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Abstract

We describe an approach for integrating distance restraints from Double Electron-Electron

Resonance (DEER) spectroscopy into Rosetta with the purpose of modeling alternative pro-

tein conformations from an initial experimental structure. Fundamental to this approach is a

multilateration algorithm that harnesses sets of interconnected spin label pairs to identify

optimal rotamer ensembles at each residue that fit the DEER decay in the time domain.

Benchmarked relative to data analysis packages, the algorithm yields comparable distance

distributions with the advantage that fitting the DEER decay and rotamer ensemble optimi-

zation are coupled. We demonstrate this approach by modeling the protonation-dependent

transition of the multidrug transporter PfMATE to an inward facing conformation with a devi-

ation to the experimental structure of less than 2ÅCα RMSD. By decreasing spin label rota-

mer entropy, this approach engenders more accurate Rosetta models that are also more

closely clustered, thus setting the stage for more robust modeling of protein conformational

changes.

Author summary

Proteins transition between different conformations during function. Double Electron-

Electron Resonance (DEER) spectroscopy enables the direct observation of structural

rearrangements that underpin these transitions. Typically, histograms of distances

between spin labels, called distance distributions, are measured under different condi-

tions. Structural rearrangements that underlie conformational transitions are manifested

by changes in the averages and widths of the distance distributions. To transform these

distance distributions into restraints for modeling alternate protein conformations, we

developed an algorithm in the modeling suite Rosetta for direct analysis of DEER primary

data that yield the optimum ensemble of spin label positions in space, referred to as rota-

mers, that account for the data. We benchmarked the effectiveness of this algorithm using

experimental data collected in two proteins, the model system T4 Lysozyme and the
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multidrug transporter PfMATE in an outward-facing conformation. We then used opti-

mized spin label rotamers to model the inward-facing conformation of PfMATE from the

starting outward-facing conformation. Our results demonstrate substantial improvements

in both precision and accuracy among the resulting models. Further improvement of this

strategy will enable modeling of protein conformational changes involving complex

modes of movements.

This is a PLOS Computational Biology Methods paper.

Introduction

Distance measurements between pairs of spin labels by Double Electron-Electron Resonance

(DEER) spectroscopy have been utilized extensively to investigate the structures and dynamics

of proteins[1–4] and the assembly of protein-protein complexes[5–8]. At the fundamental

level, DEER measures magnetic dipolar coupling to infer the distributions of distances

between two or more spin labels[9,10]. A two-step process typically interprets these distances

as spatial restraints describing the protein backbone structure. First, the echo-decay time traces

are transformed into distributions consisting of distance components characterized by a mean

and width[11–15]. Second, these distributions are compared to those predicted using one of

several strategies, ranging from generic rotamer libraries[16–18], explicitly modeled pseudoa-

toms[1,19,20], or explicitly modeled spin label side chains[21–27]. However, these strategies

tend to overestimate the dynamics of flexible probes such as the commonly used methanethio-

sulfonate spin label (MTSSL). Therefore, the predicted distributions are broad relative to the

experimental ones[18,20,28–31], which hinders DEER-based evaluation of protein structures

or complexes as well as mapping of protein conformational changes. The latter can be

obscured entirely if modeled distribution widths exceed distance changes observed between

spin labels[1]. Another layer of complications in modeling of conformational changes arises if

the ensemble of spin label rotamers is allowed to reconfigure, hence providing a low energy

pathway to account for changes in distance distributions that originate from backbone move-

ments. Collectively, these caveats limit the accuracy and precision of molecular models gener-

ated from DEER restraints.

Several algorithms have recently been developed to refine ensembles of spin label rotamers

by employing multilateration[16,32–36]. Multilateration refers to the determination of an

object’s position in three-dimensional space given its distance from a constellation of points;

common applications include the positioning of electronic devices using the Global Position-

ing System and of earthquake epicenters using time-of-arrival data[37]. To utilize this

approach to position spin label rotamers requires both a high-resolution starting structure and

a set of DEER distance data consistent with that structure. However, a unique challenge in this

endeavor is that spin labels are flexible relative to the protein backbone. As a result, the ensem-

bles characterizing their positions must be refined simultaneously for all spin labels in a given

protein model.

