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Extracellular vesicles (EVs), and especially exosomes, have been shown to mediate
information exchange between distant cells; this process directly affects the biological
characteristics and functionality of the recipient cell. As such, EVs significantly contribute
to the shaping of immune responses in both physiology and disease states. While vesicles
secreted by immune cells are often implicated in the allergic process, growing evidence
indicates that EVs from non-immune cells, produced in the stroma or epithelia of the
organs directly affected by inflammation may also play a significant role. In this review, we
provide an overview of the mechanisms of allergy to which those EVs contribute, with a
particular focus on small EVs (sEVs). Finally, we also give a clinical perspective regarding
the utilization of the EV-mediated communication route for the benefit of allergic patients.

Keywords: extracellular vesicles, exosomes, cellular communication, immune responses, allergy, asthma, atopic
dermatitis, allergic rhinitis
INTRODUCTION

During evolution multicellular organisms developed diverse methods of communication including a
direct cell-to-cell contact, which allows for receptor-ligand interactions as well as the release of
active mediators providing intercellular information transfer between donor to recipient cells. These
include both soluble molecules and extracellular vesicles (EVs) capable of travelling long distances
within the body. EVs which comprise apoptotic bodies (AP; 100-5000 nm), ectosomes or shedding
microvesicles (MV; 100–1000 nm), secreted mid-body remnants (sMB-Rs; 200-600 nm) and
exosomes (50–150 nm) are a group of heterogeneous structures (1, 2) surrounded by a lipid
bilayer. EVs are released from practically all cell types including epithelial cells, fibroblasts,
mesenchymal cells, dendritic cells (DCs), B cells, T cells, mast cells and tumor cells, among
others. The presence of EVs has also been shown in multiple body fluids, including saliva (3),
plasma (4, 5), breast milk (6), urine (7), bronchoalveolar lavage (8, 9) and malignant effusions
(10–12). The complete biological effects of EVs are not yet well understood, but it is known that
MVs and exosomes can bind to cells through several mechanisms, including receptor-mediated
endocytosis, direct fusion, phagocytosis, and caveolae- or clathrin-mediated endocytosis and
transfer their content to the recipient cell (1, 13). It has also been shown that alveolar epithelial
cells internalize MVs via fluid-phase endocytosis but not via the well-known receptor-mediated EV
endocytosis (14); MV uptake has endocytic basis which is energy-consuming and requires
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cytoskeletal rearrangement (15); receptor-mediated MV uptake
has also been reported (16). Because of their morphological
characteristics, exosomes are considered the EVs most
pronouncely involved in the information exchange process.
The uptake results in functional effects in recipients; hence
EVs contribute to the complexity of communication stream
between distant cells. Besides the size and density, EV
heterogeneity also derives from their diverse cargo, making it
arduous for researchers to determine their exact functions (17).

Given their ability to regulate physiological and pathological
processes (18, 19) there is growing interest focused on the
potential of EVs to serve as novel targets for the development
of therapeutic and diagnostic strategies. The role of different EV
subtypes largely depends on the type and activation state of a cell
producing them (20). Exosomes have been found useful in
diagnostics as possible biomarkers, e.g. in oncology and
nephropathies (21, 22) and as novel therapeutic approach for
treating various diseases, including those with a clear
immunological pathomechanism, e.g. atopic dermatitis,
asthma, arthritis (23–25). In those, EVs produced by the
immune cells are the main focus of the EV field. However,
multiple kinds of non-immune cells, often overlooked, have been
shown as efficient EV sources; these are often significant
Frontiers in Immunology | www.frontiersin.org 2
contributors to the ongoing immune response. This review,
therefore, discusses the role of non-immune cell-derived EVs
in immune processes in allergy in contrast to the immune cell-
derived EVs.
EXTRACELLULAR VESICLES: TYPES
AND BIOGENESIS

EVs are most frequently categorized based on their biogenesis,
and sub-grouped into three major types: exosomes,
microvesicles and apoptotic bodies (Figure 1). Recently, a
novel type of EVs, namely secreted midbody remnants
(sMB-Rs) have also been described, along with yet another
type of secreted nanoparticles, i.e. “exomeres”. While the
former appear to be membranous structures and are likely true
vesicles, a debate on the latter is ongoing (due to the lack of
consensus we did not include exomers in Figure 1 and Table 1).
The differences in the origin are directly reflected in the
variations in the size, morphology, cargo and surface content
of those EV populations (Table 1); however, they all likely play a
role in cell-to-cell communication, transferring a variety of
FIGURE 1 | Different types and biogenesis of extracellular vesicles. Two types of EVs form through outward invagination of the plasma membrane; microvesicles
and apoptotic bodies. The apoptotic bodies are larger and form in the context of programmed cell death; they enclose organelles removed from the cell during
degradation, while microvesicles are produced by a healthy cell; their content is similar to that of the cytoplasm. Secreted midbody remnant is also secreted from the
plasma membrane, but contain residual secreted midbody remnants are following cell division. In contrast to this, exosomes form through a distinct cellular pathway
and within the endocytic system where inward budding of late endosome leads to the formation of a multivesicular body containing multiple intraluminal vesicles. The
content of multivesicular bodies is either digested after fusion with lysosome (degradative pathway) or released into the extracellular space (secretory pathway). EE,
early endosome; LE, late endosome; MVB, multivesicular body; ILVs, intraluminal vesicles; sMB-R, secreted midbody remnant.
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biological molecules, i.e. proteins, lipids, nucleic acids and small
molecular mediators (18, 19, 75–80) to the recipient cell.

