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Why machine learning (ML) has failed
physical activity research and how we

can improve

Daniel Fuller

ABSTRACT

Measuring physical activity is a critical issue for our
understanding of the health benefits of human movement.
Machine learning (ML), using accelerometer data, has become
a common way to measure physical activity. ML has failed
physical activity measurement research in four important
ways. First, as a field, physical activity researchers have

not adopted and used principles from computer science.
Benchmark datasets are common in computer science and
allow the direct comparison of different ML approaches.
Access to and development of benchmark datasets are critical
components in advancing ML for physical activity. Second, the
priority of methods development focused on ML has created
blind spots in physical activity measurement. Methods, other
than cut-point approaches, may be sufficient or superior to ML
but these are not prioritised in our research. Third, while ML
methods are common in published papers, their integration
with software is rare. Physical activity researchers must
continue developing and integrating ML methods into software
to be fully adopted by applied researchers in the discipline.
Finally, training continues to limit the uptake of ML in applied
physical activity research. We must improve the development,
integration and use of software that allows for ML methods’
broad training and application in the field.

INTRODUCTION

Physical activity measurement is a critical
issue for our understanding of the health
benefits of human movement. Accelerome-
ters are now the standard for physical activity
measurement, and machine learning (ML)
is arguably the most common method for
methodological advances in physical activity
measurement.’ With the public release of the
new National Health and Nutrition Examina-
tion Survey (NHANES) accelerometer data,’
we argue that ML has failed physical activity
measurement research in four important
ways: a lack of benchmark data, priority in
methods development, limited software
integration and absence of training. We will
discuss these four points and relate them to
the clinical importance of integrating the
newest available methods into clinical diag-
nosis methods.

," Reed Ferber,? Kevin Stanley®

Key messages

What is already known

» Physical activity measurement has important clinical
consequences.

» Machine learning (ML) has become a common
method for measuring physical activity.

» Disciplines outside of physical activity measurement
have learned important lessons from computer sci-
ence that we can take away.

What are the new findings?

» Benchmark datasets are an important concept that
has been missing from physical activity measure-
ment research.

» Researchers should focus on developing tools that
clinicians and other researchers can use to apply
new advanced methods.

» Clinicians should know the limitations of ML meth-
ods in physical activity measurement.

LACK OF BENCHMARK DATA

Physical activity measurement, either in the
form of activity intensity prediction or activity
type prediction and the field of human activity
recognition (HAR) from computer science,
appears to have diverged over time. As phys-
ical activity researchers, we recently have a
new journal, the Journal of the Measurement of
Human Behaviour, dedicated to measuring
human behaviour. However, we argue that
as a community, we have done little to learn
from and integrate the field of HAR into our
work. A key concept of HAR and computer
science, in general, is benchmark datasets.’®
Benchmark datasets should have seven char-
acteristics: relevance, representation, equity,
repeatability, cost-effectiveness, scalability
and transparency.’ Benchmark datasets, such
as the WISDM V.2, are publicly available
labelled datasets that provide researchers
with the ability to compare different ML
models. Benchmark datasets also allow for
standardised and incremental improvements
in algorithm performance against a common
dataset. Table 1 presents a review of 17 of the
commonly used benchmark datasets for HAR.
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On average, datasets included 24 participants (range
4-563) and there was only one benchmark dataset that
included information about participant demographic
characteristics,’ including their age, gender or mobility
challenges. As with all data analyses, the quality of the
underlying data is crucial for the veracity of the methods.”
While physical activity researchers have collected massive
population-level datasets, including NHANES and the
UK Biobank, there has been limited use and publica-
tion of labelled benchmark datasets. A recent systematic
review included 53 studies using ML on accelerometer
data and few of these studies used the same dataset.' This
means that for each new ML method developed, there is
little or no ability to compare performance and trade-offs
between these methods because the datasets are devel-
oped using different data. Moreover, physical activity
researchers often prefer to collect and use their datasets
for ML development, slowing the progress of methods
development and limiting the ability of researchers to
develop and improve on previous methods. The use of
bespoke non-public datasets for training and validation
also potentially compromises the generalisability of the
models and findings. For example, an ML model devel-
oped for predicting physical activity types based on data
from a population in London, England, may not gener-
alise to rural Africa or even to adults in car-centric cities
like Atlanta, Georgia. A focus on collecting and sharing
benchmark data, combined with incremental develop-
ment of new generalisable ML methods, should be a
critical component in advancing this research field.

