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Abstract

Background: Cardiotocography (CTG) is the most widely used tool for fetal
surveillance. The visual analysis of fetal heart rate (FHR) traces largely depends on the
expertise and experience of the clinician involved. Several approaches have been
proposed for the effective interpretation of FHR. In this paper, a new approach for
FHR feature extraction based on empirical mode decomposition (EMD) is proposed,
which was used along with support vector machine (SVM) for the classification of
FHR recordings as ‘normal’ or ‘at risk’.

Methods: The FHR were recorded from 15 subjects at a sampling rate of 4 Hz and a
dataset consisting of 90 randomly selected records of 20 minutes duration was
formed from these. All records were labelled as ‘normal’ or ‘at risk’ by two
experienced obstetricians. A training set was formed by 60 records, the remaining 30
left as the testing set. The standard deviations of the EMD components are input as
features to a support vector machine (SVM) to classify FHR samples.

Results: For the training set, a five-fold cross validation test resulted in an accuracy
of 86% whereas the overall geometric mean of sensitivity and specificity was 94.8%.
The Kappa value for the training set was .923. Application of the proposed method
to the testing set (30 records) resulted in a geometric mean of 81.5%. The Kappa
value for the testing set was .684.

Conclusions: Based on the overall performance of the system it can be stated that
the proposed methodology is a promising new approach for the feature extraction
and classification of FHR signals.

Background
Cardiotocograph (CTG) is a graphical representation of fetal heart rate (FHR) and

uterine activity (UA), also termed as electronic fetal monitoring, and has been an indis-

pensable part of antepartum and intrapartum fetal surveillance [1] for four decades.

A typical CTG is depicted in Figure 1. Heart rate (HR) contains reliable information

about the synergic activity of the autonomic nervous system (ANS) that regulates the

heart beat dynamics [2]. Parameters from the HR signal provide interesting hints about

the generation of disease conditions and hence can be used to differentiate pathological

states [3]. The analysis of FHR signal used in monitoring the fetal well being is a

powerful tool in establishing the development of the nervous system of the fetus dur-

ing the last period of pregnancy, starting from the 25th week of gestation [4]. However,
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the current clinical practice of visual interpretation of CTG shows a high degree of

inter-observer and intra-observer variability [5] due to its large dependency on the

expertise and experience of the clinician(s) involved [6]. Advances in signal processing

and pattern recognition techniques and skepticism over inconsistency in FHR interpre-

tation paved the way for computerized methods [7]. The computerization of

non-stress-test (NST) involves two principal problems namely, feature extraction and

classification, and subsequent interpretation [6]. It is important to mention that the

interpretation phase requires a contextual analysis of all the physiological, pathological

and clinical aspects needed in assessing the well being of the fetus.

Diverse approaches have been investigated using conventional and artificial intelli-

gence techniques for feature extraction [3,8-13] and also to come out with diagnostic

systems. Computerized CTG analysis systems were developed [14-16] adhering to the

guidelines issued by the International Federation of Obstetrics and Gynecology (FIGO)

[17]. A non-linear back propagation artificial neural network (ANN) was introduced

for the interpretation of NST records [18] and around the same time a software pro-

gram to predict fetal acidosis at birth was also developed [19]. ANN was used to dis-

tinguish between the normal and pathological fetal conditions [20,21]. An expert

system [22] capable of handling uncertainties in FHR interpretation was introduced,

which was later transformed to a fuzzy system [23]. Yet again, an expert system called

NST-EXPERT [24,25] was developed and was later named computer aided fetal evalua-

tor (CAFÉ) system [6]. A method using wavelet analysis and self organizing map was

developed to diagnose fetal hypoxia based on the scale-dependent features extracted

from the FHR [26]. Another method based on wavelet transform and cumulative

holder exponent was proposed [27] for real-time fetal monitoring during labor. In [1]

scale-dependent features extracted from wavelet components of the FHR signal were

categorized using a support vector machine (SVM). SVM classifier was employed yet

again to predict the risk of metabolic acidosis in newborns [28], to detect fetal distress

[29,30] and to discriminate healthy fetuses from the ones with hypoxia [31]. Recently,

Figure 1 Cardiotocogram. Typical CTG: (a) The FHR signal and (b) The UA signal.
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a new approach based on FHR variability analysis involving Lempel Ziv complexity

index and multiscale entropy was proposed for the early identification of intrauterine

growth-restricted (IUGR) fetuses [32].