Exosomes compose a population of small EVs (50-150 nm)
(1). Due to their size and composition mainly consisting of lipids,
these vesicles can squeeze between cells without damage and
enter the circulation; this facilitates transfer of their cargo
between cells at the longest distances (55, 81, 82). The
exosomal wall composition reflects the biogenesis of those
vesicles which have unique endocytic origin. Specifically,
exosomes form at the level of late endosomes (LEs) which later
progress into multivesicular bodies (MVBs) by accumulation of
intraluminal vesicles (ILVs) generated through inward budding
of the LE membrane (83). The formation of MVBs is mediated
by two separate pathways; one involving a multimolecular
machinery called endosomal sorting complex required for
transport (ESCRT) and the other, dependent on a specific lipid
composition of the endosomal membrane (84). ESCRT is a
protein cascade consisting of approximately 30 proteins which
are integrated into four subunits, namely ESCRT-0, ESCRT-I,
ESCRT-II and ESCRT-III (83, 85, 86). The role of ESCRT-0 is to
recognize and sequester ubiquitinated transmembrane proteins
in the endosomal membrane which allows the ESCRT-I to bind
to these ubiquitinated proteins and activate ESCRT-II to start
oligomerization and generation of ESCRT-III. ESCRT-I and
ESCRT-II complexes are implicated in the process of
Frontiers in Immunology | www.frontiersin.org 3
membrane deformation which leads to the membrane budding,
and ESCRT-III components accomplish vesicle scission (1, 44,
87–89); the ESCRT pathway is ATP-dependent. To disassemble
ESCRT subcomplexes from the endosomal membrane, the AAA
(ATPases Associated with diverse cellular Activities); ATPase
VPS4 (Vacuolar Protein Sorting 4), is required, which
enzymatically accomplishes the membrane abscission (90–
92). During MVB sorting an accessory factor, ALIX, is
required for exosome secretion at the endosome to help sort
membrane proteins into vesicles which later bud into MVBs (93,
94). Larios et al. have shown that ALIX- and ESCRT-III–
dependent pathway promotes sorting and delivery of exosomal
proteins (95). In contrast, the ESCRT-independent pathway
relies on the process of converting membrane sphingolipids to
ceramides by sphingomyelinase which is necessary for the
inward budding and formation of ILVs (57, 96–98). Following
the budding, MVBs which accumulate ILVs either fuse with the
plasma membrane to release exosomes into the extracellular
space via exocytosis (secretory pathway) or fuse with lysosomes
and their content is digested by the lysosomal enzymes
(degradative pathway) (99–101). The ESCRT-independent
formation of ILVs in MVBs has been shown to be regulated by
CD63 tetraspanin, which is particularly enriched intracellularly
and is mostly localized in the endosomes and lysosomes,
although in specialized cells it is also associated with lysosome-
related organelles and their endosomal precursors (102, 103).
Edgar et al. have shown that the formation of small ILVs requires
CD63 (104).

Microvesicles (MVs) are vesicles generally larger than
exosomes, with sizes in the 100-1000 nm range but some
smaller MVs may be difficult to distinguish from exosomes
purely based on the size. However, their biogenesis is
completely unrelated; they originate through the processes of
direct outward budding and fission of the plasma membrane into
the extracellular space (105, 106); this explains why the MV
surface markers largely depend on the composition of the plasma
membrane (107). Based on the way of how the plasma
membrane has emerged during the MV formation, MVs may
contain various cell surface proteins, such as ARRDC1 (arrestin
domain-containing protein 1) (108, 109), Bin-1 (ampiphysin)
(110), EGFR (epidermal growth factor receptor), etc. (111).
Released MVs may be taken up via receptor-mediated uptake
(16, 112, 113) to transfer their cargo (surface receptors, lipids,
proteins, mRNA, miRNA, infectious particles e.g. prions) to the
target cells.

Apoptotic bodies (APs) are the largest subfraction of
extracellular vesicles (100-5000 nm), formed and released
when the cell undergoes programmed cell death, i.e. apoptosis
(114, 115). Many changes occur to the cell during this process,
including pronounced changes to the plasma membrane.
Specifically, the blebbing generates various types of protrusions
and APs form and may be released from those (116, 117). APs
carry antigens and a variety of biomolecules, intracellular
fragments, disrupted and degraded cellular organelles,
membranes, released nucleic acids and cytosolic contents (75).
APs have been shown to transfer their cargo and content
TABLE 1 | Common markers and cargo found in EVs.

