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Abstract
Immunoglobulin E (IgE)-mediated food allergy is an adverse reaction to foods
and is driven by uncontrolled type-2 immune responses. Current knowledge
cannot explain why only some individuals among those with food allergy are
prone to develop life-threatening anaphylaxis. It is increasingly evident that the
immunologic mechanisms involved in developing IgE-mediated food allergy are
far more complex than allergic sensitization. Clinical observations suggest that
patients who develop severe allergic reactions to food are often sensitized
through the skin in early infancy. Environmental insults trigger epidermal thymic
stromal lymphopoietin and interleukin-33 (IL-33) production, which endows
dendritic cells with the ability to induce CD4 TH2 cell-mediated allergic
inflammation. Intestinal IL-25 propagates the allergic immune response by
enhancing collaborative interactions between resident type-2 innate lymphoid
cells and CD4 TH2 cells expanded by ingested antigens in the gastrointestinal
tract. IL-4 signaling provided by CD4 TH2 cells induces emigrated mast cell
progenitors to become multi-functional IL-9-producing mucosal mast cells,
which then expand greatly after repeated food ingestions. Inflammatory
cytokine IL-33 promotes the function and maturation of IL-9-producing mucosal
mast cells, which amplify intestinal mastocytosis, resulting in increased clinical
reactivity to ingested food allergens. These findings provide the plausible view
that the combinatorial signals from atopic status, dietary allergen ingestions,
and inflammatory cues may govern the perpetuation of allergic reactions from
the skin to the gut and promote susceptibility to life-threatening anaphylaxis.
Future in-depth studies of the molecular and cellular factors composing these
stepwise pathways may facilitate the discovery of biomarkers and therapeutic
targets for diagnosing, preventing, and treating food allergy.
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Introduction
Food allergy has emerged as a major health problem world-
wide because of the rapid increase in prevalence over the past  
decade. Food-induced allergic reactions can cause clinical symp-
toms ranging from mild mouth itching and abdominal pain to  
life-threatening anaphylaxis, characterized by hypotension, vas-
cular collapse, cardiac dysrhythmias, and diarrhea1. Among the  
15 million people who are affected by food allergy in the US, 
only some individuals develop food-induced, life-threatening ana-
phylaxis, resulting in 30,000 emergency room visits per year2. In 
the healthy gastrointestinal (GI) tract, the epithelial lumen and 
GI immunity develop active immune tolerance to dietary anti-
gens, combat invading microbes, and limit their persistence in the 
mucosa. It is unclear why some individuals fail to establish oral 
tolerance toward innocuous food allergens and develop allergic 
reactions to food allergens at the mucosal sites of the GI tract. 
Importantly, it is perplexing why only some of the individuals with 
food allergy who have high levels of dietary allergen-specific serum 
immunoglobulin E (IgE) acquire susceptibility to developing life-
threatening anaphylactic reactions3,4. Clinically, individuals with 
atopy and skin sensitization in infancy often develop an allergic 
response to ingested food in the GI tract later in life5–7. Although 
this observation has led to the “dual-allergen exposure” hypothesis, 
the molecular and cellular mechanisms that support this plausible 
hypothesis remain to be established. The focus of this review is to 
discuss recent advances in understanding the molecular and cellular  
factors that contribute to allergic disease progression and promote 
susceptibility to life-threatening, IgE-mediated food allergy.

Epidermal thymic stromal lymphopoietin and 
interleukin-33 induce allergic sensitization
Recent clinical studies reveal that some patients with atopic  
dermatitis (AD) in early life may have a higher risk of developing 
food allergy6–9. Infants with atopic eczema are prone to be sensitized 
to egg at only 4 months of age10. In the population-based study of 
pediatric food allergy, eczema and filaggrin gene loss-of-function 
mutations, which are associated with reduced skin barrier integrity, 
are identified as the risk factors for food sensitization7. Evidence 
from murine studies demonstrates that epicutaneous applications 
of food proteins can trigger sensitization, which results in the  
development of IgE-mediated food allergy after repeated food 
ingestions11–14. These findings support the notion that the skin bar-
rier is an important route in initiating allergic sensitization to food 
antigens and evading oral tolerance.

