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Abstract: Polycystic ovary syndrome (PCOS) is a common endocrinopathy, characterized by chronic
anovulation, hyperandrogenism, and multiple small subcapsular cystic follicles in the ovary during
ultrasonography, and affects 5–10% of women of reproductive age. PCOS is frequently associated with
insulin resistance (IR) accompanied by compensatory hyperinsulinemia and, therefore, presents an
increased risk of type 2 diabetes mellitus (DM). The pathophysiology of PCOS is unclear, and many
hypotheses have been proposed. Among these hypotheses, IR and hyperandrogenism may be the
two key factors. The first line of treatment in PCOS includes lifestyle changes and body weight
reduction. Achieving a 5–15% body weight reduction may improve IR and PCOS-associated hormonal
abnormalities. For women who desire pregnancy, clomiphene citrate (CC) is the front-line treatment
for ovulation induction. Twenty five percent of women may fail to ovulate spontaneously after three
cycles of CC treatment, which is called CC-resistant PCOS. For CC-resistant PCOS women, there are
many strategies to improve ovulation rate, including medical treatment and surgical approaches.
Among the various surgical approaches, one particular surgical method, called laparoscopic ovarian
drilling (LOD), has been proposed as an alternative treatment. LOD results in an overall spontaneous
ovulation rate of 30–90% and final pregnancy rates of 13–88%. These benefits are more significant for
women with CC-resistant PCOS. Although the intra- and post-operative complications and sequelae
are always important, we believe that a better understanding of the pathophysiological changes and/or
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molecular mechanisms after LOD may provide a rationale for this procedure. LOD, mediated mainly
by thermal effects, produces a series of morphological and biochemical changes. These changes
include the formation of artificial holes in the very thick cortical wall, loosening of the dense and hard
cortical wall, destruction of ovarian follicles with a subsequently decreased amount of theca and/or
granulosa cells, destruction of ovarian stromal tissue with the subsequent development of transient
but purulent and acute inflammatory reactions to initiate the immune response, and the continuing
leakage or drainage of “toxic” follicular fluid in these immature and growth-ceased pre-antral follicles.
All these factors contribute to decreasing local and systemic androgen levels, the following apoptosis
process with these pre-antral follicles to atresia; the re-starting of normal follicular recruitment,
development, and maturation, and finally, the normalization of the “hypothalamus–pituitary–ovary”
axis and subsequent spontaneous ovulation. The detailed local and systematic changes in PCOS
women after LOD are comprehensively reviewed in the current article.

Keywords: anovulation; clomiphene citrate; hyperandrogenism; insulin resistance; laparoscopic
ovarian drilling; polycystic ovary syndrome

1. Introduction

Polycystic ovary syndrome (PCOS) is a frequent metabolic disorder, characterized by chronic
anovulation, hyperandrogenism, and polycystic ovaries in ultrasonography; PCOS affects 5–10% of
women of reproductive age [1–5]. Recent studies show that 50% of women with PCOS fulfill the
criteria of metabolic syndrome [6]. PCOS is frequently associated with insulin resistance (IR) and is
subsequently accompanied by compensatory hyperinsulinemia, resulting in an increased risk for the
development of type 2 diabetes mellitus (DM) and cardiovascular disease (CVD) [7–11].

Loss of body weight (BW) and life-style modifications are highly recommended as the first line
of treatment in PCOS, especially for obese women [2,12–19]. A 5–10% loss in BW over a period
of six months, regardless of body mass index (BMI), may be associated with improvements in
central obesity, hyperandrogenism, and ovulation rate [18,19]. For women who desire to become
pregnant, clomiphene citrate (CC) has been long considered as the front-line treatment based on its
high cost-effectiveness [2,19–24], although recommendations from the international evidence-based
guideline for the assessment and management of PCOS favored that letrozole should be considered
first line pharmacological treatment for ovulation induction in women with PCOS with anovulatory
infertility and no other infertility factors to improve ovulation, pregnancy and liver birth rates [10]. CC is
a competitive inhibitor of estrogen that binds to estrogen receptors (ERs), resulting in an increase of the
hypothalamic gonadotropin-releasing hormone (GnRH) pulse frequency and circulating concentrations
of follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Therapeutically, CC is given early
in the menstrual cycle. It is typically prescribed beginning on day 3 and continuing for 5 days. By that
time, FSH levels increase steadily, causing the development of a few follicles. These follicles, in turn,
produce the estrogen. Ovulation occurs most often at 9–10 days after a course of CC [19]. PCOS women
after six months of CC treatment present a 49–90% of ovulation rate and a 30–50% pregnancy rate;
moreover, 23% of PCOS women experience a live birth. Most importantly, the cost of CC is very low.
CC treatment also has fewer side effects and a lower chance of multiple pregnancies (2–13%) compared
to other medical treatments, such as using GnRH agonists or antagonists, aromatase inhibitors (AIs),
and gonadotropin stimulation treatments [2,19–24]. The initial dose of CC is 50 mg per day. The dose
of CC can then be increased to a maximum dose of 150 mg per day if a poor response is observed [19].

CC, therefore, has several benefits. Consequently, all PCOS patients are encouraged to be treated
with CC initially to become pregnant (the best choice for the front-line therapy of PCOS women with
anovulation). Unfortunately, approximately 15–25% of PCOS women fail to respond to CC treatment,
even when a maximum dose is given alongside long-term therapy with CC [19,21]. This phenomenon
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is called CC-resistance in PCOS [19,21]. To overcome CC-resistant PCOS, there are many strategies
to improve CC’s impact on ovulation induction. Medical and surgical interventions after adequate
lifestyle modifications have been tried [2,3,10,12,15,19–41]. All PCOS women, especially those in the
obese population, should be encouraged to undergo behavioral modifications, dietary interventions,
exercise interventions, and obesity and BW assessments [2,3,10,12,15,19–41]. The medical therapies
reported to be useful for PCOS women include oral contraceptive pills, anti-obesity pharmacological
agents, anti-androgen pharmacological agents, and ovulation induction agents [10]. Besides well-known
medications, some nutrients and anti-oxidative agents have been investigated to manage women with
PCOS [5,39–42]. These alternative agents are also reported to have a positive effect on augmentation of
the drug-therapeutic response [5,39–42]. Inositol supplements are one of the best examples [5,29,40–42].
Furthermore, adding another agent to CC-treated PCOS has become increasingly popular. Directly using
another agent alone in place of CC in the management of POCS women is also widely used. These agents
include metformin [18,19,25,30–37,40]; rosiglitazone or rosiglitazone alone [21,33,40]; and AIs, such as
letrozole [21,23,42] and gonadotropins [20,22–24,26–37]. A Cochrane Database Systematic Review in
2017 suggested the potential benefits of a combination of metformin and CC in clinical pregnancy
and ovulation among PCOS women with infertility compared to the use of CC alone [40]. However,
the potential cost–benefit ratio of this treatment should be weighed because combinational therapy
(CC+ metformin) has been reported to result in more gastrointestinal side effects in PCOS women [40].