EV type Markers EV Cargo

APs (100-5000 nm) Phosphatidylserine (26)

TSP (27)

C3b (28)

Calreticulin (29)

DNA (30, 31)

RNA (32)

Peptides (31)

Phospholipids (31)

Annexin V (31)

Lipids (33)
MVs (100-1000 nm) Actinin-4 (34)

Integrins (35)

Selectins (36)

Flotillin-2 (37)

CD40 ligand (36)

Metalloproteinase (38)

ARF6 (39)

VCAMP3 (40)

KIF23 (41)

DNA (42)

RNA (32, 43)

Poteins (44)

Receptors (45–48)

Lipids (49)

sMB-Rs (200-600 nm) KIF23 (2, 50, 51)

Prominin-1 (52)

Proteins (2)

Centraspindlin (2)
Exosomes (50-150 nm) CD81 (53)

CD82 (53)

CD9 (54)

CD63 (55, 56)

Alix (54, 57)

TSG101 (57)

Flotillin-1 (58, 59)

Syntenin (34)

Hsp70 (60)

CD24 (61)

Receptors (62, 63)

Cytoplasmic proteins (64, 65)

Tetraspanins (66)

DNA (67)

RNA (68, 69)

Lipids (70)

MHC complex (71, 72)

Integrins (73)

Cytoskeletal components (74)
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between various cells (30, 118). Interestingly, the communication
with the immune cells specifically is commonly mediated by
vesicle-associated cytokines or damage-associated molecular
patterns (DAMPs) (119). This includes mitochondria-derived
N-formylated peptides (120), the nuclear protein High Mobility
Group Box 1 (HMGB1) (121), histones (122), calcium-binding
S100 proteins (123), heat shock proteins (HSPs) (124), ATP
(125), uric acid (126), DNA/RNA and actin among many others
(127). This richness of the cargo is perhaps not surprising, given
the context of the cell death resulting in AP formation. Immune
cells recognize these molecules via pathogen recognition
receptors (PRRs) and drive inflammatory responses (117, 128,
129). APs act locally and are removed from the extracellular
environment during phagocytosis by macrophages (117,
130, 131).

Very recent developments in the EV field brought
identification of two new types of nanoparticles, i.e. exomeres
and secreted midbody remnants. Given their novel nature, these
are not yet well described, both in relation to their structure and
function, however certain aspects are already known which
positions these nanoparticles in the interest of the EV field.

Secreted midbody remnants (sMB-Rs),with sizes in the 200-
600 nm range have been described as particles generated during
the cell division. Specifically, these are generated at the time
when daughter cells are still connected with intercellular
cytoplasmic bridge; this bridge is cut during the cytokinesis by
a transient organelle called midbody which anchors SNARE and
exocyst complexes (50, 132). As a consequence, one of the
nascent cells retains these midbody remnants and discards
them either by autophagy (133) or releases them in the form
of secreted vesicles; sMB-Rs. It has been documented that these
nanoparticles are distinct from exosomes and shed microvesicles
(51, 52). While generated as a byproduct during the cell division,
sMB-Rs may also convey messages when internalized, as shown
for fibroblasts, in which sMB-Rs promote cellular transformation
into an invasive phenotype (2).

Exomeres, with their size at the ≤50 nmmark are the smallest
secreted nanoparticles described so far. They also have very
distinct characteristics; of all, the lack of a limiting membrane
is the most evident differential feature. Exomeres seem to be
involved in cargo transport and have been shown to contain
proteins, lipids and nucleic acids, which provide functional
outcome by receiving cells. Currently, however there is a
debate whether exomers should be classified as “vesicles” and
the EV field is awaiting specific recommendations in this regard
(134–136).

It should be noted that while distinct types of EVs can be
described by their origin pathway, as well as a set of specific
characteristics including the size, marker profile and cargo
content, the technical caveats and lack of very unique markers
available to unambiguously define every EV population, it is
virtually impossible to specify the origin of the EVs, unless these
are imaged during secretion. Therefore, following the
recommendation of the International Society for Extracellular
Vesicles (ISEV) for the purpose of this review we have used the
Frontiers in Immunology | www.frontiersin.org 4
terms “small” and medium/large EVs” (sEVs and m/lEVs)
throughout instead of the original description published in the
referenced papers unless the populations are very well defined
according to the ISEV guidelines (137).
IMMUNE CELL-DERIVED EVs IN IMMUNITY

Recent progress in the EV field determined that thorough
understanding of the EV biology and function is pivotal for our
comprehension of immune-driven diseases, including the
pathogenesis of allergy. Here, immune cell-derived EVs emerge
as important contributors to immune responses, in both the innate
and adaptive immunity arms and it may be useful to explore their
potential as diagnostic and therapeutic tools. In the innate
immunity pathways EVs provided by NK cells, macrophages
and neutrophils mediate early host recognition and elimination
of invading pathogens. In the adaptive arm, EVs are capable of
activating B cells for antibody responses as well as providing both
the direct and indirect antigen-specific stimulation to T cells. For
the former, class I and class II MHC molecule-enriched EVs from
antigen-pulsed DC are able to act as a display system for antigen
presentation to cytotoxic and helper T cells (138). Moreover, it has
been shown recently that the responses induced by exosomes
(defined as tetraspanin and syntenin-positive sEVs) are by far
superior in comparison to those obtained from MVs
(distinguished as actinin-1-positive, syntenin-negative) (34),
further highlighting the distinctive features resulting from the
unique exosomal biogenesis pathway, encompassing the MHC-
reach cellular compartments. As far as the indirect presentation is
concerned, antigen or antigen/MHC complex transfer is also
engaged, as well as cross-priming and cross-dressing
presentation pathways. These topics have been extensively
covered already in excellent publications (138–144). Hence,
since the focus of this review is the EVs secreted by non-
immune cells which are often overlooked but also extensively
participate in immune responses, their contribution will be
presented next.
NON-IMMUNE CELL-DERIVED EVs
IN IMMUNITY