Molecular dynamics simulations have been used to determine a set of optimized rotamers

from explicitly modeled spin labels restrained by experimental distance distributions

[14,21,38,39]. Alternatively, rotamer libraries have been precomputed and reweighed using

either Monte Carlo[32,35], singular value decomposition[34], or nonlinear least-squares mini-

mization[33]. The positions of these labels can, in turn, be used to more precisely locate para-

magnetic ligands or metal ions[35,36,40,41], as well as make small-scale refinements to protein
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structures[16,42]. To our knowledge, however, none of these methods have demonstrated that

these optimized rotamers can lead to improvements in modeling conformational changes.

Furthermore, these methods generally do not address unique factors confounding multila-

teration of spin labels. First, the width of a distribution reflects disorder in the solid state as a

result of backbone and spin label side chain dynamics at room temperature. Existing multila-

teration methods generally ignore the former, by assuming the distribution is explained

entirely by spin label dynamics[16,35], or both, by extracting the peak distance from the distri-

bution and discarding the width[42]. Second, relying on distance distributions rather than

time domain data propagates assumptions intrinsic to the method used for the transformation

of the latter[10,14]. Depending on the noise level of the experimental measurements, this step

can distort true components or introduce ghost components to the distribution. Finally,

although DEER distributions are often reported with confidence bands to reflect the uncer-

tainty inherent to this transformation[14,15,43], they are generally taken at face value when

used for rotamer multilateration. This incorrectly implies that experimental uncertainty is uni-

formly distributed across the dataset and can lead to rotamers that over- or underfit the DEER

distributions. Collectively, these obstacles prevent the positioning of spin label ensembles in

three-dimensional space and complicate the confidence with which such ensembles can be

used for subsequent modeling purposes.

To address these issues, we developed and implemented, as part of the RosettaDEER mod-

ule[20], an algorithm that combines rotamer multilateration[33,35,41] for pairs sharing com-

mon spin labeling sites with direct analysis of DEER time traces. The algorithm calculates a

weighted distribution of “pseudo-rotamers”, or inflexible coarse-grained side chains, capable

of recapitulating large experimental datasets collected using DEER. Importantly, this algorithm

goes beyond comparable methods by refining these ensembles using raw data in the time

domain, rather than distance distributions calculated a priori, thus avoiding the loss of infor-

mation that can occur as result of data transformation. Using experimental data collected in

the model system T4 Lysozyme and the multidrug transporter PfMATE, we demonstrate that

this algorithm is able to fit time domain data as effectively as widely-used DEER data analysis

programs. Integrated with Rosetta, these rotamers ensembles yield substantial improvements

in both accuracy and precision of modeling the outward-to-inward isomerization of the multi-

drug transporter PfMATE, thus reinforcing the notion that coupling analysis of primary data

with rotamer optimization is a superior approach for restrained modeling of protein confor-

mational states.

Results and discussion

Overview of the multilateration algorithm

The algorithm capitalizes on the concept of pseudo-rotamers, which are simplified representa-

tions of the spin label designed to maximize computational efficiency[20]. A pseudo-rotamer

models the spin label side chain as a centroid atom representing the nitroxide ring and its

unpaired electron, yielding predicted distance distributions that are comparable to full-atom

depictions. Unlike explicit depictions of the spin label used in all-atom simulations, ensembles

of pseudo-rotamers do not interact with one another; as a result, the dynamics of spin labels

close in space are fully independent. However, in principle, any rotamer library can be used

for the multilateration strategy described here[17,18,22,26,27,30].