The current assisted reproductive technique (ART) involving oocyte retrieval and subsequent
in vitro fertilization or intracytoplasmic sperm injection and embryo transfer (IVF/ICSI-ET) has been
widely used for the therapy of a certain population of PCOS women with infertility [10,43–45]. However,
besides gastrointestinal side effects from the drugs, medical treatment may have other adverse events,
such as cycle cancellation [39]. Ovarian hyperstimulation syndrome (OHSS) and multiple pregnancies
due to over responses to the ART procedure also occur more frequently in PCOS women compared to
women without PCOS, leading to safety concerns for the use of ART in PCOS women.

The incidence of OHSS during ART in PCOS women after using a surgical method for the
treatment of PCOS ranges from two to 21 per 1000 patients and is statistically significant lower than the
incidence among those without antecedent surgical treatment (23 per 1000 patients), with an odds ratio
(OR) of 0.25 (95% confidence interval [CI] 0.07–0.91) [39]. The risk of multiple pregnancies following
surgical treatment of the ovary ranged from 0.9% to 3.4%, if we assume the risk of a multiple pregnancy
following medical ovulation induction alone to be 5.0% [39]. Therefore, surgical treatment can be
considered an alternative treatment for PCOS patients to minimize the risk of the aforementioned
medication-related adverse events frequently noted for PCOS women. Surgical approaches can be
performed either via ovarian ablative therapy or via an ovarian drilling procedure. The latter option is
further separated into laparoscopic ovarian drilling (LOD) and ultrasound-guided ovarian drilling
(UGOD) [10,15,21,25–28,38,39].

Since PCOS women are often obese, weight reduction surgical approaches, such as bariatric
surgery, have become increasingly attractive [10]. Although this weight-reduction surgery is not
directly involved in the targeted site (ovary), the evidence for bariatric surgeries and their effect on
fertility, live birth rates, and pregnancy complications is growing [46]. The specific mechanisms by
which bariatric surgery improves the metabolic or reproductive profiles among obese PCOS women
remain uncertain, but they are possibly related to the marked reduction in BW associated with an
improvement of IR, a reduction in circulating insulin levels, and, consequently, a decline in circulating
androgen levels and an increase in sex hormone binding globulin (SHBG) levels [1].

LOD was first introduced by Halvard Gjönnaess using a unipolar electrode in 1984 [47]. Wedge
resection was the forerunner of LOD and was first introduced by Stein and Leventhal for seven
anovulatory women with PCOS and resulted in the resumption of menses and pregnancy [47,48].
Presently, both laparoscopic ovarian electrocautery (diathermy either by unipolar or bipolar) and laser
vaporization using carbon dioxide (CO2), argon, or neodymium-doped yttrium aluminum garnet
(Nd:YAG; Nd:Y3A15O12) crystal lasers are commonly used in the LOD procedure, either unilaterally
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or bilaterally [15,25,28,38,39,48–61]. Compared to the conventional wedge resection of bilateral ovaries,
LOD seems to have many advantages, partly due to its minimally invasive strategy. Furthermore,
observational studies have demonstrated that LOD can significantly improve overall spontaneous
ovulation rates and subsequent pregnancy rates, ranging from 30 to 90% and 13 to 88%, respectively,
among CC-resistant PCOS women [38,39].

However, the use of LOD for the management of PCOS women as a front-line therapy or routine
practice is not recommended [62]. The gradual decline in the use of LOD for young women with PCOS
is also notable, even though the high efficacy and potential long-term duration of the effects after LOD
have been well-recognized. The main argument against LOD includes the high cost of the procedure,
the risk of possible anesthesia and intra-operative (as well as post-operative) complications or sequelae,
and the possible need for hospitalization. While these complications are not completely avoidable,
the majority of doctors have already accepted that LOD is a minimally invasive surgery [63,64].
These factors have had a significantly negative impact on using LOD for the therapy of PCOS women
with sub-infertility when another choice, such as medication, can be used.

Increasingly more pharmacological agents are being made available to the market, and many
have proven efficacy. Based on the many weak points of LOD, LOD is rarely considered as the first
choice for PCOS women with anovulation. What, then, is the role of LOD? Some women without any
identified infertility factors who still fail to ovulate after the application of active medications may be
good candidates for LOD. Furthermore, some PCOS women may have other surgical indications for
infertility, such as tubal factors, endometriosis, and others, highlighting the use of LOD simultaneously
during laparoscopic surgery as a good choice [64–66]. Therefore, it is worth re-visiting the role of LOD
for PCOS women. The current review seeks to explain how LOD works on PCOS women, including
its possible molecular mechanisms, and, most importantly, its therapeutic effects on reproduction
and metabolism.