While not as potent, in some respects, as the EVs secreted from
the immune cells, the EVs that are produced by the non-immune
cell types have also been shown to exert many distinct roles in the
immune system. These non-immune EV-mediated pathways
include contribution to both innate and adaptive immunity,
ranging from the activating to inhibitory roles (Figure 2). As
with any cells, the relative impact depends on the type and the
activation state of the donor cell, in parallel to the functionality
observed at the cellular level. Next section will discuss the ways in
which those non-immune cell-derived EVs participate in the
mechanisms of the innate and adaptive immunity.
August 2021 | Volume 12 | Article 702381
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Non-Immune Cell-Derived EVs in
Innate Immunity
EVs secreted by non-immune cells provide mechanisms of innate
control and consist a link between innate immunity and allergic
diseases (145). For example, Hu et al. have shown that the
activation of the TLR4 signaling results in enhanced luminal
sEV production and shuttling of the epithelial antimicrobial
peptides (cathelicidin-37 and b-defensin 2) from the
gastrointestinal epithelium (146). Nasal mucosa-derived sEVs
were also shown to carry proteins involved in the innate
immune responses, including inducible nitric oxide synthase
(NOS2) which exerts antimicrobial function (147). Similarly to
this, Nocera et al. have shown that the secretion of basal nasal
mucosa-derived sEVs and the expression of exosomal NO is
increased after TLR4-stimulation by lipopolysaccharide.
Interestingly, mucosa-derived sEVs had microbiocidal properties
and were capable of transferring their immunoprotective cargo to
naive epithelial cells to confer passive immunity to recipient cells
in the setting of chronic rhinosinusitis (148).

Non-immune cell-derived sEVs can also interfere with the
NOD-dependent signaling. Specifically, Vaccari et al. have
shown that the expression of the components of the
nucleotide-binding-and-oligomerization domain (NOD)-like
receptor protein-1 (NLRP-1) inflammasome are increased in
the spinal cord motor neurons and cortical neurons after trauma.
Interestingly, NLPR-1 inflammasome proteins were found in
cerebrospinal fluid-derived sEVs after spinal cord injury and
traumatic brain-injured patients. The authors have shown that
Frontiers in Immunology | www.frontiersin.org 5
sEVs derived from neurons loaded with short-interfering RNA
against caspase recruitment domain (CARD) can deliver their
cargo and reduce inflammasome activation following
spinal cord injury in rodents (149). Following this, Li et al.
have demonstrated the ability of hepatocyte-derived sEVs
(expressing exosome-associated tetraspanins) to induce acute
liver injury in severe heat stress by activating the NOD-like
receptor signaling pathway in hepatocytes (150). This pathway
seems to provide a link between visceral organs and the central
nervous system (CNS) as shown in a hepatic ischemia-
reperfusion injury model. Liver transplantation may result in
neuronal injury and cognitive dysfunction (151); Zhang et al.
have demonstrated that circulating sEVs play critical role in
hippocampal and cortical injury through regulating neuronal
pyroptosis in rats. The authors have shown that neuronal
pyroptotic cell death may be caused by sEVs through
TLR4 activation of NLRP3 inflammasome (152).

Exosomal transfer of pathogen recognition pathway
components may convey the message to the immune cells,
such as monocytes and macrophages. Specifically, Mills et al.
have shown that poly(I:C) stimulation induces the release of
tenascin C-rich sEV from airway epithelial cells; these may
potentiate airway inflammation by promoting cytokine
production in macrophages (153). Furthermore, airway
epithelial cell-derived sEVs have been shown to induce
proliferation and infiltration of undifferentiated macrophages
into the lungs under the influence of IL-13 in a murine model
(20). In contrast, mesenchymal stem cells (MSC)-derived sEVs
FIGURE 2 | Involvement of non-immune cell-secreted extracellular vesicles in immunological processes of innate and adaptive immunity. Extracellular vesicles
produced by cells of non-immune origin participate in exchange of information that contributes to immune responses. In the innate arm EVs enable passive immunity
and may both induce activation and modulate innate cell function. In the adaptive arm EVs may influence antigen presentation, affect dendritic cell differentiation and
phenotype; they have also been implicated in T cell polarization into Th or Treg subsets. sEVs, small EVs; m/lEVs, medium/large EVs.
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are capable of inhibiting macrophage chemotaxis (154), altering
the M1/M2 balance (155), inhibiting M1 via miR-147 (156) and
stimulating the M2 polarization in monocytes (157).