After injury, stress, or environmental insults, the skin epithelium 
loses its barrier function and orchestrates inflammatory responses 
and tissue remodeling by producing a myriad of cytokines, chem-
okines, and growth factors15. Indeed, the idea that skin epithe-
lium can trigger the onset of allergic diseases is supported by the  
findings that thymic stromal lymphopoietin (TSLP) can endow 
dendritic cells (DCs) with the ability to create a type 2-permissive 
microenvironment and drive a T-cell-mediated allergic immune 
response16,17. Strong TSLP production is associated with the accu-
mulation of large numbers of DCs activated by DC-lysosome- 
associated membrane protein-positive and of CD3+ T cells in 
the apical layers of the epidermis of patients with AD but not in  
normal or non-lesional skin18. Mechanistically, keratinocyte-derived 
TSLP can potently induce the maturation and activation of 

infiltrated myeloid DCs. These TSLP-activated DCs can produce 
large amounts of chemokines to recruit inflammatory cells, induce 
CD4+ T helper type 2 (TH2) cell differentiation, and maintain 
functional attributes of CD4+TH2 memory/effector cells18–20. In 
concert with eliciting a DC-mediated TH2 immune response, a 
recent study showed that TSLP could also promote interleukin-3 
(IL-3)-dependent basophil hematopoiesis, resulting in basophil-
mediated allergic inflammation11,21. Perhaps early exposure to food 
proteins accompanied by environmental insults or genetic pre-
disposition factors that result in epidermal TSLP production may 
provoke DC/basophil/CD4+TH2 cell-mediated allergic sensitiza-
tion via skin barrier before establishing tolerance to ingested foods 
during infancy.

Several factors have been demonstrated to induce epidermal 
TSLP production. Topical application of vitamin D3 analogs, the 
ligand for the vitamin D receptor, induces strong TSLP produc-
tion by keratinocytes, resulting in the development of an AD-like 
phenotype in mice22. Since the binding of vitamin D receptor and 
retinoid X receptor alpha (RXRα) or RXRβ heterodimers can 
form the transcriptional repressor of Tslp gene, the treatments of 
vitamin D3 analogs which alleviate the formation of such tran-
scription repressor result in the induction of Tslp gene expres-
sion in the mouse skin keratinocytes22. The activation of Toll-like 
receptors by viral, bacterial, and fungal ligands can also induce 
TSLP production in epithelial cells23. Accumulating evidence from 
recent animal studies has further substantiated the roles of TSLP 
and allergic sensitization via skin barrier in the development of 
experimental food allergy. Mice that develop AD after repeated 
topical applications of ovalbumin (OVA) plus vitamin D3 analog 
lose tolerance to ingested OVA and eventually develop symptoms 
of experimental food allergy11–13. Conversely, mice deficient in 
TSLP receptor specifically in DCs also fail to develop antigen- 
specific IgE after epicutaneous sensitization and are resistant to 
developing experimental food allergy24. Overexpression of TSLP 
can activate intradermally reconstituted basophils to promote 
cutaneous allergic inflammation, resulting in the development of 
experimental food allergy11. By contrast, ablation of basophils 
in mice that are sensitized after topical application of vitamin 
D3 analogs results in resistance to developing experimental food 
allergy11,25. These studies underscore the pivotal role of epidermal 
TSLP production in orchestrating the DC/basophil-mediated TH2 
immune response that initiates the allergic sensitization to food 
antigens in the skin barrier, leading to the propensity to develop a 
food allergy (Figure 1).

In addition to aberrant epidermal TSLP induction, the loss of 
skin barrier function due to filaggrin gene mutation or injury after 
repeated skin picking (excoriation) also increases the risk for 
peanut allergy26. Indeed, direct epicutaneous applications of 
cashew peanut extract, not soy extract, are sufficient to trigger 
adjuvant-independent allergic sensitization, possibly mediated 
by the skin-draining DCs that express ST2, the receptor for the 
inflammatory cytokine IL-33, also termed alarmin14. In another 
study, repeated tape stripping, which imitates the excoriation of 
skin observed in AD patients, can also trigger the production of 
the epithelial-derived inflammatory cytokine IL-33 and promote 
the development of experimental food allergy27. Perhaps mechani-
cal skin injury can induce an increase in circulating IL-33, which 
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Figure 1. Schematic overview of the stepwise mechanisms involved in the development of immunoglobulin E (IgE)-mediated food 
allergy. In the allergic sensitization phase, environmental or mechanical triggers (or both) may induce skin keratinocytes to produce thymic 
stromal lymphopoietin (TSLP), which recruits and activates dendritic cells (DCs) or basophils. Injured epithelial cells may also release 
interleukin-33 (IL-33) to activate ST2-expressing skin DCs. TSLP-activated DCs migrate to draining lymph nodes to induce naïve CD4+T 
cells to differentiate into CD4+TH2 cells and maintain CD4+TH2 effector/memory pools. In the allergy propagation phase, these CD4+TH2 
cells migrate to the intestine and interact with resident type-2 innate lymphoid cells (ILC2s) to produce large amounts of IL-13 in response 
to intestinal IL-25 stimulation. In the amplification-of-mastocytosis phase, IL-4 signals provided by CD4+TH2 cells induce emigrated mast 
cell progenitors (MCPs) to become multi-functional IL-9-producing mucosal mast cells (MMC9s), which then expand greatly after ingested 
antigens cross-link with MMC9 surface IgE/FcεR complex. The inflammatory cytokine IL-33 enhances IL-9 production by MMC9s, resulting 
in MMC9 maturation and the amplification of intestinal mastocytosis in an autocrine loop. Thus, MMC9 induction may serve as a key cellular 
checkpoint to amplify and propagate allergic inflammation, resulting in the development of IgE-mediated food allergy. MMC, mucosal mast 
cell; STAT6, signal transducer and activator of transcription 6; TH2, T helper type 2 cell.