The transformation of DEER data to distance distributions is an ill-posed mathematical

problem necessitating the use of either regularization[15,44,45], parametric modeling[13–15],

neural networks[46], or other methods[11,43,47,48]. Because these methods have intrinsic

approximations which could interfere with rotamer ensemble determination, we elected to fit
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the raw experimental data directly using an iterative simulated annealing strategy that 1) mea-

sures all pairwise distances between pseudo-rotamers, 2) converts each distance distribution

into a DEER decay, and 3) calculates the intermolecular dipolar coupling contribution by non-

linear least-squares minimization. Different levels of noise between DEER traces linked by

multilateration were normalized using estimates obtained from each signal’s corresponding

imaginary component[21]. The algorithm prioritized the generation of parsimonious ensem-

bles by minimizing the total number of pseudo-rotamers with nonzero weights using the

Akaike Information Criterion-corrected (AICc)[49,50]. This metric, which allows for regulari-

zation in rotamer space rather than the distance domain, was guided by the heuristic that the

flash-freezing process sharpens the distribution of rotamers that contribute to the DEER signal

[51,52]. Finally, to account for backbone heterogeneity and the expectation of smoothness in

the distance domain, simulated distributions were broadened by a magnitude corresponding

to the residues’ intrinsic flexibility, as reported by their respective crystallographic B-factor val-

ues[53,54].

Data analysis benchmark

We benchmarked this method using experimental DEER data collected in two model proteins,

T4 Lysozyme[31,55] (PDB: 2LZM) and the MATE multidrug transporter PfMATE[56–58] in

its outward-facing conformation (PDB: 6GWH). The extracellular and intracellular spin label

pairs of PfMATE were treated independently since they did not share residues in common.

These three DEER datasets consisted of 65 restraints between 47 residues; a subset of the

restraints in T4 Lysozyme is shown in Fig 1A. We note that unlike the benchmarks used in

other multilateration methods, these restraints were highly interconnected; half of the residues

were spin labeled in three or more DEER pairs, and in the most extreme case, two residues in

T4 Lysozyme were spin labeled across seven pairs (S1 Fig). For each of the three datasets, the

RosettaDEER multilateration algorithm was executed for 1000 replicas, with each replica yield-

ing refined pseudo-rotamer ensembles at every spin labeled site.

We compared the resulting fits to those obtained using GLADDvu[14], DeerAnalysis[44],

and DeerNet[46], which are programs that analyze DEER data using Gaussian mixture mod-

els, Tikhonov regularization, and feed-forward neural networks, respectively. Although other

analysis methods are available, we believe these represent a sufficiently diverse range of analyti-

cal approaches for the purposes of comparison. We found that the optimum rotamer ensem-

bles, selected by the AICc, could recapitulate the experimental DEER traces as effectively as

each of these programs (Figs 1B, 1C and S2–S5 and S1–S3 Appendices). The mean squared

errors obtained by the best fit were not statistically different from those obtained by any of

these three methods, or from the noise estimated from the imaginary component (Student’s

paired one-tailed t-test with Bonferroni correction). However, unlike the latter methods, the

interconnectedness of the spin label pairs allowed our algorithm to couple pseudo-rotamer

parametrization to the analysis of DEER data in the time domain.

Distance distribution benchmark

We anticipated that the analysis of DEER data by multilateration would yield distance distribu-

tions similar to those obtained using traditional methods. Consistent with this expectation,

distributions between refined pseudo-rotamers in both T4L and PfMATE showed remarkable

agreement with those obtained using the three methods mentioned above (see Figs 1B insets

for examples and S3–S5 Figs for all distributions). For example, the average values of these dis-

tributions were within 0.5 Å of those obtained using GLADDvu for 60 of the 65 restraints (Fig

2A). Additionally, the widths of 52 of these restraints were within 0.5 Å of those obtained
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using GLADDvu. Discrepancies occurred for broad distributions or long distances (because

the information content in the time domain is not as well-defined) or components less than 15

Å (because these distances minimally contribute to the DEER signal). Additionally, we uncov-

ered differences when comparing the widths of these distributions to those obtained using

DeerAnalysis, likely resulting from small “ghost” side peaks frequently observed in regulariza-

tion. Discrepancies were also observed when comparing these distributions to those obtained

using DeerNet, which yielded widths clustered between 2.5 and 4.5 Å (S6 Fig).

Finally, the uncertainty of these distributions was calculated from the five pseudo-rotamer

ensembles with the lowest AICc values. The resulting confidence bands, which capture 95% of

the variation in the distance distributions, are qualitatively comparable to those obtained using

GLADDvu, DeerAnalysis, and DeerNet (S7 Fig).