Non-Immune Cell Derived-EVs
in Adaptive Immunity
Multiple studies indicate that non-immune cells, in the steady
state, secrete EVs that execute immunoregulatory roles in
adaptive immunity. For example, bone marrow MSC-
derived EVs have been shown to suppress the Th2/Th17-
mediated airway hyperresponsiveness and lung inflammation in
a model of Aspergillus hyphal extract-induced allergic airway
inflammation (158). Indeed, MSC-derived sEVs have shown
immunosuppressive effects on several types of immune cells
(159); including inhibition of B cell and DC proliferation (25), B
cell maturation (160), and induction of T regulatory cells (Treg)
(161–163). More specifically, Gomzikova et al. have demonstrated
that MSC-derived EVs alter DC maturation and functional state
(164); the antigen uptake by immature DCs was attenuated and
the stimulation rendered DCs with a semi-mature phenotype after
LPS exposure (165). These phenotypic changes were accompanied
by a functional shift in the cytokine production profile from
inflammatory to immunoregulatory (164), suggesting that those
sEVs could promote tolerogenic DC (tolDC) induction. MSC-
derived EVs have been also shown to reduce inflammatory
cytokine (IL-23 and IL-22) production (166), enhancing the
anti-inflammatory phenotype and regulatory lymphocyte
proliferation, and the ability to produce IL-10 and TGF-b (167).
Proliferation of T cells has also been shown to decrease after MSC-
derived EV treatment in vitro, accompanied by a downregulation
in IFN-g and TNF-a (168). The study by Shigemoto-Kuroda et al.
also confirmed that MSC-derived EVs have the ability to suppress
Th1 and Th17 development, inhibit antigen presenting cell
activation and increase expression of the immunosuppressive
cytokine IL-10 (169). In a limited model, murine epidermal
keratinocyte-derived sEVs (flotillin and Alix-positive) failed to
induce T cell immune response despite some phenotypic effects on
DC (170). However, when the donor cells are subjected to IFN-g
activation, keratinocyte-derived sEVs (of exosomal marker
characteristics) may act as a transfer vehicle for T cell
stimulation by Staphylococcal aureus enterotoxin B. Specifically,
in this context HaCaT keratinocytes were shown to produce sEVs
that contain MHC class I and class II and were able to drive
nonspecific proliferation of CD4+ and CD8+ T cells in vitro (171).
This suggests that the relative contribution of non-immune cell-
derived sEVs (and potentially other EVs) to the adaptive
immunity and T cell reactivity may change depending on the
stimulation received by the donor cell; further evidence supports
this (172).

Interesting are the results by Admyre et al. who have
demonstrated that human breast milk contains sEVs which
reveal immunomodulatory features inhibiting T cell cytokine
production from PBMC and increasing the number of
Foxp3+CD4+CD25+ Tregs in this semi-allogenic system (173,
174). Based on the content of surface molecules, in comparison
to the DC-derived sEVs, these sEVs originate from either
Frontiers in Immunology | www.frontiersin.org 6
macrophages and lymphocytes in the breast milk or rather
breast epithelial cells (173, 175). To support this, Herwijnen
et al. have also shown that human milk-derived EVs contain
novel EV-associated bioactive proteins that have distinct functions
from other milk proteins; this suggests a novel mechanism of
cellular communication between the mother and newborn (176).
THE ROLE OF NON-IMMUNE CELL-
DERIVED EVs IN ALLERGIC CONDITIONS

Many studies have been performed to investigate the
involvement of non-immune cell-derived EVs content/cargo
with different clinical manifestations of allergy; in this section
current research regarding the role and function of non-immune
cell-derived EVs in allergic conditions is reviewed. Certainly, for
the outcome in allergic inflammation much depends on the
source of EVs as summarized in Figure 3.