The above discussion shows that although some approaches have shown promising

results, none has been widely accepted and there is still room for improvement [1,28]

to reach the ultimate goal of a completely reliable method to assess fetal well being

with minimal intervention from obstetricians. In an effort to achieve this goal we pro-

pose an innovative approach in this paper for FHR classification combining empirical

mode decomposition (EMD) and SVM techniques.

EMD has been used in several biomedical applications (introduced for the study of

ocean waves in 1998 [33]) such as artifact reduction in electrogastrogram and to

extract the lower esophageal sphincter pressure in the gastro-esophageal reflux disease

[34,35]. There has been a noticeable contribution from EMD based methods in proces-

sing electrocardiogram (ECG) signals [36,37]. It has also been used in the analysis of

heart rate variability (HRV) [38] and high frequency FHR variability [39]. In addition

to the above applications EMD has been employed for CTG signal enhancement [40].

SVM is a powerful supervised machine learning tool introduced recently in the fra-

mework of statistical learning theory [41]. It is used in a number of applications for

both pattern classification and non-linear regression [42-44]. It has the ability to gener-

alize well on unknown data without requiring the domain knowledge, and even when

the sample size is small [45] which make it an attractive solution in difficult pattern

recognition problems. Here, statistical features are extracted from FHR signals using

EMD and later classified using the SVM classifier.

Methods
A brief explanation on the two important techniques (EMD and SVM) employed in

this work is provided in the beginning of this section. Later a detailed description of

the proposed methodology for the extraction of statistical features and classification of

FHR signals as ‘normal’ and ‘at risk’ (Figure 2) is given. Finally, the four important

stages in this work, namely, data acquisition, preprocessing, feature extraction and clas-

sification, are defined.

Empirical Mode Decomposition

EMD, proposed by Huang et al [33], is a method to decompose non-linear and non-

stationary time series into several monotonic components termed as intrinsic mode

functions (IMF) of different time scales. The most appealing nature of EMD is its

dependency on the data-driven mechanism which does not require a priori known

basis unlike Wavelet and Fourier transform.

The EMD method identifies all the local maxima and minima for a given input signal

x(t) which are connected by spline curves to form the upper and the lower envelopes,

Figure 2 Proposed methodology. Stages involved in the proposed methodology.

Krupa et al. BioMedical Engineering OnLine 2011, 10:6
http://www.biomedical-engineering-online.com/content/10/1/6

Page 3 of 15



eup(t) and elow(t), respectively. The mean of the two envelopes is calculated as m(t) =

[eup(t) + elow(t)]/2 and is subtracted from the signal using q(t) = x(t) - m(t).

An IMF ci(t) is obtained if q(t) satisfies the two conditions of IMF, these are, the

number of extrema and number of zero crossings is either equal or differs at most by

one, and the envelopes defined by the local maxima and minima are symmetric with

respect to zero mean. This procedure is called as the sifting process. Then x(t) is

replaced with the residual r(t) = x(t)-q(t). If q(t) is not an IMF, x(t) is replaced with

q(t). The above process is repeated until the residual satisfies the stopping criterion

called sum of difference, SD shown in equation (1), which is generally set between 0.2

and 0.3.
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At the end of this process the signal x(t) would result in N IMFs and a residue signal

as in equation (2).
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Where n represents the order of IMFs, n = 1 to N and rN denotes the final residue

which can also be considered as an IMF, shown in equation (3).
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Here, Nf is the total number of IMFs including the residue. The signal x(t) is decom-

posed such that the lower-order components represent fast oscillation modes and

higher-order components represent slow oscillation modes. A detailed explanation of

the method is provided in [40].

Support Vector Machine

SVM is a supervised learning tool that can be used for pattern classification. The main

goal of SVM is to construct an optimal hyperplane as the decision surface in such a

way that the margin of separation between the closest data points belonging to differ-

ent classes is maximized. SVM is based on the principle of structural risk minimization

method [46]. In a binary classification problem which is of interest in this work, each

one of the set of points belongs to either one of the two classes.