To further validate the algorithm, we simulated distance distributions for six T4L spin label

pairs which were excluded from the multilateration dataset. We observed that the median

error between the average distance values fell by 50% (Fig 2; full distributions shown in S8 Fig)

using the refined rotamers. By contrast, the standard deviations did not significantly sharpen,

and their values are similar to those observed prior to refinement. Notably, the uncertainty of

these distributions is greater than those of the distributions included in the training set.

Modeling of PfMATE’s conformational changes using refined pseudo-

rotamers

While the results above demonstrate the robustness of the multilateration algorithm in identi-

fying optimal spin label pseudo-rotamer ensembles, the central question is whether these pro-

vide superior restraint quality for modeling conformational changes. To address this question,

we modeled the isomerization of PfMATE between outward- and inward-facing conforma-

tions[56,57] (OF and IF, shown in Figs 3A and 3B, respectively), both of which were deter-

mined by x-ray crystallography. The two conformations differ primarily in the relative

orientations of the N- and C-terminal domains resulting from changes in the backbone dihe-

dral angles of transmembrane helix 7 (TM7). Of direct relevance to the question addressed

here, distance distributions between pairs of spin labels measured at pH 7.5 and pH 4.0 were

shown to be consistent with the OF and IF conformations, respectively[58].

We generated several thousand models, using Rosetta[59] without DEER restraints, by per-

turbing TM7 and found that none of the built-in membrane protein scoring functions[60–63]

could identify the inward-facing state by score alone (S9 Fig and S4 Appendix) even if it was

included in the initial model set. Thus, from a Monte Carlo modeling perspective, the OF-to-

IF conformational transition can be sampled, but not necessarily identified, without experi-

mental data.

To test the notion that DEER restraints interpreted with the refined pseudo-rotamers can

drive convergence of Rosetta modeling, we identified spin label pairs where the EPR lineshape

showed minimal changes upon a pH shift from 7.5 to 4.0 (see ref. [58] for all data), supporting

the approximation that the spin label rotamer ensembles are invariant and thus were not

Fig 1. A) Distribution of pseudo-rotamers, shown as spheres, at four representative residues in T4 Lysozyme prior to

(top, gold) and following (bottom, teal) refinement by multilateration. A flow chart detailing the iterative steps of

pseudo-rotamer refinement using RosettaDEER is shown between the two T4L structures. B) Five representative

DEER traces in T4 Lysozyme used for multilateration, alongside simulated DEER traces prior to (yellow) and following

(teal) refinement. Insets: Simulated DEER distributions following pseudo-rotamer refinement alongside reference

distributions with 95% confidence bands (calculated using GLADDvu and shown in grey). C) Goodness-of-fit

evaluated from the RMSD between simulated and experimental DEER traces comparing RosettaDEER to other

analysis programs.

https://doi.org/10.1371/journal.pcbi.1009107.g001
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allowed to reconfigure during Rosetta modeling. From these pairs, 40 sets of restraints were

generated, each of which consisted of one to ten spin label pairs (S1 Table). Using scoring

functions to assess the agreement with the DEER restraints (see Materials and Methods), the

OF-to-IF conformational transition was modeled by perturbing the dihedral angles of TM7.

DEER distributions were simulated using either the pseudo-rotamers ensembles refined by

multilateration or the unrefined ensembles available to RosettaDEER by default. Agreement

with the experimental distributions was evaluated by the overlap between the experimental

and simulated distance distributions. Similarity to the inward-facing crystal structure was

quantified by the root mean squared deviation (RMSD) of the alpha carbons excluding TMs 1

and 7.

We observed a striking contrast between the effectiveness of the refined and unrefined

ensembles (Fig 3C and S4 Appendix). The default rotamer library did not effectively improve

Fig 2. Evaluation of average distances (A) and distribution widths (B) between pseudo-rotamers prior to (top) and

following (bottom) refinement by multilateration. T4 lysozyme distributions omitted from multilateration are shown

in light green. C and D) Boxplots showing the difference between values obtained using GLADDvu and values

simulated between pseudo-rotamer ensembles prior to and following refinement.

https://doi.org/10.1371/journal.pcbi.1009107.g002
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the average RMSD of the ten lowest-scoring models beyond 2.0–3.5 Å. By contrast, the use of

multilaterated pseudo-rotamers converged upon inward-facing models with a 1.5–2.5 Å Cα

RMSD using restraints obtained from the same spin label pairs.