Asthma
EVs contribute to the asthma pathogenesis via various
mechanisms, related to both inflammation and pathological
remodeling (177) and there are interesting interdependencies
that can be observed. Specifically, it has been shown that
fibroblasts-derived EVs secreted by cells obtained from severe
asthmatics increase proliferation of bronchial epithelial cells
(HBECs) in comparison to those in healthy individuals, due to
a decrease in the TGF-b2 content (178). Vice versa, vesicular
transfer between epithelial cells and fibroblasts which
includes inositol polyphosphate 4-phosphatase type I A
(INPP4A) cargo, may regulate inflammation and airway
remodeling (179). Further to that, Gupta et al. have shown that
sEV transfer between airway epithelial cells (AECs) and human
tracheobronchial cells (HTBEs) promotes expression several
proteins which may contribute to allergic inflammation and
exacerbation of asthma symptoms, i.e. gel-forming mucins
(180), complement component C3, SERPIN3. The addition of
an allergen source (house dust mite; HDM) to the AEC culture
resulted in DC activation by secreted sEVs in vitro and increased
airway inflammation in a murine model (181); the role for
contactin-1 has been demonstrated. Furthermore, it has been
also demonstrated that sEVs may be a vehicle of secretion for an
important Th2-promoting cytokine, interleukin 33 (IL-33); the
cytokine seams to decorate the EV surface rather than be
included within the intraluminal cargo (182). At the same
time, however, it has been also shown that CD83/OVA-
carrying sEVs derived from those cells may promote Treg
differentiation (183). Ax et al. have documented that HBECs
increase the number of EVs released upon treatment mimicking
asthma milieu which may contribute to establishing of the
neutrophilic airway inflammation associated with Th17-driven
asthma (184). Kulshreshtha et al. have shown that IL-13-treated
epithelial cells secrete sEVs which stimulate proliferation and
chemotaxis of monocytes; suppressing secretion of those sEVs in
the lungs alleviates asthmatic inflammation in a murine model of
bronchial asthma (20). Similarly, Lee et al. have shown that
August 2021 | Volume 12 | Article 702381
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HBEC-derived m/lEVs may promote macrophage-mediated
inflammation upon hyperoxia-mediated lung injury via miR-
221 and/or miR-320a (185). Moreover, three additional
miRNAs, i.e. miR-92b, miR-34a and miR-210 found in the
sEVs secreted by HBECs have been suggested to have possible
roles in regulating Th2 differentiation and DCs maturation in
asthma, indicating that airway epithelial miRNA secretion via
sEVs might be even more implicated in the development of the
disease (186). In agreement with this, bronchoalveolar lavage
fluid (BALF)-derived EVs isolated from LPS-treated mice drive a
mixed Th1/Th17 cell response and enhance production of the
Th1/Th17-polarizing cytokines (IL-12p70 and IL-6) by lung DCs
in an asthmatic mouse model but are more tolerogenic if the
animals are devoid of the LPS stimulation (70). Specifically,
Paredes et al. have shown that asthmatic BALF-derived sEVs
which carry tetraspanins and MHC class II molecules might
reflect increased levels of antigen-presenting capacity and
suggest that these sEVs might contribute to the inflammation
by increasing cytokine and leukotriene production in AECs
Frontiers in Immunology | www.frontiersin.org 7
(187). Asthmatic patients also have altered sEV proteomic
characteristics and eicosanoid profile which is shown to exert
pro-inflammatory functions in vitro. Specifically, Hough et al.
have shown that BALF-derived EVs contain lipids, such as
ceramides, sphingosines, prostaglandins and leukotrienes
which have been previously identified to drive inflammation in
asthma (188). In asthmatic conditions, BALF-derived EVs also
exhibit particular miRNA profiles (189) and carry the
biosynthetic machinery for the leukotriene biosynthesis
pathway (187, 188). In agreement with this, in a human study,
EVs isolated from the nasal secretions of children with asthma
and chronic rhinitis promoted trafficking of primary monocytes,
NK cells and neutrophils thanks to the changes in the exosomal
proteome contributing to the alterations in the immune-related
functions (147). These effects can be contrasted with a healthy
lungs, as demonstrated in an animal model by Wan et al., who
have shown that EVs isolated from the lungs of healthy mice
contain immunosuppressive cytokines TGF-b1 and IL-10 which
inhibit T helper cell proliferation and relieve asthmatic
FIGURE 3 | Extracellular vesicles produced by non-immune cells and their involvement in allergic diseases. Microvesicles and exosomes are the two types of
extracellular vesicles which have been implicated in the pathogenesis of allergic inflammation. There is significant predominance of the exosomal involvement, likely
due to the phenotypic characteristics and physical properties of these vesicles, enabling more without damage and entering the circulation for long-distance delivery.
HBECs, human bronchial epithelial cells; BALF, bronchoalveolar lavage fluid; NM, nasal mucus; NECs, nasal epithelial cells; AECs, airway epithelial cells; HTBEs,
human tracheobronchial cells; RBCs, red blood cells; IECs, intestinal epithelial cells; KCs, keratinocytes; FBs, fibroblasts; MSCs, mesenchymal stem cells. ↑ increase
in a process; ↓ decrease in a process; + disease promoting effect; - disease alleviating effect.
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symptoms in mice (190). The immunomodulatory effect of EVs
was also demonstrated by Prado et al. who have shown that
intranasal administration of sEVs isolated from BALF of mice
tolerized against major pollen allergen in the murine airway
inflammation model (Ole e1) induces tolerance and protects
naïve mice against allergic sensitization (191).

Finally, innate lymphoid cells type 2 (ILC2s) which are large
contributors to the Th2-dominated allergic inflammation in the
airways (192) can also be targeted by EV-mediated suppression.
Specifically, systemic administration of MSC-derived sEVs
resulted in the reduction in the ILC2 accumulation,
inflammatory cell infiltration and mucus production in the
lung, a reduction in the levels of Th2 cytokines, and alleviation
of airway hyperresponsiveness in a mouse model of asthma. It
seems that this sEV-mediated preventive effect was conveyed by
the transfer of miR-146a-5p (193).

Allergic Rhinitis
Allergic rhinitis (AR) is a disease manifesting as type I allergic
hypersensitivity within the nasal mucosa (194), and is characterized
by chronic inflammation (195). The imbalance between the Th1
and Th2 differentiation is involved in the development of ARwhich
is suggested to be partly regulated by sEVs. Zhu et al. have reported
expression of a long-noncoding RNA (Lnc) GAS5 in the nasal
mucus-derived sEVs in AR and in the ovalbumin-stimulated nasal
epithelial cell (NEC)-derived sEVs. Here, this Lnc RNA promoted
suppression of Th1 cell differentiation and induced Th2
differentiation upon treatment with nasal mucus (NM)-derived
sEVs. A potential mechanism seems to involve the regulation of
Enhancer of Zeste Homolog 2 (regulating proliferation and
differentiation processes, including mediating proliferation and
apoptosis of allogeneic T cells), and inhibition of T-bet
expression by long-noncoding RNA GAS5 (196).

NEC-derived exosomal miR-146a induces the expression of
IL-10 in monocytes in the murine model which seems to
suppress allergic reactions downstream. Specifically, IL-10+

monocytes have an immune suppressor effect on the CD4+

effector T cells and the Th2 polarization in this model of AR
(197). Interestingly, the alterations in the miRNA profile
obtained from NM-derived EVs of AR patients showed
intrinsic dysregulation of EV miRNA content in the disease.
Wu et al. have demonstrated significant enrichment of certain
biological and cellular processes within these differentially
expressed miRNA signatures, namely B-cell receptor signaling
pathway, natural killer cell-mediated cytotoxicity and T-cell
receptor signaling, among others, implying that vesicular
miRNAs exert regulatory function in AR. When investigated in
more detail, B cell receptor signaling pathway-related miR-30-5p
and miR-199b-3p were significantly increased, also miR-874 and
miR-28-3p were significantly down-regulated in EVs from nasal
mucus in AR (198).