PRIORITY IN METHODS DEVELOPMENT

It has been suggested that the original cut-point
measures for physical activity measurement have been
left aside in favour of ML methods.® While ML methods
are superior to the previous cut-point-based approaches
for activity intensity classification, we argue that the
jump from cut-point-based approaches to ML may have
missed potentially important and useful methodological
advances." For example, it is plausible that advanced
rule-based approaches may provide sufficiently accurate
classification compared with ML methods; however, new
rule-based approaches are rarely developed or compared
with ML methods using benchmark data. The priority
of methods development focused on ML without suffi-
cient benchmark data has created important blind
spots in physical activity measurement. Additionally,
other methods from computer science could also be
useful and applied to physical activity measurement. For
example, the A* algorithm could impute missing data
and improve efficiency when processing accelerometer
data with missing values.” There are likely many methods
from computer science that could be applied to physical
activity measurement that we are missing. As a physical
activity research community, we have focused on what we
believe to be state of the art ML while forgetting about
many other existing methods that could be applied to
physical activity measurement.

LIMITED SOFTWARE INTEGRATION

While ML methods are now common in physical activity
research, their integration with commonly used soft-
ware is rare. For example, both ActiLife" (a stand-alone
software package for analysing accelerometer data) and
GGIR" (an R statistical programming language package)
are two commonly used accelerometer data analysis tools,
yet neither apply any published ML methods and rely on
arguably outdated cut-point-based algorithms. Our recent
search of R packages for accelerometer data processing and
physical activity measurement'® includes 34 packages for
processing accelerometer or commercial wearable device
data. This is compared with hydrology (92 R packages),"”
psychometrics (241 R packages)'* and Pharmacokinetics
(19 R packages).'” The reviewed packages suggest that few
ML methods have been integrated into R packages.

Despite methods development and many publications, it
is also difficult to apply these ML. methods to new data, which
is fundamental, one of the problems that ML is trying to
solve.” Notably, the Sojourn16 17 package does include several
different ML methods for analysing Actigraph accelerom-
eter data. Furthermore, open-source software development
integration lags behind other physical activity measurement
research fields. Physical activity measurement researchers
must improve the integration of ML methods into packages
developed for specific programming languages (eg, R or
Python) and stand-alone software (eg, ActiLife). As physical
activity researchers, we must continue developing and inte-
grating new software for ML methods to be fully adopted by
the discipline.

ABSENCE OF TRAINING

Training continues to limit the uptake of ML algorithms
in physical activity research. While most physical activity
researchers have a strong grounding in statistical methods,
few have more than a surface knowledge of ML method-
ology. Even when ML models are available to infer activity
level, type or context, researchers have difficulty employing
them as they lack expertise in data preprocessing and how to
evaluate the model’s performance when applied to new data.
The authors' experience working with clinical researchers
running randomised controlled trials where physical activity
is an outcome suggests that these researchers are reluctant
to use new methods for creating an outcome variable. In
contrast, they tend to use existing cut-point methods to
ensure that their work is comparable across different studies.
Their teams do not have the technical expertise to use these
new methods to be confident in their results. As a result, new
MI-based methods for calculating physical activity are slow
to be integrated with clinical research and practice.

CLINICAL PERSPECTIVE

The cut-point-derived methodology we use today has
inherent errors in estimating physical activity. For
example, if a device estimates a person as sufficiently
active, but in reality they are not, this has important
health consequences for the individual and clinical
consequences for the physical activity prescription. The
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limitations of ML methods for physical activity prescrip-
tion should be known to clinicians using these data.'®
Knowing the limitations of specific ML methods is
common in fields like radiology, where ML methods have
been used for some time in clinical applications.' *’

CONCLUSION

To improve the use of ML methods in physical activity
research, we believe that as a discipline, we must use and
publish benchmark datasets to allow for increased open-
source methods development. We must prioritise both
improvements in cut-point-based and ML methods. We
must improve our development, integration and use of
software that allows for the broader training and applica-
tion of ML methods to advance the field of study.
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