2. The Pathophysiology of Polycystic Ovary Syndrome (PCOS)

The pathophysiology of PCOS is complex and has long been controversial. PCOS may have
multifactorial causes related to genetic, metabolic, fetal, and environmental factors [67–73]. There are
several genes and pathways reported to be related to the PCOS phenomenon. The followings are
examples [68,71,73]. Anti-Müllerian hormone (AMH), a glycoprotein secreted by the granulosa cells
of the pre-antral and small antral follicles, has an inhibitory effect on primordial follicle recruitment
and high levels of expression in PCOS patients. Calpain-10 (CAPN10) is a calcium-dependent
cysteine protease. Cluster of differentiation 163 (CD163) is a high-affinity scavenger receptor for the
hemoglobin–haptoglobin complex). Glucokinase regulatory protein (GCKR) is an inhibitor of hepatic
glucokinase involved in glucose homeostasis. Methylenetetrahydrofolate reductase (MTHFR) is a
reductase involved in folate metabolism, DNA methylation, and RNA synthesis. Neuronal growth
regulator 1 (NEGR1) is a cell adhesion molecule involved in neuronal growth and development).
Nerve growth factor Nur77 (NR4A1) is a member of the steroid–thyroid hormone-retinoid receptor
superfamily. Nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin-1 (SIRT1) is a
regulator for DNA damage. Nicotinamide phosphoribosyltransferase or pre-B-cell colony-enhancing
factor 1 (NAMPT or PBEF1 [visfatin]) is involved in the NAD salvage pathway. Retinoic acid receptor
responder protein 2 (RARRES2) is a modification of a secreted chemotactic protein. Transforming
growth factor beta 1 (TGF-β1) is a growth factor involved in cell growth, proliferation, differentiation,
and apoptosis. Toll-like receptor 2 (TLR2 or CD282) is a Toll-like receptor involved in the immune
response. Matrix metalloproteinase family (MMP) consists of at least 28 members that degrade
different substrates of the extracellular matrix [ECM], eventually leading to tissue remodeling.
Tissue inhibitors of MMP (TIMPs) are an endogenous inhibitor family contacting at least four
enzymes. Intercellular adhesion molecule 1 (ICAM1) is a cell surface glycoprotein involved in
integrins. The other cytokines, hormones or growth factors, and micro ribonucleic acids are
also involved in the pathophysiology of PCOS, such as vascular epithelial growth factor (VEGF),
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tumor necrosis factor alpha (TNF-α), interleukin (IL), adipocytokine family (chemerin, omentin-1,
leptin, adiponectin, and others), leptin, differentially expressed in normal and neoplastic development
(DENND), RAS-related protein 5b (RAB5B), and small noncoding micro ribonucleic acid (microRNAs,
miRNAs, and miR), including miR-130b-3p [68,71,73]. Since gene expression is controlled and modified
by epigenetic factors, the post-translational modifications of proteins, such as methylation [74],
acetylation [75], glycosylation [76], and sialylation [77], involved in turning the switch “on” or “off”,
are also reported to play a role in the pathophysiology of PCOS [71,73].

Several theories have been proposed to explain the pathogenesis of PCOS, often based on
the concept that ovarian steroidogenesis requires gonadotropin stimulation and the subsequent
dysregulation or dysfunction of the hormone, metabolism, and homeostasis systems, such as
consequent unopposed estrogenemia, IR, compensatory hyperinsulinemia, chronic inflammatory
reaction, proinflammatory cytokines, and oxidative stress [67–69]. The disturbance of the
hypothalamic-pituitary-ovary (HPO) axis was first proposed in PCOS patients, because of its clear
results [69]. In addition, dysfunction of the negative feedback effects of progesterone represents a
key finding of the increased pulse frequency and amplitude of LH in patients with PCOS [68,69].
Coutinho and Kauffman concluded that a hyperactive GnRH neural circuit, including an increase in
GnRH neuron activity, an increase in stimulatory gamma amino butyric acid (γ-aminobutyric acid,
GABA)-ergic (GABAergic) innervation, and postsynaptic currents onto GnRH neurons, as well as an
increased secretion of kisspeptin, favor a neuroendocrine basis for either the etiology or phenotype
of PCOS [78]. The aforementioned disturbance is apt to produce more LH and limit the production
of FSH [68], contributing to the disruption of follicle maturation and shaping the morphology of the
polycystic ovary, which contains multiple small immature but growth-ceasing follicles. All aggravate
the severity of anovulation in PCOS women.

3. The Molecular Mechanisms of IR in Polycystic Ovary Syndrome (PCOS)

It is sometimes not easy to distinguish IR from hyperandrogenism in PCOS women. Both are
often accompanied by the other, contributing to the uncertainty of the molecular mechanism of
IR in PCOS [79]. Two major molecular signaling pathways are mediated by insulin, including the
phosphatidylinositol (PI)3-kinase (PI-3K)/Akt pathway, which is involved in metabolism effects, and the
mitogen-activated protein kinase (MAPK) pathway, which is involved in cell growth, proliferation,
and differentiation [79]. When these signaling pathways are disturbed by certain conditions, IR occurs.
Over- or auto-phosphorylation of certain molecules in these pathways is frequently found in women
with IR or PCOS [80]. For example, serine phosphorylation of the insulin receptor substrate-1 (IRS1)
and insulin receptor substrate-2 (IRS2), as well as auto-phosphorylation of the insulin receptor,
might impair the insulin–insulin receptor signaling pathway. In addition, auto-phosphorylation of the
insulin receptor is also involved in the downregulation of glucose transporter type 4 (GLUT-4) and the
defects in insulin-mediated glucose disposal [80].

To compensate for IR, hyperinsulinemia develops. Hyperinsulinemia is important for the
development or exacerbation of androgen excess and is also considered one possible mechanism of
the pathophysiology in PCOS women [69]. Hyperinsulinemia apparently increases ovarian androgen
production in PCOS via the inhibition of hepatic SHBG production [69]. Furthermore, insulin counters
normal homologous desensitization, upregulating the granulosa or theca cell LH receptors and ovarian
cytochrome P450c17a activity, and acting synergistically with LH to enhance theca cell androgen
production [69,72,79]. In PCOS patients, ovarian androgen is the main source of hyperandrogenism,
accounting for 70% of the total androgen level in PCOS [79]. The remaining 30% of androgen is
produced by the adrenal glands [79]. The latter exacerbates hyperandrogenism status in PCOS women.
It was reported that adrenocortical steroidogenic dysfunction occurs in PCOS women, based on the
detection of the atypical metabolism of adrenal products, such as a high serum level of 11-oxygenated
androgen (11-ketotestosterone-11KT) in PCOS women [79].
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Oxidative stress conditions, including obesity (adipose tissue accumulation), defects in
mitochondrial metabolism, fatty acid oxidation, and hyperglycemia, have been noted in women
with PCOS [80]. For example, the expression and activity of nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase and inducible nitric oxide synthase (iNOS) were significant enhanced
in PCOS women, especially in obese women [80]. In addition, reactive oxygen species (ROS)
generation was subsequently increased in PCOS women [80]. Furthermore, certain protein kinases
and transcription factors are activated. All contribute to detrimental effects on follicular dynamics and
ovulation ability [80].