Atopic Dermatitis and Contact Allergy
Atopic dermatitis (AD) is a chronic inflammatory skin disorder
associated with the epidermal barrier disruption, eczematous
Frontiers in Immunology | www.frontiersin.org 8
cutaneous lesions and severe pruritus. AD pathogenesis is
complex and characterized by cytokine production predominantly
mediated by Th2 cells and ILC2 (199), but also involving innate and
Th17 and Th22 components (200).

The importance of keratinocytes of the skin in the disease
pathogenesis has been highlighted by the findings demonstrating
that insufficiency in the epidermal barrier is key component
(201). However, only one study so far has investigated the impact
of EVs secreted by keratinocytes in the context of allergic
inflammation (170). Here, using a murine allergy model, the
authors noticed some signs of DC activation upon exposure to an
antigen (OVA peptide) transferred by sEV from secreting
keratinocytes. At the same time, however, they failed to detect
any changes in the T cell reactivity to this peptide antigen.

Besides that, little is known about EV secretion from other
cells in the skin with relation to AD, with more focus directed
towards potential new therapies. In this regard, it has been
reported that intravenous/subcutaneous administration of
human adipose tissue-derived MSC-derived sEVs (showing
exosomal characteristics) ameliorate AD symptoms in vivo (in
a mouse model); the levels of serum IgE, the number of
eosinophils in the blood, and the infiltration of mast cells were
also shown to be reduced after the treatment. Such sEVs also
reduced mRNA levels of IL-4, IL-31, IL-23, and TNF-a in the
skin lesions demonstrating that their systemic administration
may ameliorate AD-like symptoms through the regulation of
inflammatory responses and expression of inflammatory
cytokines in the tissue (25). Shin et al. have shown that
exosomes-resembling sEVs derived from human adipose
tissue-derived MSCs may significantly restore the epidermal
barrier function in AD by inducing de novo synthesis of
ceramides and modulating multiple gene expression
programme, including the effects on differentiation of
keratinocytes, lipid metabolism, cell cycle, and immune
response (202). MSC-derived sEVs were shown to inhibit local
inflammatory reaction and reduce tissue damage in atopic
eczema (203). Hence, the evidence suggests that MSC-derived
sEVs could potentially offer a promising cell-free therapeutic
option for AD patients.

Contact allergy and contact sensitization is a common form of
a delayed type hypersensitivity to small contact allergens.
Contact allergy often develops after repeated or prolonged
topical exposure to a particular sensitizing agent (204–206).
Nazimek et al. have shown that intravenous administration of
syngeneic mouse red blood cells leads to the EV generation that
suppresses directed delayed type hypersensitivity in a miRNA-
150-dependent manner; specifically, the syngeneic mouse red
blood cell-derived EVs decreased T cell activation and enhanced
their apoptosis (207). Similarly, human umbilical cord MSC-
derived EVs were demonstrated to ameliorate and prevent the
pathology of contact hypersensitivity in mice. Specifically, these
EVs had a suppressive effect on both CD8+ cytotoxic cells and
CD4+ Th1 cells, including the effect on TNF-a and IFN-g
production, induction of Tregs and the level of secreted
IL-10 (208).
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TABLE 2 | Preclinical models using EVs for allergy treatment in animals.

nditions Outcomes Reference

BALF-derived exosomes induce tolerance and protection against allergic
sensitization in mice.

Prado et al, 2008 (191)

flammation IL-13 treated epithelial cell-derived exosomes induce enhanced proliferation
and chemotaxis of undifferentiated macrophages in the lungs during
asthmatic inflammatory conditions.

Kulshreshtha et al, 2013 (20)

y inflammation Selective sorting of Th2 inhibitory miRNAs into airway secreted EVs and
increase release to the airway is involved in the pathogenesis of allergic
airway inflammation.

Gon et al, 2017 (218)

atitis Intravenously or subcutaneously injected human adipose tissue-derived
MSC-derived exosomes ameliorate AD in an in vivo mouse model.

Cho et al, 2018 (25)

act dermatitis Human umbilical cord-derived MSC-EVs prevent the pathology of contact
hypersensitivity by inhibiting Tc1 and Th1 immune responses and inducing
the Tregs phenotype in vivo and in vitro.

Guo et al, 2019 (208)

is (patients) MSC-sEVs prevent ILC2-dominant allergic airway inflammation through miR-
146a-5p.

Fang et al, 2020 (193)
nt asthma
el)
atitis Human adipose tissue-derived MSC-exosomes effectively repair defective

epidermal barrier functions in atopic dermatitis.
Shin et al, 2020 (202)

hypersensitivity Intravenous delivery of syngeneic mouse red blood cells that is mediated by
EVs in a miRNA-150-dependent manner suppresses delayed-type
hypersensitivity.

Nazimek et al, 2020 (207)
ersensitivity

ma Intranasally delivered MSC-derived exosomes inhibit allergic asthma in mice. Ren et al, 2020 (219)

ic models Epithelial contactin-1 in exosomes is a critical player in asthma pathology. Zhang et al, 2021 (181)
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TABLE 3 | Registered clinical trial investigating the feasibility of using EVs in allergic patients.