Consider a training set {( , )}x di i i
l
=1 where xi is the input pattern for the ith sample

and di Î{-1,+1} is the corresponding desired output and l is the number of observa-

tions. If the input patterns belonging to two different classes are linearly separable

then there exists a hyperplane that maximizes the margin of separation. For the opti-

mal hyperplane the Euclidian norm of the weight vector w is minimum and at the

same time satisfies the constraints in equation (4).

d w x bi
T

i i( )+ ≥ ∀1 (4)
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This is a constrained quadratic optimization problem that may be solved using the

method of Lagrange multipliers. Pattern classification problems in real life are not line-

arly separable. Here, SVMs depend on two mathematical operations: non-linear map-

ping of an input vector into a high-dimensional feature space and construction of an

optimal hyperplane for separating the features.

Non-linear mapping is performed in accordance with the Cover’s theorem [46] on

the separability of patterns. Non-linearly separable patterns in the input space when

transformed to a high dimensional feature space, they can be linearly separable with

high probability. Therefore for each input pattern vector xi in the m0 dimensional

input space we define a vector consisting of a set of real-valued functions{ψi(x) | i =

1,2,..m1, as shown by ψ(x) = [ψ1(x),ψ2(x),.......ψm1]
T that map the m0 dimensional input

points to m1 dimensional new feature space. An optimal hyperplane in the feature

space is found as in equation (5).
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ζi are called slack variables, a set of non-negative scalar variables; they measure the

deviation of a data point from the ideal condition of pattern separability. Parameter C

is a user specified positive value that controls the trade-off between maximizing the

margin and minimizing the error. ψ(xi) is the non-linear mapping of input patterns

from input space to feature space. The optimal discriminating function is given by

equation (6).
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The coefficients ai are derived from the maximization of dual Lagrangian as in equa-

tion (7).
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The points for which ai > 0, are called support vectors. The term ψT (xi)ψ(xj) repre-

sents the inner product of two vectors in the feature space. We may introduce the

inner-product kernel denoted by K(xi,xj), written as shown in equation (8).

K x x x xi j
T

i j( , ) ( ) ( )=  (8)

A kernel function is a function in the input space and hence, we may use the inner-

product kernel K(xi,xj) to construct the optimal hyperplane without having to perform

explicitly the non-linear mapping [42,46].
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For classification problems dealing with medical data where the numbers of data in

different classes are unbalanced, some researchers [1,28,47] have proposed the use of

different penalty parameters in the SVM formulation as in equation (9).

Minimizing,
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C+ and C- are the penalty parameters used to penalize more heavily the undesired

type of error, and the errors related to the class with the smallest population [47].

Data Acquisition

CTG is a routine non-invasive fetal monitoring tool based on ultrasound Doppler com-

bined with an external pressure transducer to record uterine activity. In this technique

a transducer placed on the mother’s abdomen transmits an ultrasound beam towards

the fetal heart. The FHR is derived from the Doppler shifted echoes created by con-

tractions of the fetal heart. An autocorrelation method is used to compare successive

heart signals and test for similarity. CTG signals used in this research work were

recorded at Universiti Kebangsaan Malaysia Medical Center (UKMMC). Data acquisi-

tion was carried out with the approval of UKMMC’s ethical committee and after

obtaining informed consent from all subjects. All 15 subjects were with singleton preg-

nancy and gestation age ranging from 34 weeks to 40 weeks. Since, the proposed study

required both normal and abnormal patterns of FHR we had two different setups. The

CTG signals with normal patterns were recorded from the day care clinic using an

antepartum fetal monitor (Philips FM 20) and a software (Trium CTG Light 2.0 from

Trium Analysis Online GmbH) as in Figure 3a. A galvanic isolator was used between

the fetal monitor and the computer for safety purpose. CTG signals with abnormal

patterns were obtained from the archived data on a Huntleigh server (Sonicaid™

Figure 3 Data acquisition setup. Setups for acquiring CTG signals with (a) normal patterns and
(b) abnormal patterns.
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Centrale, Labour Management System) at UKMMC, using the Export Utility Software

as shown in Figure 3b. These data were recorded with the help of a fetal monitor (Phi-

lips Series 50IP). All the signals acquired using the above mentioned commercially

available softwares had a sampling frequency of 4 Hz.