Alongside these improvements in accuracy, the sharper range of RMSD values among these

models suggested that multilateration improved model precision. Distributions of representa-

tive distances across the intracellular and extracellular sides of the top ten models (Figs 4A and

4B) revealed that, when using the default pseudo-rotamers, a majority of these models failed to

close the extracellular cavity and were far less inward-open than the crystal structure (Fig 4C),

even when ten restraints were used. By contrast, the best-scoring models obtained using refined

pseudo-rotamers deviated less drastically from the crystal structure. Nonetheless, these models

were virtually all less inward-open than the crystal structure, consistent with shorter-than-expected

experimental DEER measurements on the intracellular side at pH 4.0[58] (Fig 4D).

Concluding remarks

Our results highlight a general strategy to substantially improve the quality of models obtained

from EPR restraints. We envision that the main application of this strategy is to model alter-

nate conformational states starting from an experimental structure and a set of interconnected

Fig 3. Modeling the outward-to-inward conformational change in the multidrug transporter PfMATE. (A)

Outward-facing and (B) inward-facing crystal structures of PfMATE. N- and C-terminal domains are shown in purple

and green, respectively, and TM7 is shown in red. (C) RMSD values of the ten best-scoring models for each of four sets

of restraints relative to the inward-facing conformation using either pseudo-rotamers refined by multilateration (teal)

or unrefined pseudo-rotamers available by default (yellow).

https://doi.org/10.1371/journal.pcbi.1009107.g003
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DEER data. By implementing this algorithm in Rosetta, we hope to encourage its use for a

wide variety of modeling applications, such as protein-protein docking and de novo folding.

Moreover, further development of this approach, as well as extensive use of multilateration in

Fig 4. Models of PfMATE obtained using multilaterated rotamers more closely resemble the inward-facing crystal

structure than those obtained using default rotamers. Deviation between Cα-Cα distances observed between

representative pairs of residues on the A) extracellular and B) intracellular sides of the crystal structure (PDB: 6FHZ)

and the corresponding distances predicted from each of the best-scoring models. (C and D) Best-scoring inward-

facing models of PfMATE obtained using ten restraints either with pseudo-rotamers available by default (left) or with

those refined by multilateration (right). Inward-facing crystal structure shown in black. Ribbon thickness corresponds

to the Cα root mean squared fluctuation among the top ten models. Bottom: The best-scoring models obtained using

default rotamers (left) were less inward-open than those obtained using multilaterated rotamers (right).

https://doi.org/10.1371/journal.pcbi.1009107.g004
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the design of spin label pairs, will open the door to modeling proteins where conformational

changes are defined by more complex modes of motion.

Materials and methods

Overview of the model-based approach

The objective of the RosettaDEER multilateration algorithm is to fit a set of DEER data by

weighting the nitroxide pseudo-rotamers available to each spin-labeled residue in a protein

structural model. Each replicate of the algorithm independently generates a unique set of

pseudo-rotamer ensembles for each spin-labeled residue. For clarity throughout this text, we

will refer to these outputs as "coordinate models", to differentiate them from the starting struc-

tural models. The space accessible to the unpaired electron of each residue’s spin label is

divided into fifty discrete pseudo-rotamers, which are shown as small spheres in Fig 1A. Roset-

taDEER then identifies and removes pseudo-rotamers that clash with the protein backbone.

Each residue’s ensemble of pseudo-rotamers represents a probability density function of the

space accessible to the unpaired electron of that residue’s spin label. As a result, following

refinement using this algorithm, the weights of a coordinate model’s pseudo-rotamers for any

given residue are tightly coupled to those of other residues.