Taken together, all these factors result in the activation and augmentation of this vicious
cycle (anovulation, hyperandrogenism, the chronic inflammation and imbalance of oxidative and
anti-oxidative processes, disturbances of homeostasis in normal follicular development, maturation,
and an ovulating or atresia state); therefore, greater androgen production, more insulin formation,
and more severe IR occurs in PCOS women.

4. Laparoscopic Ovarian Drilling in Polycystic Ovary Syndrome

4.1. A Brief Review of the Operative Procedure of Laparoscopic Ovarian Drilling

This procedure is performed in a lithotomy position using video-monitoring equipment [60].
With the advances in technology for minimally invasive surgery, laparoscopic surgeries using fewer port
wounds, single incisions, or the natural orifice have become increasingly popular [81–83]. Therefore,
the fewer-port laparoscopic technique is also feasible for LOD. The following is a summary of the
standard three-port wounds for LOD. In brief, a 5–10 mm trocar is inserted into the umbilical position
for video scope placement, and two 5 mm trocars are inserted into the right- and left-side lower
quadrant lateral to the inferior epigastric artery, 6–8 cm oblique to the pubic rami. A pair of grasping
forceps is introduced through one of the 5 mm trocars to grasp the utero-ovarian ligament and lift the
ovary away from the bowel and ureter. In general, three to ten diathermic punctures (each 3 mm in
diameter and 2–4 mm in depth) are produced on a single ovary or both ovaries using 600–800 joules (J)
of energy for each puncture. However, the clinical results of LOD may be dose-dependent, and it is
suggested to use at least 600 J for every ovary, based on the recommendation of the first study on the
amount of energy used for LOD by Amer et al. [84]. The duration of each penetration is about 2–4 s.
The bilateral ovaries are cooled by irrigation with an isotonic solution, and the presence of bleeding is
assessed. Finally, the instillation of 500–1000 mL of normal saline into the cul-de-sac to cool the ovaries
and prevent heat injury to adjacent tissues, reduce the risk of the postoperative adhesion formation,
and effectively decrease the postoperative shoulder tip pain is encouraged [63,85–87]. The optimal
amount of the electrosurgical energy for each puncture to achieve a maximum treatment response and
minimal follicle injury is unknown. Hafizi et al. [52] performed a randomized study to compare the
effects of LOD on metabolic effects with two different cautery methods. In group A, based on the size
of the ovary, either four punctures of 5 s or five punctures of 4 s with a voltage (V) of 30~40 were used
to achieve an energy of 600 J per ovary (4 × 5 × 30 = 600). In group B (on the basis of ovarian volume),
the measurement of energy was based on the previous studies that used 640, 450, 600, and 800 J for
each ovary (mean: 625 J). The authors found that there were no significant differences in the level of
AMH, testosterone, and dehydroepiandrosterone sulphate (DHEA-S) between the two groups.

Other techniques for LOD are needed, such as office microlaparoscopic ovarian drilling
(OMLOD), which is performed under augmented local anesthesia without general anesthesia [88,89].
Rapid recovery, less pain, and a decreased need for hospitalization are the advantages of OMLOD [89].
Fertiloscopy (transvaginal hydrolaparoscopy) was also described as an effective technique for ovarian
drilling [89,90]. LOD using a harmonic scalpel and a monopolar hook electrode were also proposed [91].
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4.2. How Many Punctures Are Needed during the Laparoscopic Ovarian Drilling Procedure?

It is still unknown how many puncture sites for a single ovary produce the best therapeutic
effects of LOD for PCOS women. The standard number and/or depth of the perforation or dose
and/or the duration of energy sources applied to the ovary to maximize the therapeutic effects remain
controversial [92,93]. Most studies propose the use of three to ten punctures for a single ovary and a
power setting of 200–300 watts (W) for 2–4 s [27,28,39,46,52,61,88]. Our suggestion is that the number
of punctures should be tailored to the individual ovary in each woman with PCOS depending on
the ovarian size [94,95]. Farquhar et al. reported that more than eight punctures might increase the
occurrence of post-operative pelvic adhesions and decrease the ovarian reserve [26]. In our experience,
ten punctures per ovary with a monopolar coagulating current at a 40 V power setting does not seem to
increase the risk of premature ovarian failure after LOD depending on the size of the ovary [61,94–96].

To consider the typical findings of bilateral ovaries showing polycystic ovary morphologies, it is
important to know whether LOD should be applied to a single ovary or both ovaries. One study
showed that performing LOD on both sides with a large amount of energy applied to the ovary
during LOD had a negative impact on the ovarian reserve [93]. Some other studies have questioned
this negative impact of surgical laterality on the ovarian reserve based on the absence of statistically
significant differences in the ovulation rate, clinical pregnancy rate, and miscarriage rate between the
two groups [38]. However, there is no doubt that a large amount of energy applied during LOD indeed
deteriorates ovarian function [38,93]. In addition, Sunj et al. found that unilateral LOD adjusted by
ovarian volume can increase the ovulation rate in women with PCOS [49,54].

Taken together, emerging evidence supports the use of the fixed-dose unilateral LOD as a better
choice for infertile patients with CC-resistant PCOS.

