the test, with a decreasing tendency until
they stabilized after 20 h. At 72 h, their concentrations remained below the quantification
limits of the analytical techniques used.

Figure 5b shows how the boron concentration was appreciable at the beginning of the
test, decreasing rapidly with time from 2.75 to 0.37 ppm. Chromium was also detected in
the first hours, with a concentration of 3.85 ppm. This concentration decreased rapidly to a
concentration of 0.015 ppm at the end of the test. Aluminum was another component of the
glass used in the test, at a percentage of 2.2%, so it also appeared in the filtered water. The
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concentration of this element, as can be seen in Figure 5b, decreased rapidly from 17.5 ppm
to 1.15 ppm. The cement, consisting of 5.5% aluminum, also contributed a certain amount.

For the rest of the elements, and in order to verify that the results obtained in this
work were in agreement with those obtained in a preliminary study by Mas et al. [16], a
hypothesis test for equality of means with a confidence level of 95% was performed to
ensure that there were no significant differences between the results. First, the variances of
each mean were compared using the F test and it was found that there were no significant
differences between them. At this regard, the hypothesis statement was as follows:

H0 :X1 = X1 (1)

H1: X1 6= X1 (2)

The criteria to accept H0 is : |t0| < t tabulated (3)

As previously mentioned, the hypothesis contrast was performed for the elements
whose concentrations at 72 h remained above the quantification limits of the analytical
techniques used.

Table 5 shows the results obtained in the previous test performed by Mas et al. and
the current ones, together with the experimental Student’s t used to test the hypothesis.

Table 5. Quantitative results for analyzed elements, expressed as mg L−1 (mean ± standard deviation, n = 3) and Student’s
t values obtained for the contrast of means.

Element
Experimental Value

(ppm)
Results Obtained by
Mas et al. [16] (ppm) S2= (n1−1)S2

1+(n2−1)S2
2

n1+n2−2 t0=
¯
X1−

¯
X2√

S2( 1
n1

+ 1
n2

)

Na 97 ± 3 100 ± 3 9.46 1.35
Si 45 ± 3 47 ± 4 13.11 0.65
K 31 ± 2 32 ± 2 3.71 0.70
Ca 3.2 ± 0.3 3.2 ± 0.5 0.17 0.15
Al 1.36 ± 0.09 1.2 ± 0.2 0.02 1.28
B 0.30 ±0.02 0.38 ± 0.05 0.002 1.63

Student t values were 2.1318 for all the elements.

Since the Student’s t test result obtained with the experimental data for each and
every one of the elements analyzed was lower than the tabulated data for a Student’s t
distribution with ν degrees of freedom and a 95% confidence level, it was accepted that
there were no significant differences for the means of the data obtained for each of the
elements analyzed.

Of all the elements, sodium (Na) was the one released in the greatest quantity; its
concentration in the filtered water was around 5350 ppm in the first 5 h of the test. Figure 5a
shows how the sodium concentration decreased rapidly to around 100 ppm at the end
of the test. This result was obtained for sodium mainly because this element is found
in a high percentage in the glass used (≈11.3%), and also because sodium has high mo-
bility. However, the cement used contains only 0.15% sodium, contributing little to the
concentration. As for potassium, Figure 5a shows how the concentration of this element
dropped from 359 ppm to 32 ppm. This element came from both glass and cement, whose
potassium content is 0.6% and 0.7%, respectively. As for silicon, which is also shown in
Figure 5a, it can be observed that its concentration decreased more slowly than the rest
of the elements, from 112 to 47 ppm. The silicon collected in the filtrate water came from
both glass (70%) and cement (19%). The calcium concentration, as shown in Figure 5a,
varied differently over time. At the beginning of the trial, there was a decrease in calcium
concentration from 31 to 1.2 ppm. Subsequently, the concentration remained constant
until 30 h have elapsed. After this time, the concentration increased until it reached a final
value of 3.2 ppm. According to Marco et al. [11] the dissolution of the glass did not release
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calcium, so it can be concluded that the calcium collected in the filtration came to a large
extent from the cement, since cement is made up of 65% Ca.

Sodium and potassium, especially sodium, mainly from glass, were released in sig-
nificant quantities, but this does not pose a danger to the environment, since they were
not released in sufficient quantity to cause changes in the electrical conductivity of the soil.
Calcium does not constitute an environmental hazard; since it is a nontoxic element and at
the concentration level determined, it would not cause soil pH modifications. The presence
of chromium and boron during the first hours of the test in the filtrate water was relevant.
However, these elements tended to disappear at the end of the test, probably because they
got into the cementitious matrix.

4. Conclusions

In the present work, the use of glass powder as a high percentage cement substitute
in the manufacture of deactivated concrete to be used as pavement in outdoor areas was
examined. Deactivated concrete slabs manufactured with a high percentage of glass dust
in the binder represent an ecofriendly alternative that is in line with the circular economy,
which is currently imposed as a principle in civil engineering.

The experimental results indicated that it is feasible to produce mortar with fine glass
powder and that floors made of deactivated concrete with a glass powder binder base
are highly stable against atmospheric and mechanical agents. These characteristics give
them a long-life cycle and low maintenance. Exposed aggregate finishes are rough, nonslip,
and resistant to wear and tear and the action of atmospheric agents. Its application would
be suitable for pedestrian areas such as park streets and outdoor traffic areas in need of
a durable pavement, as well as accesses to garages, terraces and patios, swimming pool
areas, and roads with light traffic.

Regarding leachates, alkaline elements, especially sodium, were released in signif-
icant quantities, although not in quantities sufficient to cause changes in the electrical
conductivity of the soil, so they do not pose an environmental hazard, similar to calcium,
which is a nontoxic element and, at the concentration level determined, would not cause
a soil pH modification. The considerable presence of chromium and boron, potentially
contaminating elements, in the filtrate water during the first hours of the test is remarkable.
These elements tended to disappear at the end of the process, since they were incorporated
into the cement matrix; therefore, they do not cause environmental contamination. Finally,
the rest of the elements detected were found at trace levels in the filtered water, so due to
their scarcity, they cannot constitute a danger to the natural environment according to the
legislation in force.
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