In this study we focus our attention on coordinate models with high parsimony. For exam-

ple, coordinate models capable of recapitulating DEER traces using only one pseudo-rotamer

per residue are prioritized over those with two or more. However, if the DEER trace indicates

a broad and multimodal distribution, additional pseudo-rotamers may be necessary to

improve the goodness-of-fit. The total number would ideally be no greater than the minimum

required to fit the data, and multiple combinations of pseudo-rotamers may be equally consis-

tent with the data. We identified parsimonious coordinate models using the Akaike Informa-

tion Criterion-corrected (AICc)[49,50,64]:

AICc ¼ � 2 ln Lðθ̂jDÞ
� �

þ 2K þ
2KðK þ 1Þ

ntotal � K � 1
ð1Þ

This metric balances two competing objectives of 1) fitting the experimental data as well as

possible and 2) simplifying the model as much as possible. The leftmost term, goodness-of-fit, is

expressed as the maximum likelihood estimate of the coordinate model with parameters θ given

the experimental DEER data D and is described below. The middle and rightmost term express

the complexity of the model, with the variable K corresponding to the total number of parame-

ters in the coordinate model and ntotal corresponding to the total number of time points in the

experimental DEER data. K includes the number of pseudo-rotamers with nonzero weights, as

well as the number of parameters required to fit the intramolecular DEER data in the time

domain. The rightmost term, which converges to zero as the data-to-parameter ratio increases,

serves as further regularization in modeling cases where less experimental data is available (in

this case corresponding to the number of time points in all DEER traces). Overall, the AICc

quantifies the expectation that few spin label rotamers contribute to the distance distribution.

Detailed description of the multilateration algorithm

The multilateration algorithm is implemented in Rosetta[59] as part of the RosettaDEER pack-

age and can be run using RosettaScripts[65]. It uses an iterative simulated annealing approach

and is therefore non-deterministic. As a result, it obtains diverse sets of solutions when exe-

cuted multiple times. However, there is no guarantee that the global minimum solution is

obtained using this algorithm.
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The positions of the pseudo-rotamers are kept fixed in space throughout the duration of the

algorithm, e.g., they are reweighted, rather than moved. Initial positions are obtained from the

nitroxide bond midpoints of each rotamer in the Rosetta MTSSL rotamer library following

clash evaluation[22]. At the start of the algorithm, one of these pseudo-rotamers is randomly

chosen for each residue and has its weight set to 1; the rest have weights set to zero.

The algorithm then proceeds as follows:

• The weight of a randomly chosen pseudorotamer is modified by a randomly chosen number.

Initially this value ranges uniformly from -0.1 to 0.1.

• The weight change is applied, and the resulting sum-of-squared residuals is calculated as dis-

cussed below.

• Any move that decreases the sum-of-squared residuals is accepted, while any move that

increases it is accepted with the following probability (with iter being the current iteration):

paccept ¼ exp �
lnðLðθiterþ1jDÞÞ � lnðLðθiterjDÞÞ

kBT

� �

ð2Þ

• The Boltzmann temperature kBT starts at 1.5 and asymptotically approaches zero with each

iteration as the algorithm proceeds. A total of 2500 trials per round are performed per DEER

trace in the dataset. However, each round is aborted if 500 consecutive trials fail to sample

an improvement.

• At the end of each round, the temperature kBT is raised to 1.5. If no improvements were

sampled, the magnitude of the weight changes made to coordinates is reduced by a factor of
ffiffiffiffiffi
10
p

. Once this magnitude reaches 10−4, the algorithm is concluded.

For PfMATE, we used a non-three-dimensional background model to fit the intermolecular

contribution of the experimental signal. This required a modification to the algorithm in

which the first round of optimization was performed using a three-dimensional background.

The first time kBT was reset to 1.5, this restriction was removed. Otherwise, the dimensionality

of the intermolecular background coupling was found to immediately drop to a value of 2,

trapping the solution in a local minimum.