4.3. Possible Molecular Mechanisms of Laparoscopic Ovarian Drilling

As shown above, the pathophysiology of PCOS is uncertain; therefore, it is difficult to evaluate
the exact mechanism of LOD for the treatment of PCOS women. The features of polycystic ovarian
morphology and underlying molecular changes (Figure 1), such as thickening of the tunica albuginea,
ovarian stromal hyperplasia, stromal cell luteinization, and the presence of many immature cystic
antral follicles, may provide some explanations for the effects following LOD in the management
of PCOS.
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Figure 1. The pathophysiologic changes of polycystic ovary syndrome including cortical thickening
and stromal hyperplasia; increased granulosa/theca cells and surrounding stromal tissues; increased
intro-ovarian follicular fluid, such as an increased pro-inflammatory response and a decreased
anti-inflammatory response; down-regulation and inflammation-related gene and theca-associated
lymphocytes; and the dysfunction of angiogenesis within the ovary. All are apparently present in a
polycystic ovary.
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One of the plausible mechanisms is the production of “holes” in the very thick cortical wall of the
polycystic ovary (Figure 2). It was reported that the thickness of the cortical stroma is increased by
one-third and the subcortical stroma by fivefold [68]. In addition, the thickening cortexes and basal
laminas of follicles contain more collagen, reduce glycosaminoglycan content, and lower pro-collagen
IV expression [68]. Therefore, LOD mediated by many penetrations through electro-cauterization may
loosen the hard and condensed cortical layers of the polycystic ovary. Although there is no study
available yet to prove the above-mentioned hypothesis, the concept is worthy of further investigation.
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The second proposed mechanism is the destruction of the ovarian follicles (with a decreased
amount of theca and/or granulosa cells) and a part of the ovarian stroma due to thermal effects,
resulting in the reduction of these cells and structures involved in ovary-related or ovary-producing
hormones, cytokines, and growth factors. One report showed that the ratio of the ovarian stromal
area to the total ovarian area according to ultrasound is a good predictor of hyperandrogenism in lean
Italian PCOS women, although the ratio of the ovarian stromal area to the total ovarian area is not
always reproducible in other races [68]. Therefore, it is believed that LOD using the thermal effect
may destroy much of the ovarian stromal tissue, which is the main source of androgen production,
by decreasing the load of androgen-producing cells within the polycystic ovary. Supporting this idea,
it was shown that androgen production decreased dramatically after LOD [96]. With a markedly
decreased production of androgen, the subsequent conversion from a high concentration of androgen
to estrogen was also significantly decreased, possibly normalizing the disturbed HPO axis or re-starting
this HPO axis in PCOS women.

Ovarian angiogenesis dysfunction is apparent in the polycystic ovary, including increased ovarian
stromal vascularization, decreased flow impedance, and alterations in angiogenic factors [68,97].
LOD destroys the ovarian stromal tissue in the polycystic ovary and may then reverse the abnormalities
of the ovarian angiogenesis process. With possible implications in restoring appropriate and adequate
vessel formation, normal follicular development occurs followed by successful ovulation in PCOS
women after the LOD procedure.

Another possible mechanism is the removal of the intra-ovarian follicular fluid that accumulates in
these supposedly “unhealthy” small follicles by leakages, boiling, or aspiration. All these mechanisms



Int. J. Mol. Sci. 2020, 21, 8147 9 of 22

contribute to re-starting the normal maturation process of the follicles. The aforementioned hypothesis
was tested in 2007. Wu et al. found that CD45RO+ cells (activated/memory T lymphocytes) and IL-6
were low in the follicular fluid of PCOS women; by contrast, TNF-α was higher in the PCOS follicular
fluid [98]. It was reported that there are many factors related to a statistically significant increase
in the follicular fluid of PCOS women compared to women without PCOS [98]. Some factors are
involved in an increased proinflammatory reaction (chronic low-grade inflammation), metabolism,
and oxidation process [3,79,98–101]. Some are amino acids, such as valine, isoleucine, leucine,
phenylalanine, lysine, succinate, and malate. Some are metabolic and essential elements involved
in homeostasis processes, such as lysophosphatidylcholine (LysoPC), glycerophosphocholine, carnitine,
d-glutamic acid, ferulic acid, salicyclic acid, 3-methylhistidine, α-keto-β-methylvalerate, α-ketoisovalerate,
α-ketosiocaproate, oxaloacetate, cis-aconitate, acetate, acetoacetate, 3-hydrobutyrate, deoxycorticosterone,
3-hydroxynonanoylcarcitine, eicosapentaenoic acid, glyceraldehyde, and N-acetylneuraminic acid.
Some are involved in the immunological factors and/or cytokines, including IL-1β, granulocyte
colony-stimulating factor (GCSF), frizzle-related protein-5 (Sfrp-5), IL-12, IL-18, IL-33, neutrophil counts,
the macrophage 1/macrophage 2 (M1/M2) ratio, the neutrophil/leukocyte (N/C) ratio, and the T helper
17/T helper 2 (Th17/Th2) ratio [3,80,99–102]. By contrast, many factors reported to be involved in
anti-inflammatory responses or anti-oxidation/gluconeogenesis in the follicular fluid in PCOS women are
significantly decreased. These factors include lactate, IL-13, IL-15, IL-22, macrophage inhibitory factor
(MIF), C-C Motif Chemokine Ligand 2 (CCL2), innate lymphoid cells, regulatory T cells, dendritic cells,
and cytotoxic T cells (CD8+ T cell counts) [3,80,99–103]. The pure removal of follicular fluid in PCOS
women may be effective, but the benefits seem to be transient. In addition, fluid removal by LOD may
cover only a small proportion of the total follicular fluid actually. Moreover, there is no study using
the laparoscopic aspiration technique to remove follicular fluid purely without an electro-cauterization
procedure. The following data may partly support the benefits of removing excessive follicular fluid in
PCOS. Ferraretti et al. used the ultrasound-guided aspiration of fluid of the polycystic ovary to remove
intra-follicular fluid, but this procedure did not yield additional destruction of the internal surrounding cells,
such as the theca and/or granulosa cells [104]. After treatment, a significant enhancement in fertilization
and pregnancy rates during IVF was found, but this therapeutic effect seemed to be transient [103].
It was reported that the aforementioned treatment provided a therapeutic effect that remained for only
six months [104].

It is uncertain why LOD increases follicular atresia and thus decreases the number of antral
follicles in the ovary. In theory, in a polycystic ovary, there are many functional antral follicles, and all
of these follicles contain a viable oocyte, but these follicles cannot further proliferate and grow, so they
ultimately die by spontaneous ovulation. Additionally, these follicles fail to undergo the atresia process,
resulting in the morphology of PCOS. MMP-9 may be responsible for the survival of these follicles
because MMP-9 secretion is significantly increased in PCOS [68]. Furthermore, inflammation-related
gene expression and some types of leukocytes, such as CD45 and theca-associated activated/memory T
lymphocytes, are reduced in the ovarian stroma in PCOS patients [102]. Therefore, diathermy may
induce a putative early increase in local inflammation and also disrupt the patency of intra-ovarian
vasculature. In addition, factors of the immune system, such as the immune cell distribution shown
above, including macrophages and their products, may play another role as a scavenger to inhibit
steroidogenic cell function and survival, as well as ultimately remove steroidogenic cells from the
ovary, resulting in a loss of thecal cell mass [102]. All these factors may facilitate the self-death process
(apoptosis) of these immature follicles. Subsequently, the recruitment of follicles and the selection
of dominant follicles may be re-activated. All these processes contribute to the normalization of the
spontaneous ovulation process.