Interventions Locations Identifier

Biological: Dermatophagoides pteronyssinus allergen Lithuanian University of Health Sciences,
Pulmonology Department Kaunas, Lithuania

NCT04542902
Procedure: Blood sampling, Procedure: Bronchial
challenge with allergen
Drug: Qufeng Shengshi Fang and Loratadine, Drug:
Loratadine

Peking Union Medical College Hospital
traditional Chinese medicine department
Beijing, Beijing, China

NCT02653339

Biological: tumor derived microparticles, Drug: cisplatin The Ohio State University Medical Center
Columbus, Ohio, United States

NCT00700726

Diagnostic Test: Broncho Alveolar Lavages HôpitalSaint-Philibert, Lomme, France NCT03608293

Drug: Chitin microparticles by nasal route Hammersmith Medicines Research,
London, United Kingdom

NCT00443495

Drug: Biodegradable and biocompatible
polymeric microparticles containing a fluorochrome applied
to the skin followed by a skin biopsy

Regional University Hospital Besançon,
France

NCT02369432

Other: Narrow band UVB treatment, (NB-UVB) The Rockefeller University New York, New
York, United States

NCT03083730

Other: FDG-PET Scan Other: MDCT, Other: biopsy and
blood collection

Innovaderm Research Inc Montreal,
Quebec, Canada

NCT02926807

Primary indicator: PD-L1, Immuno-suppression capacity of
regulatory T cell

Sun Yat-Sen Memorial Hospital, Sun Yat-
Sen University

ChiCTR2000031122
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Bronchial Epithelial Cells

Smokers Human Bronchial
Epithelial Cells Lung
Pathogenesis Biomarkers

Phase I/IIa Study on Chitin Microparticles in Subjects
Suffering From Allergic Rhinitis

Seasonal Allergic Rhinitis

Exploratory Study of the Cutaneous Penetration of
Biodegradable Polymeric Microparticles in Atopic
Dermatitis (MicroIskin)

Atopic Dermatitis

Impact of Narrowband UVB Phototherapy on
Systemic Inflammation in Patients With Atopic
Dermatitis

Atopic Dermatitis

Trial on Vascular Inflammation in Atopic Dermatitis Atopic Dermatitis Vascular
Inflammation Coronary
Atherosclerosis

Role of Macrophage in immune-modulation by
mesenchymal stem cell derived exosome in asthma

Respiratory diseases
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Food Allergy and Allergic Inflammation in
the Gastrointestinal Tract
Food allergy is a manifestation of an abnormal immune response
to food or food additives (209) which is a complex process
involving multiple cellular and molecular mechanisms. It has
been shown that early exposure to allergens via the
gastrointestinal route promotes tolerance (210, 211). It is not
clear how much EVs are involved in this process, however,
animal models suggest that there could be some contribution.
Specifically, intestinal epithelial cells (IECs) subjected to OVA
release sEVs that carry IL-10 and OVA/MHC class II complexes
recognized by OVA-specific TCR-bearing CD4+ T cells. Here,
OVA-specific CD4+ T cells represent type 1 Tregs, produce IL-10
and show immune suppressive effects on effector T cell
proliferation. The proposed mechanism involved the role of
vasoactive intestinal peptides, which seemed to be required for
this effect (212, 213). Furthermore, Treg bias has been also
observed following a sEV-mediated transfer of food allergens
into the mesenteric lymph nodes (MLNs) of mice, in contrast to
a direct transfer of those allergens, which promoted Th2
responses (214); the results also highlighted the role of
exosomal integrin avb6 as a protective molecule. Finally, given
that the diverse composition of the gut microbiome has been
shown to be critical in food allergy prevention (215), antigen and
mediator transfer via EVs secreted by IECs may be also involved
in the elimination of pathogenic bacteria to prevent intestinal
dysbiosis (146).
CLINICAL PERSPECTIVES

Growing attention has been given to EVs as mediators in both
physiological conditions and pathology, including the role in
allergic diseases. Extensive research has been carried out showing
the capacity of EVs to regulate homeostasis and immune
functions in the allergic microenvironment. Alterations in
exosomal content in allergic conditions have been shown to
distinguish between physiological and diseased states suggesting
the potential use of sEVs as biomarkers in the search of
diagnostic tools for allergic diseases, for example in asthma
phenotype subgrouping (216). Naturally-occurring sEVs can be
also potentially used as drugs themselves, supporting healing
process, e.g. MSC-derived sEVs participating in wound healing
Frontiers in Immunology | www.frontiersin.org 11
and regeneration of the lung tissue; this highlights the possible
use of these sEVs in allergic airway remodeling (158, 202, 217).
Several studies have proposed treatment strategies in animal
models of allergic disease as summarized in Table 2. There are
also examples of the use of sEVs as compound carriers are now
being investigated as a naturally derived drug delivery systems
(DDSs) with a favorable biocompatibility profile, but sEVs can be
also potentially used to deliver non-drug anti-inflammatory
agents including miRNAs (e.g. let-7-miRNAs). Indeed, there
have been already several clinical trials in the past and more
are now ongoing which investigate a potential of using EVs for
the benefit of allergic patients (Table 3).

In summary, non-immune cell-derived EVs contribute to
allergic inflammation in the tissue location and potentially
systemically; they have a great potential to become a valuable
diagnostic option as well as a novel target for allergy therapy.
Such EVs are slowly introduced into the clinic within the setting
of clinical trials which investigate the feasibility of such
an approach.
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