Pre-processing and Feature Extraction using EMD

Preprocessing

Recorded FHR signals may possess missing beats and spiky artifacts (Figure 4a) due to

the displacement of the transducer because of maternal or fetal movement and stress

induced after the onset of labour. These artifacts are generally present and difficult to

eliminate from the source. Missing beats in FHR can be about 20% - 40% of the data,

especially during the final stages of labour [28,40]. For this reason, the quality of the

FHR signal is estimated based on the number of missing beats and a poor quality sig-

nal is not subjected to further analysis [40]. In this work, missing beats are removed

using a recursive algorithm and high frequency noises are suppressed using a method

based on EMD explained in [40]. Once missing data segments are eliminated, the FHR

signal is decomposed using EMD into several monotonic components (IMFs) as

explained earlier. It is reported that the lower order IMFs which may contain noise

have zero mean [36,40,35]. Hence, a statistical t-test is used to determine the high fre-

quency noise components which are then separated from the signal in the EMD

domain (equation (10)).
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Where, c tP SM
( ) is the Mth-order partial sum of the IMFs.

Figure 4 Illustration of FHR signal enhancement. (a) FHR signal with artifacts and (b) FHR signal after
the removal of artifacts.
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This test is applied first on the lowest order IMF and later on the partial sum

c tP SM
( ) for M = 1, 2,... as shown in equation (11), until a partial sum c tP St

( ) is

obtained, where the mean significantly deviates from zero.

c t c tP S i

i

M

M
( ) ( )=

=
∑

1

(11)

The above procedure indicates the number of IMFs that can be considered as noise,

Pt (noise order). Since this technique might result in over smoothing of the FHR signal,

the noise order is estimated using equation (12) [40].

P Pf t= min( , )3 (12)

Then, the first Pf components are eliminated from the set of IMFs for a given FHR

signal. A denoised FHR signal (Figure 4b) can be obtained by applying the partial con-

struction method on the remaining components.

Feature Extraction

For each of the remaining components (Figure 5) a standard deviation is estimated

(equation (13)).
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These standard deviations (noise order, Pf+1 onwards) are considered as statistical

features of the FHR signal and are used as inputs to the SVM classifier. A similar

approach has been employed in extracting statistical features from the wavelet coeffi-

cients, obtained from discrete wavelet transform (DWT) [1,48,49].

Figure 5 Decomposed components after signal enhancement. Remaining components (C3-C12) of a
decomposed FHR signal used for statistical feature extraction, after the removal of noisy lower order IMFs
(C1 and C2) based on Pf.
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Classification using SVM

SVM Classifier

The classification stage follows the feature extraction stage. The main objective of this

stage is to classify the FHR signals as normal or at risk represented as ‘+1’ and ‘-1’

respectively. The entire process involves a training set and a testing set of data

instances. A training set consists of features extracted from the decomposed FHR sig-

nal, also called the attributes, and the labels ‘+1’ (normal) or ‘-1’ (at risk) which are the

target outputs. SVM should produce a model to classify the data instances in the test-

ing set which consists of only features. The classification depends on the inner-product

kernel used that produces different learning machines and hence different decision

boundaries [46]. In this work, based on the statistical features extracted from FHR sig-

nals the radial basis function (RBF) kernel was used (equation (14)) to obtain reliable

results. Parameters C and g are specified by the user.

k x x x xi j i j( , ) exp= −( )
2

(14)

The following procedure was employed during the classification stage:

(a) Scaling the training and testing data sets.

(b) General grid search method is considered an intractable problem and estimating

accuracy for all possible combinations of C and g is a time consuming process. There-

fore, exponentially increasing values were considered initially to find a better possible

set of values for C and g that yielded better accuracy. Finally, C and g values thus

obtained are varied slightly to gain the best possible accuracy. The estimated set of

values for C and g are 4 and 2, respectively.

(c) Training SVM using the chosen C and g values to achieve the best cross-valida-

tion accuracy (CSV) possible.

(d) Predicting the output of the testing set.

(e) Estimating the accuracy of classification.

Since unbalanced data are used in this work the ratio of C+/C- are set to the inverse

of the corresponding cardinalities of the classes.