The effect of LOD in reactivating the function of ovulation may be mediated by reducing systemic
and local androgen concentrations, based on the evidence that heavy amounts of androgen-secreting
cells, such as follicular cells, luteinized and non-luteinized stromal cells, and hilar cells, result in
hyperandrogenism, the environment of which exerts strongly inhibitory effects on follicular maturation
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beyond the antral stage. Therefore, the decreased androgen levels produced by LOD may ameliorate
the inhibitory effect of extra androgen on the maturation process of the follicle.

Finally, it is uncertain why LOD can influence the ovarian Doppler signal and arterial resistance
index. In fact, studies that evaluate changes to the vascular epithelial growth factor (VEGF) are relatively
conflicting, and VEGF is one of the most important growth factors involved in the angiogenesis process,
both before and after LOD [1,55,57,102]. Tulandi’s study in 2000 investigated the VEGF levels in women
with PCOS before and after LOD and found no statistical change in VEGF [105]. By contrast, El Behery
et al. found that the LOD procedure can statistically significantly decrease the serum levels of VEGF,
as well as the ovarian stromal blood flow Doppler levels, in PCOS women [106]. Increasing evidence
indicates that LOD procedures can successfully reduce serum VEGF and also decrease ovarian blood
flow velocities [55–57,107–110] (Figure 3).
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pregnancy in women with PCOS, such as destruction of granulosa/theca cells and stromal tissue and
loose the cortical layers by direct penetration and thermal effect, removal of the intra-ovarian follicular
fluid, restore appropriate and adequate vessel formation, and removed steroidogenic cells and loss of
theca cell.

5. The Effects of Laparoscopic Ovarian Drilling

5.1. Ovulation and Pregnancy Rates after Laparoscopic Ovarian Drilling

LOD may induce overall spontaneous ovulation and pregnancy rates of 30–90% and
13–88% [1,21,28,39,51,60,61,111]. An earlier review showed that there is no statistically significant
difference in the ovulation rates following LOD using electrocoagulation and a laser (83% vs. 77.5%;
OR 1.4; 95% CI 0.9–2.1) [111]. The results vary greatly between different studies due to the different
number of punctures applied in each study. Additionally, the different levels of thermal energy in
each study may produce different ovulation and pregnancy rates. Gjönnaess et al. reported that four
punctures per ovary using a power setting of 30 V applied for 5 s/puncture (i.e., 600 J/ovary) was
sufficient to produce 67% spontaneous ovulation and conception rates [47]. There was no significant
difference in the rates of ovulation (OR 0.73; 95% CI 0.47–1.11), clinical pregnancy (OR 0.56; 95% CI
0.22–1.41), live births (OR 0.77; 95% CI 0.28–2.10), or miscarriages (OR 0.90; 95% CI 0.33–2.84) between
unilateral LOD and bilateral LOD in a meta-analysis of eight randomized trials (484 women) [38].
The overall miscarriage rate following LOD varies from 0% to 36.5% [59]. Amer et al. reported
that LOD significantly reduced the miscarriage rates from 54% to 17% [112]. However, a systematic
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Cochrane review, including 38 randomized controlled trials (3326 women) of anovulatory women with
CC-resistant PCOS who undertook LOD to induce ovulation, concluded that there was no evidence for
significant differences in the rates of clinical pregnancy, live births, or miscarriages compared to other
types of medical ovulation induction [39]. However, the advantages of LOD compared to other medical
ovulation induction methods have been previous demonstrated, including a statistically significantly
decreased risk of OHSS and multiple pregnancies.

LOD is seldom considered as a front-line therapy for the management of PCOS women attempting
to become pregnancy due to the procedure’s invasiveness, although some less invasive modified
procedures, such as transvaginal hydrolaparoscopy, have been reported to decrease postoperative
sequelae (postoperative pain or adhesion) [113,114]. Additionally, some earlier studies failed to show
better reproductive performance or outcomes when LOD and other medical therapies were compared
during front-line therapy [30,56,113]. In the study by Cleemann et al., LOD produced a 61% pregnancy
rate as a first-line treatment, and the median time to pregnancy following LOD was 135 days [115].
However, LOD produced a lower pregnancy rate (27%) as a first-line treatment when compared with
CC (44%), although the difference did not reach statistical significance (OR 2.1; 95% CI 0.7–5.8) [56].
Nevertheless, LOD may have some advantages, such as the absence of adverse effects related to a thin
endometrium and increased cervical mucus after applying CC-ovulation induction in PCOS women
with anovulation [56]. Table 1 provides a summary of some studies focusing on LOD procedures to
ameliorate reproductive performance in CC-resistant PCOS women [31,38,39,42,66,116–122].

Table 1. A comparison of reproductive performance in women with clomiphene citrate-resistant
polycystic ovary syndrome treated with laparoscopic ovarian drilling and non-laparoscopic
ovarian drilling.

Author (Years) [Ref] Article Comparison Outcomes

Bordewijk (2020) [39] Review
LOD with or without medical

ovulation induction vs. medical
ovulation induction alone

Live birth: Slightly ameliorated by
LOD (OR 0.71, 95% CI 0.54–0.92)

Yu (2019) [116] Review Letrozole vs. LOD
No difference in ovulation rate

(RR1.12; 95% CI 0.93–1.34), and live
birth rate (RR 1.27; 95% CI 0.96–1.68)

Debras (2019) [66] Multicenter
study LOD alone, long term effect

Mean follow-up period was 28.4
months (25.3–31.5). At least 47.4%

women got pregnancy after a drilling.