enhances IgE-mediated mucosal mast cell (MC) degranulation 
in the gut, resulting in the development of anaphylactic response 
to ingested antigens27. Thus, in addition to TSLP, the epithelial-
derived cytokine IL-33 and the allergenic property of certain food 
allergens can serve as the alternative factors to induce allergic 
sensitization to food antigens after skin injury occurred. These 
findings also broaden our understanding of the factors and immuno-
logic pathways underlying the initiation of skin allergic sensitiza-
tion that may potentiate the development of food allergy.

Interleukin-25, type-2 innate lymphoid cells, and 
CD4+TH2 cells perpetuate allergic reactions
In addition to allergic sensitization to food antigens via a damaged 
skin barrier, other factors at the mucosal site of the GI tract may 
confer susceptibility to food allergy later in life. After the occur-
rence of allergic sensitization induced by administering epicuta-
neous TSLP plus OVA antigen, blocking TSLP activity by using 
anti-TSLP antibody does not prevent skin-sensitized mice from 
developing experimental food allergy24. This finding implies that 
the perpetuation and amplification of allergic reactions from skin to 
small intestine in the GI tract are essential for the development of 
IgE-mediated food allergy24,25.

The GI mucosa is the largest immunologic site that constantly 
encounters numerous varieties of food antigens present in the daily 

diet. Antigen sampling, processing, and presenting at the mucosal 
sites of the GI tract are complex processes involving intestinal epi-
thelial cells, M cells, goblet cells, and DCs28,29. It is postulated that 
tolerogenic CD103+ DCs present luminal food antigens to naïve 
CD4+ T cells to induce food antigen-specific regulatory CD4+ 
T cells, leading to a state of unresponsiveness to ingested antigens 
or oral tolerance30,31. Considerable evidence demonstrates that the 
intestinal epithelial-derived cytokine IL-25 (IL-17E), a distinct 
IL-17 cytokine member, is a key factor in promoting protective 
type-2 immunity to parasitic infection32,33 (for example, helminth) 
and limits TH1- and TH17-mediated inflammation induced by 
commensal flora34,35. Endogenous intestinal IL-25 produced 
constitutively by tuft cells, one of the five intestinal epithelial cell 
lineages, can sustain the homeostasis of type-2 innate lymphoid 
cells (ILC2s) and activate ILC2s to secrete IL-13 after helminth 
infection36. These studies suggest that intestinal IL-25 may regulate 
the balance of the immune response to dietary proteins in the GI 
tract after the occurrence of allergic sensitization. Indeed, allergic 
sensitization results in the increase of intestinal IL-25 expression, 
which potentiates the development of allergic reactions to ingested 
antigens37. Compared with their wild-type controls, genetically 
modified murine strains that produce intestinal-specific IL-25 
constitutively or that lack the IL-25 receptor, IL-17RB, are more 
susceptible or resistant, respectively, to developing IgE-mediated 
experimental food allergy37. Although intestinal ILC2s are the 
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primary TH2 cytokine producers in response to IL-25 stimula-
tion, ILC2s alone are insufficient to drive anaphylactic reactions 
to ingested antigens in naïve or sensitized transgenic mice that 
produce IL-25 constitutively37. Notably, CD4+TH2 cells that are 
induced after allergic sensitization and then amplified after repeated 
ingested antigen challenge are required for ILC2s to produce large 
amounts of IL-5 and IL-13 in response to IL-25 stimulation, result-
ing in the development of experimental food allergy37. Possibly, 
IL-2 production by ingested antigen-induced CD4+TH2 cells 
promotes the capabilities of ILC2s to produce IL-5 and IL-13 in 
response to intestinal IL-25 stimulation37–40. These findings may 
also explain the observation that IL-25-deficient mice infected 
with Trichuris muris, a GI parasite, fail to develop lymphocyte-
dependent protective type-2 immunity to expel chronic parasitic 
infection33. In another study using mice expressing a gain-of- 
function mutation of IL-4 receptor α chain (Il4raF709), ILC2s 
are found to produce some IL-4 in response to IL-33 stimulation 
in a mouse model of food allergy sensitized with staphylococcal 
enterotoxin B41. ILC2-derived IL-4 promotes the development of 
experimental food allergy by dampening regulatory T cell func-
tion, which can directly suppress mucosal MC function41. Together, 
these studies substantiate the role of IL-25 in promoting intestinal 
allergic reaction to ingested antigens by enhancing the concerted 
interactions between ILC2s, antigen-induced CD4+TH2 cells, or 
regulatory T cells (or a combination of these) after the occurrence 
of allergic sensitization25. Furthermore, the findings support the 
view that IL-25 may bridge the crosstalk between the skin and gut by 
mediating collaborative interactions between ILC2s and CD4+TH2 
cells to amplify the cascade of allergic reactions to ingested anti-
gens at the effector phase of IgE-mediated food allergy (Figure 1).