Description of the Data Set

A total of 129 FHR signals of 20 minutes duration were collected from pregnant

women at gestation ages of 34 to 40 weeks. Missing beats were eliminated from all sig-

nals using the recursive algorithm. CTG traces were submitted to two experienced

obstetricians (20 years in practice) for visual inspection who were asked to classify the

traces as ‘normal’ (+1) or ‘at risk’ (-1). From the 129 records 29 showed disagreement

between experts, therefore were eliminated. Out of the remaining 100 signals, 90 (30

normal and 60 at risk) signals were considered for the purpose of training and testing

so that the normal and at risk signals ratio can be maintained at 1:2 during training

and also in estimating the cross-validation accuracy. Hence, the proposed methodology

was tested on 90 FHR recordings having mutually agreed interpretation from two

experienced obstetricians.

From the 90 FHR signals in the data set, Dataset, a training set and a testing set con-

sisting of 60 and 30 data instances, respectively, were created. The training set had 20

‘normal’ and 40 ‘at risk’ data instances and the testing set was composed of 10 ‘normal’
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and 20 ‘at risk’ samples. The training set was further divided into five subsets, as

explained later in the results section, in order to obtain more reliable results. Data

instances in the Dataset consisted of a maximum of 10 statistical features (standard

deviation) extracted from the remaining decomposed components (IMFs) of the FHR

signal, after the separation of noisy components (preprocessing method). Since the

number of remaining decomposed components of 90 FHR signals in the set varied

from 7 to 10, a maximum of 10 input features or parameters were considered. Features

in the Dataset extracted from 90 FHR signals were used as inputs to the SVM

classifier.

Results
As a first step of validation a 5-fold cross validation method was employed using the

FHR signals in the training set. This method is used for validating the systems, espe-

cially, when there is small number of data [50,1,49]. In this process, the training set

was further divided into 5 non-overlapping subsets of 12 signals each. All the 5 sets

had 4 instances that belonged to the ‘normal’ group and 8 from the ‘at risk’ group.

The SVM classifier was trained with 4 subsets out of 5 and the 5th subset was used as

the validation set and the procedure is repeated 5 times in order to find the 5-fold

cross validation accuracy. The values for (C, g) parameters are found using a systematic

grid search method [1]. Because of the unbalanced data set used in this work the pen-

alty parameters (C+/C-) ratio was maintained to be the inverse of the corresponding

cardinalities of the classes (1/20/40). A 5-fold cross validation accuracy of 86% was

obtained for the Dataset as shown in Figure 6.

In the next stage of evaluating the system performance, we used both the testing set

and the training set and estimated the accuracy of prediction. The testing data set pre-

diction accuracy was 87% and the training set accuracy of classification was 95%. Since

the data used in the work is unbalanced the accuracy of prediction may not be the

best measure [1,28].

Figure 6 Estimated accuracy. Representation of accuracy obtained from the 5-fold cross validation (CSV),
training set and the testing set for the Dataset.
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In order to address this problem a method proposed [51] to estimate the geometric

mean GM (equation (15)) is used, whereas, ST (sensitivity) and SP (specificity) are esti-

mated using equations (16) and (17), respectively.

G S SM T P= * (15)

S
t

t f
T

p

p n

=
+( ) (16)

Where tp and fn stands for true positives and false negatives, respectively.

S
t

t f
P

n

n p

=
+( ) (17)

Where tn and fp stands for true negatives and false positives, respectively.

The ST percentage obtained for the training data classification was 100% and SP was

90%, and for the testing data set classification ST was 95% and SP was 70%, as shown

in Figure 7. The tp, tn, fp, and fn values used for estimating ST and SP of the training

and the testing data sets are taken from the confusion matrix shown in Figure 8a and

Figure 8b, respectively. From ST and SP values the geometric mean GM was estimated

according to equation (15) [1,28], for both training and testing data: 94.87 (training

set) and 81.55 (testing set).

In order to eliminate any agreement arrived by chance, the results of the SVM classi-

fier and the mutually agreed visual interpretation results from the two experienced

obstetricians were compared using inter-rater agreement Kappa statistics [50,52,6]. The

kappa value k is estimated using equation (18).

k
p a p e

p e
= −

−
( ) ( )

( )1
(18)

Figure 7 Sensitivity and specificity. Sensitivity and specificity obtained from the training set classification
results and testing set classification results.
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Here, p(a) is the relative observed agreement and p(e) is the hypothetical probability

of agreement by chance. A 95% confidence interval (CI) is used in this work as shown

in Figure 8. In Figure 8a and 8b the kappa value 0.923 with 95% CI was obtained for

the training set and 0.684 for the testing set, respectively. The kappa values presented

show a good agreement between the mutually agreed visual interpretation results from

the two experienced obstetricians and the SVM classifier results, for both testing and

training data.