Abu Hashim (2018) [38] Review BLOD vs. ULOD
No significant differences in ovulation
(OR 0.73; 95% CI 0.47–1.11) and live

birth (OR 0.77; 95% CI 0.28–2.10).

Franik (2018) [42] Review AI+/− adjuvants vs. LOD Live birth: OR 1.38, 95% CI 0.95–2.02

Abu Hashim (2015) [31] Review CC+M vs. LOD Live birth: OR 2.27, 95% CI 1.22–4.17

Kaur (2013) [117] Observational
study LOD alone Clinical pregnancy rate: 47.3%; live

birth rate: 40.5%

Nasr (2012) [118] RCT Electrocautery vs. harmonic
scalpel

Similar ovulation rate (89% vs. 92.9%)
and pregnancy rate (50% vs. 57%).

Farquhar (2012) [119] Review LOD vs. medical treatments Live birth: 34% vs. 38%. No
significant difference.

Abu Hashim (2011) [120] RCT CC+M vs. LOD Similar ovulation rate (67% vs. 68.4%)
and pregnancy rate (15.4% vs. 17%).

Abdullah (2011) [121] RCT Letrozole vs. LOD
Ovulation rate: Significantly higher in

the letrozole than LOD (59.0% vs.
47.5%). Similar live birth rate.

Roy (2010) [122] RCT Rosiglitazone + CC vs. LOD + CC Similar ovulation (80.8 vs. 81.5%) and
pregnancy rate (50 vs. 42.8%).

Ref: reference; CC: clomiphene citrate; M: metformin; LOD: laparoscopic ovarian drilling; ULOD: unilateral laparoscopic
ovarian drilling; BLOD: bilateral laparoscopic ovarian drilling; AI: aromatase inhibitor; RCT: randomized controlled trial;
OR: odds ratio; CI: confidence interval; NS: no significance.
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5.2. Metabolic Effects of Laparoscopic Ovarian Drilling

As shown in Section 4.3, there are several molecular mechanisms that can explain the metabolic and
hormone changes in PCOS women after LOD. These changes are based on the abnormal expression of
parameters or hormone/metabolic profiles in PCOS women compared to women without PCOS. AMH is
a typical example used in PCOS women. This parameter is often used to evaluate the ovarian function in
women who need ART or to investigate the traumatic effects of various agents or procedures [123–125].
After the LOD procedure, many studies found a significant decline in the serum level of AMH [38,93].
Meta-analysis further detected a weighted mean difference of AMH with 2.13 ng/mL (95% CI 2.97–1.30)
before and after LOD [93]. It is also known that the over-heating and over-electro-cauterization of
polycystic ovaries may further result in a continuous decline in AMH. Many studies have shown that
LOD procedures can successfully reduce serum AMH levels [55–57,107–110]. However, it remains
uncertain whether this result reflects real damage to the ovarian reserve or only provides normalization
from high serum AMH in POCS women before LOD.

A decrease in androgen production is one of the most commonly detectable changes after LOD [94–97].
Evidence indicates that LOD can successfully reduce serum androgen levels [55–57,107–110]. In this way,
the hyperandrogenism associated with metabolic events can be consequently changed [60].

Saleh et al. reported that LOD decreases glucose levels and improves insulin sensitivity in
hyperinsulinemic PCOS women [126]. There was a significant difference in insulin and glucose levels
before and after LOD [126]. In this previous study [126], BMI was correlated with basal insulin levels
before LOD, but this correlation was lost after LOD. Our study found that LOD may ameliorate serum
insulin and glucose levels in PCOS women, both lean and obese [93]. As shown before [80,126,127],
increased Ser312 phosphorylation is an important mechanism for IR in PCOS. Saleh’s study found
that after LOD, the levels of Ser312-phosphorylated IRS-1 in PCOS women decreased significantly,
while IRS-1 tyrosine phosphorylation increased significantly, suggesting that LOD may improve IR
status [126]. Further supporting evidence is that the levels of the insulin receptors, GLUT-4 and PI3K,
were all increased after LOD [93]. Finally, the evidence indicates that LOD can successfully reduce
serum insulin-like growth factor-1 (IGF-1) levels, which may contribute to the improved IR status
of PCOS women [55–57,107–110]. All this evidence provides a rationale to use LOD to overcome
anovulation and IR.

However, the mechanism to overcome IR in PCOS women after LOD might not be easily explained
by a single pathway. For example, the above-mentioned lower insulin and/or decreased glucose effects
are not found in normoinsulinemic women with PCOS [126]. Tulandi’s study in 2000 also failed to
identify any effects of improvements in IR among women after LOD [105]. By contrast, the present
study showed no statistically significant difference in insulin reduction between LOD plus CC and
rosiglitazole plus CC [122], suggesting that the use of LOD has a similar effect to the use of rosiglitazole.
Given the aforementioned conflicting data, the role of LOD on IR and hyperinsulinemia is worthy of
further investigation.

5.3. Predictors of Success after Laparoscopic Ovarian Drilling

Some CC-resistant PCOS women do not respond to LOD. Twenty to thirty percent of CC-resistant
PCOS women still fail to conceive or become pregnant after an LOD procedure [51]. It is uncertain why
these CC-resistant PCOS women are not responsive to LOD treatment. Some studies postulated that
inadequate punctures to or the inadequate destruction of the ovarian stroma and the possible presence
of inherent ovarian resistance are possible reasons for this phenomenon [51,128,129]. Furthermore,
several predictors of increased reproductive performance were evaluated to predict successful outcomes
of LOD in women with PCOS. A meta-analysis found that lean PCOS women had higher ovulation
rates compared to obese women with PCOS following LOD [15]. Abu Hashim et al. found that poor
reproductive performance of CC-resistant PCOS women after LOD can be predicted if the patients
have had a long duration of infertility > 3 years, low basal LH levels < 10 IU/L, marked biochemical
hyperandrogenism (testosterone levels ≥ 4.5 nmol/L, free androgen index > 15), and high basal
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AMH ≥ 7.7 ng/mL [31]. Seyam and Hefzy identified that a higher BMI (≥25 kg/m2), longer duration
of infertility (≥3 years), marked biochemical hyperandrogenism (testosterone levels ≥ 4.5 nmol/L,
free androgen index > 15), and high IR are associated with a poor response after LOD [108]. Debras found
several predictive factors for the effectiveness of using LOD in the management of PCOS women,
including a normal BMI, an infertility period of less than three years, antral follicle counts (AFC) < 50,
and an age of <35 years of age [66]. Seyam and Hefzy also found that PCOS women with higher
preoperative levels of TNF-α, LH, and androstenedione had a statistically significantly higher rate of
spontaneous ovulation during the first three months after the LOD procedure [109].

