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EDITORIAL COMMENT
Artificial Intelligence to Complement,
Not Replace, Clinical Knowledge
Reading Between the Lines*
Joshua P. Barrios, PHD,a Madhav R. Seshadri, MD,b Geoffrey H. Tison, MD, MPHa,c,d
A cornerstone of cardiovascular diagnosis, the
electrocardiogram provides an information-
rich record of cardiac electric activity.

Although standard clinical electrocardiographic
(ECG) interpretation relies on recognizing well-
understood ECG markers to diagnose abnormalities,
in the past 10 years, machine learning or artificial in-
telligence (AI) methods applied to ECG analysis have
demonstrated that ECG waveforms contain more in-
formation than was previously appreciated. Modern
AI models are capable of learning novel patterns
within raw ECG voltage data, which have allowed
them, in some cases, to predict diagnoses or out-
comes that were previously not possible by electro-
cardiography alone.

In a recent compelling example, Attia et al1

demonstrated that a neural network AI model could
analyze the raw waveforms from a sinus rhythm
electrocardiogram and estimate the risk for future
atrial fibrillation (AF) over the subsequent 31 days.
Patients who are currently in AF, among the most
common rhythm abnormalities, exhibit the well-
recognized pattern of irregularly irregular QRS acti-
vations and lack P waves. And although some sinus
rhythm ECG predictors of future risk for AF have been
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previously recognized,2 there are no commonly
applied criteria to readily predict the likelihood of
future AF from sinus rhythm electrocardiograms,
making this a novel AI-enabled task with implications
for earlier AF intervention and prevention.

Before such AI models are brought into real-world
clinical practice, several important considerations
should be made. The performance of a broadly
trained AI model should be evaluated in a target
clinical population, particularly if the target popula-
tion differs substantially from the population in
which the model was derived. Also, one must deter-
mine how to integrate an AI model’s predictions with
existing clinical knowledge. In addition, the AI
model’s predictions should ideally be integrated into
the clinical workflow to ensure that they complement
rather than complicate patient care.

In this issue of JACC: CardioOncology, Christopoulos
et al3 present a study that begins to address at least the
first 2 of these considerations. The investigators used
the same AI model previously described by Attia et al1

to predict AF risk from baseline sinus rhythm electro-
cardiograms in patients with chronic lymphocytic
leukemia (CLL). Quantifying the risk for AF in patients
with CLL is especially important because of the asso-
ciation of Bruton’s tyrosine kinase (BTK) inhibitors, a
standard treatment for CLL in the frontline and
relapsed or refractory settings, with AF.4 The study
demonstrated that the previously trained AI model
successfully stratified increased AF risk among pa-
tients with CLL, with high AI ECG prediction associ-
atedwith anHR of 3.9 and 2 to 5 times higher rates of 2-,
5-, and 10-year risk for AF compared with those with
low predicted AI ECG risk. This study provides an
important step toward the clinical implementation of
this model in the CLL population.

Perhaps more important, this study illuminates the
point that AI can, in the right settings, capture in-
formation that is complementary to existing clinical
https://doi.org/10.1016/j.jaccao.2024.03.002
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knowledge and practice. In this case, the in-
vestigators show that AI captured information from
electrocardiograms to augment the ability to predict
AF risk compared with using clinical variables in the
Mayo CLL AF risk score alone. In multivariable anal-
ysis, both the AI model score and the highest risk
categories of the Mayo CLL AF score remained inde-
pendently and significantly associated with higher
AF risk in the CLL population. The discriminative
ability of either the ECG AI model or the Mayo CLL AF
score alone had a C statistic of 0.62 to 0.66. The
combination of both increased the C statistic to 0.71,
though the 95% CIs were wide and overlapped,
making it unclear if the combination provided a sta-
tistically significant increase. These results under-
score several important points. First, neither AI
analysis of the electrocardiogram nor clinical vari-
ables alone tell the entire story regarding future AF
risk. This is underscored by the investigators’
Figure 2B, which shows that even among those with
high AI scores, clinical variables still provided
powerful ability to discriminate future AF risk. Sec-
ond, when used properly, AI can serve to augment
(not replace) existing clinical knowledge and stan-
dard practice, as this analysis shows. Third, in the
case of future AF risk for patients with CLL, there are
risk factors that remain to be understood, beyond the
clinical variables and the ECG, as the combined C
statistic was 0.71. This study provides a valuable
example of how AI analysis can expand the diag-
nostic utility of tests such as electrocardiography by
providing complementary information from a data
source (a sinus rhythm electrocardiogram) that cli-
nicians would not easily be able to take into consid-
eration otherwise.

A valuable clinical question to consider for any risk
prediction model is whether something can be done
differently on the basis of the information it provides.
In this regard, CLL provides an example of a popula-
tion for which prediction of increased AF risk may be
clinically actionable. The covalent BTK inhibitor
ibrutinib is highly effective in CLL, but it is associated
with cardiovascular adverse events, including AF in
up to 16% of patients.5 Second-generation covalent
BTK inhibitors such as acalabrutinib and zanu-
brutinib, as well as noncovalent BTK inhibitors such
as pirtobrutinib, are associated with lower rates of
AF,6-8 but risk for AF and other cardiovascular
adverse events appears to be a class effect. Although
prior AF or risk for AF is not necessarily a contrain-
dication to the use of BTK inhibitors, alternative
therapies such as venetoclax-based regimens might
be preferred in such patients. Understanding the risk
for AF and related complications is therefore
important to adequately counsel patients prior to
starting therapy for CLL. In this analysis, a higher
baseline AI ECG score was associated with incidence
of AF in the cohort of patients with newly diagnosed
CLL, but this association was not seen on multivar-
iable analysis among patients treated with BTK in-
hibitors. The investigators discuss several potential
reasons for this, including the possibility that an
algorithm trained using AF occurrence in the general
population may not predict AF induced by BTK
inhibitors.

This study begins to address several important
considerations about applying the AF risk prediction
AI model in real-world clinical settings and provides a
valuable demonstration of how the AI model per-
forms in the CLL population. However, several
questions remain, including its utility in guiding
therapy. Demonstrating the ability of AI ECG analysis
to predict AF and other arrhythmias with use of BTK
inhibitors would be critical for clinical application in
this setting, which this study was not able to show.
Another important consideration is model generaliz-
ability, which describes a model’s ability to perform
well on unseen data, such as patients from a different
geographic region or institution, and is an important
factor for robust model performance.9 Because both
the original AI model derivation1 and this study3 were
performed at the same institution, it remains to be
determined how this AI model would perform beyond
the Mayo Clinic. The importance of external gener-
alizability for any predictive model reemphasizes the
urgent need for multicenter collaboration and data
sharing to facilitate the development of robust and
generalizable predictive models, AI or otherwise. It is
also important to examine how this AI model can best
be integrated into the clinical workflow to provide the
AF risk information to clinicians and whether the
chosen approach positively affects relevant clinical
outcomes. Last, the clinical adoption of AI tools
should be driven by clear and rigorous evidence,
ideally in the form of randomized clinical trials,
showing that the AI model and its method of clinical
workflow integration leads to meaningfully improved
outcomes for patients.

In summary, this study highlights an important
example wherein AI can capture complementary in-
formation to augment clinical knowledge and practice
and sets the stage for future research that examines
how this complementary information can be inte-
grated into clinical practice.
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