Interleukin-33 and type-2 mucosal mast cells amplify 
hypersensitivity reactions
Food-induced anaphylaxis is an immediate, adverse reaction 
triggered predominantly by cross-linking of antigen-specific 
IgE bound to the high-affinity IgE receptor FcεR on MCs after 
re-exposure to allergen42–44. Mechanistically, FcεR cross-linking 
activates a downstream signaling cascade that causes rapid release 
of vasoactive and preformed mediators, including histamine, tryp-
tase, carboxypeptidase A, leukotrienes, and platelet-activating 
factor, resulting in physiological alternations that cause shock 
(anaphylaxis)45,46. However, it is perplexing why only some, rather 
than all, individuals who are competent to generate MCs and 
have high levels of dietary allergen-specific IgE develop life- 
threatening anaphylaxis3,4. Similar to humans, sensitized murine 
strains that have normal MC development and acquire high 
amounts of antigen-specific IgE vary in their susceptibility to 
developing severe systemic anaphylaxis13. This enigma hints that 
in addition to IgE and MCs, other molecular and cellular factors 
may also participate in driving the development of life-threatening 
anaphylaxis. Considerable evidence from clinical and animal stud-
ies demonstrates that elevated levels of IgE-positive MCs in the 
small intestine are associated with food allergy42,47–49, suggesting a 
pivotal role of GI MCs in the development of food-induced, life-
threatening anaphylaxis43,50. Taking advantage of the differences 
in their susceptibility to food allergy, comparative analyses of 
intestinal mucosal cellular components among examined murine 
strains led to the identification of the novel, multi-functional 
IL-9-producing mucosal MCs (MMC9s)13. MMC9s function as 
type-2-promoting innate myeloid cells by producing prodigious 