Simulation of DEER distance distributions

To simulate distance distributions between two spin-labeled residues u and v, pairwise dis-

tances were measured between all coordinates belonging to each residue. To account for back-

bone heterogeneity, each of these measurements were then broadened by a value equal to the

pairwise root mean square fluctuation (RMSF) as inferred from the crystallographic isotropic

B-factor of the residues’ Cα atoms:

RMSFu ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3Bu;Ca

8p2

r

ð3Þ

RMSFuv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSF2

u þ RMSF2
v

p
ð4Þ

The result is equivalent to the convolution of the original distribution with a Gaussian dis-

tribution with a width of RMSFuv. Regions of proteins with higher B-factors, such as loops,

have previously been found to exhibit a greater degree of backbone flexibility in solution
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[53,66,67]. Failure to account for backbone flexibility could potentially overstate the intrinsic

dynamics of the spin label and decrease the precision of the models generated using the

pseudo-rotamers obtained this way. We did not normalize the experimental B-factors to

account for differences in experimental crystallographic resolution, since such differences may

reflect variations in the backbone disorder of different proteins.

Evaluating coordinate models obtained from raw DEER traces

In all examples discussed in this manuscript, the data D comprises N decay traces (Vexp), e.g.,

D = {Vexp,1, Vexp,2,. . ., Vexp,N}, with the ith decay trace consisting of ni time points for a total of

ntotal experimental time points among all experimental traces. In this case, the likelihood of the

model was evaluated by the noise-normalized sum-of-squared residuals to the experimental

data:

lnðLðθjDÞÞ ¼ �
ntotal

2
� ln

1

ntotal

PN
i¼1

Pni
it¼1

Vexp;iðtitÞ � Vintra;iðtit jθÞ
si

� �2
 !

ð5Þ

Here σi is the standard deviation of the noise corresponding to the ith decay trace, Vexp,i(ti)
refers to the experimental data at the itth time point of decay trace i, and Vintra;iðtit jθÞ refers to

the value of the simulated data in decay trace i at time point it given the model parameters θ.

The values of σi were calculated from the imaginary component of each DEER trace. Normal-

izing the data to the noise was necessary to satisfy the assumption that the sum of squared

residuals is independently and identically distributed. Forgoing this correction led to overfit-

ting of noisier DEER traces and underfitting of less noisy traces.

Simulation of DEER traces occurred in three steps. First, the distance distributions were

obtained from the model coordinates as described above. Second, the intramolecular form fac-

tor was calculated for each time point tit :

Vintra;i tit jθ
� �

¼
Pm

j¼1
Psim;iðrjjθÞ

R p
2

0
sinðxÞ � cos

ð1 � 3cos2xÞ � m0m
2
Bg

2tit
4pħrj3

 !

dx ð6Þ

Here, g is the electron g-factor, μ0 is the vacuum permeability constant, μB is the Bohr mag-

neton, tit is the itth time point in microseconds, r is the bin distance in nanometers, and x is

the angle between the bulk magnetic field and the interspin vector.

In the third step, the modulation depth, background slope, and dimensionality (in the case

of PfMATE) were determined using nonlinear least-squares minimization. This background

was modeled as follows:

BðtÞ ¼ expð� ðktÞd=3
Þ ð7Þ

The parameter d refers to the dimensionality of background coupling and was constrained

to a value of 3.0 for T4 Lysozyme and to between 2.0 and 3.5 for PfMATE. In the latter case, we

generally obtained values ranging from 2.0 to 2.5. These parameters were determined using an

initial search as previously described and were fine-tuned throughout the duration of the algo-

rithm using the Levenberg-Marquardt algorithm.

Determination of distance distributions

We used GLADDvu[14] and DeerAnalysis2019b[44] to fit the data and obtain distance distri-

butions. Each DEER trace was truncated by 500 ns to avoid fitting artifacts. Sum-of-Gaussian

distributions were obtained with GLADDvu using the interior point method. The distribution
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with the lowest Bayesian Information Criterion was selected. Distributions were also obtained

using Tikhonov regularization with an L-curve criterion with default settings, as well as the

generic DeerNet neural network ensemble, using DeerAnalysis2019b[46]. Confidence bands

and/or error margins were obtained using the delta method for GLADDvu, the Validation tool

for Tikhonov regularization, and built-in ensemble statistics for DeerNet.