Discussion
The proposed methodology showed that the statistical features extracted from the

decomposed components using EMD yields good classification performance (based on

kappa values). It is difficult to make direct comparison of the proposed method with

others as the approaches are different. However, based on the methods employed for

statistical/mathematical feature extraction and classification an indirect comparison of

the proposed method with those developed by other researchers is provided. Thuner

et al [53] employed wavelet transform based on the standard deviation corresponding to

information contained in the coefficients 4th and 5th, and managed to achieve a complete

separation between the class of healthy adults and adults with cardiac pathology.

Salamalekis et al [26] in their intrapartum study of diagnosing fetal hypoxia, from

10-minutes FHR patterns, used only the 2nd, 3rd and 4th wavelet coefficients

and obtained a sensitivity of 97.9% and specificity of 83.3%. The use of fetal pulse oxi-

metry may have contributed for the high performance value of their methodology.

Georgoulas et al [48] considered standard deviations corresponding to all the six wave-

let coefficients as input features and achieved an overall classification performance of

90% for 3 minutes window. They also [1] used features based on the entropy measure

of the wavelet coefficients and obtained a maximum geometric mean of 83.67% with a

sensitivity of 75% and a specificity of 93.33% on 5-minutes segment. In all of these

works [1,48,26] FHR traces were associated to umbilical artery pH values and since

there is no consensus (gold standard) regarding its threshold, different values were

considered to discriminate normal fetuses from those at risk. All these studies very

concerned with the prediction of metabolic acidosis during the intrapartum period.

More recently, Kampouraki et al [49] extracted features using statistical methods and

signal analysis methods (Wavelet Transform) but from the adult heart rate and

achieved an accuracy of 100%.

Figure 8 Estimation of Kappa values. Presents confusion matrix and kappa value for the (a) training set,
(b) testing set.
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In our study employing statistical features extracted based on EMD, no single feature

could be identified that was capable of discriminating the ‘normal’ from ‘at risk’ classes,

therefore all the statistical features were considered as inputs to the SVM classifier.

With 20 minutes FHR signals, a sensitivity of 100% and specificity of 90% were

achieved for the training set. Whereas, the testing set classification rates showed signif-

icant difference in the value of sensitivity (95%) and specificity (70%), even though the

penalty parameters were set to handle the burden on the high false positive rate

because of the imbalance nature of the data set used. SVM classifier has been success-

fully used in FHR feature classification [1,28,48,30,29,31], but most of the work in this

field is based on extracting morphological features and providing the classification

using SVM.

Conclusion
A new method of statistical feature extraction from FHR signals using EMD is pro-

posed in this work. The features extracted from the decomposed components were

further classified as ‘normal’ and ‘at risk’ by the SVM classifier.

Because of the lack of gold standards in evaluating the performance of intelligent sys-

tems [54] the proposed method was validated using the mutually agreed visual classifi-

cation results from two experienced obstetricians. Validation of intelligent approaches

based on the visual interpretation of a team of obstetricians has been used in evaluat-

ing several systems [6,54,23]. A high inter-observer and intra-observer variability in

visual inspection is reported in the literature; however, it is important to note that it is

largely dependent on the expertise and experience of the clinician involved [6]. There-

fore, visual classification results from obstetricians with over 20 years experience were

used in this study.

The inter-rater agreement kappa values obtained for the training set (0.923) and the

testing set (0.684) showed good agreement of the proposed methodology with the

mutually agreed visual classification results of two experts. This proved the viability of

the method and its potential for further application.

The major limitations of this method are: the sifting process used in EMD is time

consuming and the number of decomposed components varies with respect to the sig-

nal resulting in some empty spaces in the feature set. The preprocessing stage was

helpful in removing the noisy components (IMFs). At this stage we can state that the

results are quite promising. However, to be of clinical significance the proposed meth-

odology requires extensive validation on a bigger data set.

As a future work, the proposed methodology would be applied to FHR signals of dif-

ferent durations and also would be extended for multi-class classification (here only

two class labels were considered). Another possible extension is the classification of

FHR by associating the traces to apgar scores. The effect of different sampling rates on

features extracted using EMD and its effect on the SVM classifier also need further

investigation.
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