amounts of the TH2 cytokines IL-9 and IL-13 and exert MC func-
tion by secreting histamine and MC proteases13. Unlike conven-
tional MCs, MMC9s display innate helper cell-like morphology 
with few metachromatic granules in their scanty cytoplasm. It 
appears that MMC9s are scarce in the small intestines of immu-
nologically naïve mice. After allergic sensitization via the skin 
barrier or TH2-promoting adjuvant, the atopic IL-4 signaling 
provided by ingested antigen-induced CD4+TH2 cells can induce 
FcεR-expressing MC progenitors from bone marrow to develop 
into MMC9s13. Thus, mice expressing a gain-of-function mutation 
of IL-4 receptor α chain (Il4raF709) are more prone to develop-
ing experimental food allergy because of a cell-intrinsic effect of 
IL-4 in intestinal MC homeostasis51. Furthermore, MMC9s expand 
greatly in the small intestine of wild-type mice, but not mice 
deficient in FcεRα, after repeated exposure to ingested antigens, 
indicating that cross-linking of the surface IgE/FcεR complex by 
ingested antigens promotes the proliferation of MMC9s13. Recip-
rocally, ingested antigen-induced MMC9s amplify CD4+TH2 
cell immune responses, which drive the concomitant increase of 
MMC9 and CD4+TH2 cell occurrence (unpublished observation). 
Furthermore, robust IL-9 production by MMC9s is essential for 
effective MMC9 expansion, which promotes intestinal masto-
cytosis in an IL-9-dependent autocrine manner, resulting in the 
development of severe systemic anaphylaxis13. Notably, intestinal 
epithelial-derived IL-33 can enhance the function of MMC9s by 
inducing robust IL-9 production, which can amplify intestinal 
mastocytosis, resulting in the development of anaphylactic 
response to ingested antigens13. It appears that in addition to pro-
moting allergic reactions to ingested foods, intestinal MCs can 
provide an IL-4 signal to induce a TH2 cell program in regulatory 
T cells, resulting in the impairment of regulatory T-cell function 
and the loss of tolerance52. Given their anatomical location, char-
acteristics, and function, MMC9s may be a key player that bridges 
the crosstalk between the skin and gut by perpetuating allergic 
reactions and amplifying anaphylactic responses to dietary pro-
teins. Indeed, among sensitized murine strains, MMC9 occurrence 
is positively associated with their susceptibility to experimental 
food allergy13. Ablating MMC9s results in resistance to developing 
experimental food allergy13. In human studies, increased duodenal 
MMC9 frequency and expression levels of Il9 and MC-specific 
transcripts are associated with atopy patients who developed 
comorbid allergic diseases, such as eczema and food allergy13. 
Thus, MMC9 induction may represent a pivotal cellular check-
point in acquiring susceptibility to developing life-threatening 
anaphylaxis. Furthermore, these findings represent a new concep-
tual paradigm by linking atopic status (IL-4), dietary antigen and 
IgE/FcεR complex interactions, and inflammatory cues (exempli-
fied by IL-33) with MMC9 biology and food allergy (Figure 1).

Conclusions
Although our knowledge of the pathways underpinning the devel-
opment of allergy has increased, current evidence does not yet fully 
explain why life-threatening anaphylaxis occurs in only some indi-
viduals among those who are allergic to food allergens. Over the 
past decade, considerable evidence has led to a plausible hypothesis 
that details the stepwise mechanisms involved in the development 
of food allergy (illustrated in Figure 1): (i) in the allergic sensiti-
zation phase, exogenous molecules (lectins, proteases, or chitins) 
acting as mucosal TH2 adjuvants and filaggrin as a genetic pre-
disposing factor may initiate inflammatory reactions to induce the 
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production of epidermal TSLP or IL-33 (or both) that triggers 
allergic sensitization to contacted food allergens before the estab-
lishment of oral tolerance53–56. TSLP endows DCs and potentiates 
basophil function to promote a TH2-permissive microenviron-
ment, which induces CD4+TH2 cells to differentiate and maintain 
antigen-specific CD4+TH2 memory/effector cells16,18,19,57, which 
migrate to a draining lymphoid node and induce antigen-specific 
IgE generation. (ii) In the allergy propagation phase, re-exposure 
to ingested food antigens activates emigrated antigen-specific 
CD4+TH2 memory/effector cells in the small intestine to produce 
IL-13, resulting in the increase of intestinal IL-25 production. 
In the presence of CD4+TH2 memory/effector cells and IL-25 
stimulation, resident ILC2s produce large amounts of IL-13, which 
creates a TH2-permissive environment that prevents tolerance. 
(iii) In the amplification-of-mastocytosis phase, repeated food 
antigen ingestion induces the increase of CD4+TH2 cells, which 
provide the IL-4 signaling that induces MC progenitors to 
develop into MMC9s, which expand greatly after ingested anti-
gens cross-link with MMC9 surface IgE/FcεR complex. IL-33, 
a potent inflammatory cytokine, enhances IL-9 production by 
MMC9s, resulting in MMC9 maturation and the amplification 
of intestinal mastocytosis in an autocrine loop. Thus, it is possi-
ble that local accumulation of IgE-bearing MMC9s will impose 
the potent reactivity to ingested food antigens and is the prereq-
uisite for developing life-threatening anaphylaxis. The proposed 
model provides paradigm-shifting insight into the immunologic 
mechanisms composing the progression of allergic reactions to 
food allergens from the skin to gut. Indeed, our proposed notion 
mirrors recent changes in the guidelines of the American Acad-
emy of Pediatrics, including the recommendation for early oral 

exposure to food allergens during infancy for children at risk of 
atopic diseases58. Future in-depth studies of human MMC9 and 
MMC9-associated molecules involved in the clinical reactivity 
of food allergy will provide the basis to translate the mechanistic 
findings from murine studies to further our understanding of human 
food allergy and the clinical application of this knowledge.
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