5.4. Long-Term Effects of Laparoscopic Ovarian Drilling

A study from Gjonnaess demonstrated that the effects of ovarian electrocautery in women with
PCOS on normalizing the serum levels of androgens and LH were sustained for 18–20 years [47].
Another study from Amer et al. found that the ratio of LH and FSH and the mean serum levels of
LH, testosterone, and free androgen index significantly decreased after LOD [112]. Notably, the effects
of LOD appear to be sustained for up to 9 years in most women with PCOS [112]. This long-term
effect was also observed for ovarian volume reduction after LOD. Naether et al. also reported that
the effects of LOD are not only temporary [124]. The authors followed up with 206 patients for up to
72 months after LOD and found that the pregnancy rate was 70%, with early miscarriages in 18% [130].
However, the effect of ovarian punctures on the ovarian reserve is transient and may diminish after
6 months if the procedure simply aspirated small follicles without thermal destruction of the ovarian
stroma [104], suggesting that some underlying pathophysiological mechanisms might be different
between LOD and ultrasound-guided ovarian drilling. For women whose anovulatory status recurred
several years after the first LOD, a repeat LOD can be performed if the patient previously responded to
the first LOD [131]. In this situation, ovulation rates can reach 83%, and the pregnancy rate can be up
to 67% [131]. A recent French study evaluating 289 PCOS women after LOD with a mean follow-up
of 28.4 months found that nearly half of the patients became pregnancy (47.4%, 137/289) and nearly
one-fifth (16.6%, 48/289) achieved at least two pregnancies [66]. Among these pregnancies, more than
half of the patients (51.8% [71/137] in a single pregnancy and 56.3% [27/48] in at least two pregnancies)
conceived spontaneously [66].

6. Conclusions

LOD is often postponed until after the failure of front-line therapy, such as CC treatment, in
PCOS women with infertility due to the similar reproductive performance between LOD and CC
treatment as first-line therapies and the greater invasiveness of LOD, which is a surgical approach.
In addition, some alternative medical treatments, such as acupuncture [132,133], may be mediated by
other mechanisms to improve the PCOS disease pattern. Acupuncture can successfully counteract
excessive ovarian sympathetic nervous system activity, which is thought to be another possible type
of pathophysiology involved in PCOS [134,135]. A recent meta-analysis found that acupuncture can
decrease the levels of LH and testosterone and promote the normalization of menstrual cycles in patients
with PCOS [136]. These factors all suggest that many uncertainties exist in the pathophysiology of PCOS
and are worthy of further evaluation [137–140], as these uncertainties contribute to the limitations of our
understanding of the molecular and pathophysiologic changes in PCOS women after LOD treatment.
We sought to thoroughly outline the theories addressing this topic, but these representative examples
may still be incomplete. For example, ovulation may occur in both ovaries, even after unilateral LOD is
performed, indicating that the effects of LOD may be mediated by much more complicated mechanisms,
including direct local or indirect systemic neuroendocrine, metabolic, and even immunological or
unclear mechanisms. However, we believe that LOD is an effective second-line treatment for PCOS
women with infertility, especially for CC-resistant PCOS women or women who require other surgical
procedures for their infertility. The mechanisms of LOD are not well defined but may be mediated
by a breakdown of the vicious cycle including chronic inflammation, imbalance in oxidative and



Int. J. Mol. Sci. 2020, 21, 8147 14 of 22

anti-oxidative processes, hyperandrogenism, hyperinsulinemia, IR, altered immune system function,
and disturbance of the HPO axis. The main benefits of LOD are a shorter time to pregnancy, a higher
rate of ovulation, and nearly half of pregnancies occurring spontaneously. The other advantages of
this technique are its cost-effectiveness, lower multiple pregnancy rates, and long-term/durable effects.
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AMH anti-Müllerian hormone
AI aromatase inhibitors
ART assistance reproductive technique
BW body weight
CAPN10 Calpain-10
CC clomiphene citrate
CCL2 C-C Motif Chemokine Ligand 2
CD163 cluster of differentiation 163
DENND differentially expressed in normal and neoplastic development
DHEA-S dehydroepiandrosterone sulphate
FSH follicle-stimulating hormone
GABA gamma amino butyric acid
GnRH gonadotropin releasing hormone agonist
GCKR glucokinase regulatory protein
GCSF granulocyte colony-stimulating factor
GLUT-4 glucose transporter type 4
IL interleukin
ICAM1 intercellular adhesion molecule 1
iNOS oxidase and inducible nitric oxide synthase
IR insulin resistance
IRS insulin receptor substrate
IVF in vitro fertilization
ICSI-ET intracytoplasmic sperm injection and embryo transfer
LH luteinizing hormone
LOD laparoscopic ovarian drilling
MAPK mitogen-activated protein kinase
microRNAs small noncoding micro ribonucleic acid
MIF macrophage inhibitory factor
MTHFR methylenetetrahydrofolate reductase
MMP matrix metalloproteinase family
NAD nicotinamide adenine dinucleotide
NAMPT nicotinamide phosphoribosyltransferase
Nd:YAG neodymium-doped yttrium aluminium garnet
NEGR1 neuronal growth regulator 1
NADPH nicotinamide adenine dinucleotide phosphate
OHSS ovarian hyperstimulation syndrome
OMLOD office microlaparoscopic ovarian drilling
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PBEF1 pre-B-cell colony-enhancing factor 1
PCOS polycystic ovary syndrome
PI-3K phosphatidylinositol (PI)3-kinase
RAB5B RAS-related protein 5b
RARRES2 retinoic acid receptor responder protein 2
ROS reactive oxygen species
TGF-β1 transforming growth factor beta 1
TNF-α tumor necrosis factor alpha
TLR2 Toll-like receptor 2
VEGF vascular epithelial growth factor
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