Application to T4 Lysozyme and PfMATE

The algorithm as described above was applied to T4 Lysozyme[55] (PDB: 2LZM) and out-

ward-facing PfMATE structure[56] (PDB: 6GWH). For PfMATE, the data were further sepa-

rated into the extracellular restraints and the intracellular restraints. The algorithm was

executed one thousand times for each of these three datasets. Each of the one thousand coordi-

nate models were scored using the AICc (Eq 1).

Modeling the OF-to-IF conformational change of PfMATE

Modeling the outward-to-inward conformational change of PfMATE was achieved using a

Monte Carlo fragment insertion approach implemented in RosettaScripts. This protocol ran-

domly changes the backbone dihedral angles of certain residues chosen at random to match

those of a similar stretch of residues found in protein structures deposited in the PDB. Only

residues 1–50 and 241–268 were perturbed. Peptide fragments were obtained from a July 2011

version of the PDB using the Robetta web server[68] with homologous protein structures

removed. The fragment insertion protocol was executed 1000 times in RosettaScripts[65]

using the score3 scoring function and was repeated for 5000 cycles. The Boltzmann tempera-

ture was set to 1.0. The following scoring function was then used to quantify the similarity

between the experimental and simulated DEER distributions:

SDEER ¼ �
PN

i¼1
lnð
P

j¼1
psim;jpexp;jÞ ð8Þ

If the event that an experimental and simulated distribution did not overlap, the inner term

resolves to ln(0). Under these circumstances, this value was automatically set to -87.0, which is

equivalent to the natural logarithm of the lowest non-negative value that can be described by a

single-precision floating point number.

Supporting information

S1 Fig. Number of DEER restraints per spin-labeled residue across T4 Lysozyme and

PfMATE.

(TIFF)

S2 Fig. All DEER traces determined by multilateration are shown in red. Experimental

DEER traces are shown in black.

(TIFF)

S3 Fig. All DEER distance distributions determined by multilateration are shown in black.

DEER distributions calculated using GladdVU are shown in green, with the shaded regions

indicating 95% confidence intervals. Distance values shorter than 15 Å (indicated by the

dashed line) were not used to simulate DEER traces.

(TIFF)

S4 Fig. All DEER distance distributions determined by multilateration are shown in black.

DEER distributions calculated using DeerAnalysis are shown in blue, with the shaded regions
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obtained using the validation tool.
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S5 Fig. All DEER distance distributions determined by multilateration are shown in black.

DEER distributions calculated using DeerNet are shown in pink, with the shaded regions

obtained using ensemble statistics.

(TIFF)

S6 Fig. Comparison of average and standard deviation values obtained when fitting DEER

data collected in pfMATE and T4 Lysozyme to values obtained using DeerAnalysis and

DeerNet. Long-distance fitting artifacts were removed from fits obtained using DeerAnalysis.

These fits appeared to overstate the standard deviation values relative to GLADDvu, whereas

those obtained using DeerNet appeared to be biased toward certain width values.

(TIFF)

S7 Fig. Shaded regions depict 95% confidence intervals, and line represents the mean dis-

tribution. Ensembles were selected using the AICc.

(TIFF)

S8 Fig. Comparison of DEER distance distributions used to validate pseudo-rotamers

obtained using the RosettaDEER multilateration algorithm. Distributions obtained using

GLADDvu and RosettaDEER are shown in green and grey, respectively. Confidence bands for

RosettaDEER depict the five best sets of pseudo-rotamers.

(TIFF)

S9 Fig. Rosetta energy functions for membrane proteins cannot identify the inward-facing

conformation of PfMATE. In all three cases, the lowest-energy models are fully occluded

from both sides of the membrane. RMSD is measured from the inward-facing crystal structure

(PDB: 6FHZ); the first 50 residues were omitted.

(TIFF)

S1 Table. List of restraints used for scoring intermediate PfMATE models.

(DOCX)

S1 Appendix. Summary of experimental DEER measurements collected in T4 Lysozyme

and PfMATE.
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S2 Appendix. Coordinates of top five ensembles of pseudo-rotamers in T4 Lysozyme.
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